
RESEARCH ARTICLE

A stochastic model of myeloid cell lineages

in hematopoiesis and pathway mutations

in acute myeloid leukemia

Frank JäkelID
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Abstract

A model for hematopoiesis is presented that explicitly includes the erythrocyte, granulocyte,

and thrombocyte lineages and their common precursors. A small number of stem cells prolif-

erate and differentiate through different compartments to produce the vast number of blood

cells needed every day. Growth factors regulate the proliferation of cells dependent on the

current demand. We provide a steady state analysis of the model and rough parameter esti-

mates. Furthermore, we extend the model to include mutations that alter the replicative

capacity of cells and introduce differentiation blocks. With these mutations the model devel-

ops signs of acute myeloid leukemia.

Introduction

All blood cells are generated from very few stem cells and go through several stages of cell divi-

sion and differentiation that greatly amplify the number of cells. In fact, one cell division per

day at the stem cell stage is thought to lead to roughly 350 billion cells flowing out into the

blood stream every day. How is this massive amplification achieved? And how does this pro-

cess explain the dynamical changes in blood cell counts that clinicians observe in their daily

work, e.g. in leukemia?

There is a long history of mathematical modeling of hematopoiesis with two traditions, one

rooted in differential equations and one in stochastic modeling [1, 2]. The dynamical and con-

trol-theoretic aspects of hematopoiesis are naturally captured with differential equations. In

contrast, the detailed biology of cell proliferation and differentiation is often easier to model

with discrete stochastic processes, which often go down to the single cell level and sometimes

even include genetic and other intracellular processes. This tension between single cell models

and models of the global dynamics is in no way unique to hematopoiesis, it exists in all areas of

systems biology.

However, a specific challenge in hematopoietic modeling is that the whole system crucially

depends on a very small number of hematopoietic stem cells, making it very desirable to have

models that span the micro- and the macro-level [3]. Also, biomedical research on the patholo-

gies of the hematopoietic system increasingly focuses on molecular and genetic explanations.

For example, the genes that are associated with human myeloid leukemia are extremely well
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characterized [4–7] and cancerogenesis, in general, is now understood as arising from a very

small number of mutations in a variety of pathways that tightly regulate cell proliferation and

cell death [8–10]. These genetic and molecular insights can be incorporated into models of the

global dynamics [11, 12] but without modeling single cells the effects of single mutations on

leukemogenesis cannot be studied directly.

Here, we present a stochastic, compartmental model that counts single cells at various

stages of hematopoiesis. Our model is strongly inspired by the model of Dingli et al. [13] that

was later generalized and analyzed in detail by Werner et al. [14]. In the original model no dis-

tinction between different cell types is made and hence the different characteristics of, for

example, the erythrocyte, granulocyte, and thrombocyte lineages in hematopoiesis cannot be

taken into account. The major extension we propose here is to explicitly model these three

myeloid lineages of hematopoiesis. In addition, we will also include a feedback mechanism

with lineage-specific growth factors. As we account for the three lineages and their common

precursors the feedback mechanisms that we propose is much more detailed than previous

extensions of the original model that also included feedback [15]. Furthermore, setting the

parameters of our model to realistic values is harder than in the original model because of

interactions between the three lineages. We show, however, that rough parameter estimates

can still be obtained by considering the steady state, similar to how Dingli et al. [13] did it.

Finally, we extend the model to include single mutations that might account for some aspects

of acute myeloid leukemia (AML). In this regard, our model mirrors similar efforts by Werner

and colleagues [14, 16, 17], who do not, however, deal with the complications of differentiating

between cell lineages.

Methods

Even though our model is based on the model of Dingli et al. [13], the introduction of different

cell lineages and the inclusion of cell-lineage specific growth factors make it easier to explain

our model from scratch, rather than to present it as an extension of the original model. This is

what we will do in the Methods section. The Results section will then give a theoretical analysis

of the new model and show that based on this analysis the model’s parameters can be set to

physiologically plausible values. Finally, we will extend the model slightly to allow for single

mutations in single cells and use this extension to simulate the development of acute myeloid

leukemia.

A compartmental model

We will consider the numbers of three myeloid types of blood cells: erythrocytes (E), granulo-

cytes (E), and thrombocytes (T). To keep the model simple, we ignore the monocytes and only

consider the granulocytes among the leukocytes. Risk of bacterial infections among transplant

patients is predominantly correlated with the number of neutrophil leukocytes and therefore

the granulocyte count is clinically the more relevant variable. Also, the monocytes only make

up a very small proportion of the leukocytes anyway. In addition we will consider the common

precursors (C) of the myeloid cells, including the hematopoietic stem cells.

We assume there are KE, KG and KT compartments for the erythrocyte, granulocyte, and

thrombocyte lineages. For the common precursors we assume there are KC + 1 compartments

with the zeroth compartment being the stem cell compartment. Each compartment has Nx,k(t)
cells in it at time point t. For example, we assume the zeroth compartment of the common pre-

cursors is the stem cell compartment and NC,0(t) is the number of cells in it. NC;KC
ðtÞ is the last

stage before cells commit themselves to one of the three lineages. NE,1(t) is then the first stage

of the erythrocyte lineage and NE;KE
ðtÞ is the number of erythrocytes in the blood. Likewise for
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the granulocytes and the thrombocytes. Fig 1 illustrates the compartments of the model. Fur-

thermore, there are a number of growth factors in the bone marrow that change over time. We

collect the (log) concentrations for all these growth factors in c(t) = {cE(t), cG(t), cT(t)}. These

growth factors act as a feedback signal to control the outflow of each stage to ensure that the

blood counts in the blood stream maintain their normal levels. The rate at which cells leave

their compartment therefore depends on these concentrations: rx,k(c(t)) measured in 1/days

for x 2 {C, E, G, T}.

To simulate the number of cells in each compartment over time we discretize time, t 2
fjDt j j 2 Ngmeasured in days. With Δt sufficiently small the probability that a cell divides

itself in any one time step is

r0x;kðtÞ ¼ rx;kðcðtÞÞDt: ð1Þ

For Δt! 0 this discrete process becomes an inhomogeneous Poisson process. Since we

have Nx,k(t) cells in the kth compartment, the number Mx,k(t) of the cells that leave this

Fig 1. Illustration of the model’s compartments. The model consists of KC + 1 compartments for the common precursors. The zeroth compartment is the stem cell

compartment. The erythrocyte lineage has KE compartments, and the granulocyte and thrombocyte lineages have KG and KT compartments, respectively. The number

of cells in each compartment is given by N and the outflow of each compartment by M with the respective indices. The cells at the final stage (on the very right) model

the mature blood cells in the blood stream. Deviations of the respective blood counts from their normal range result in lineage specific growth factors (cE, cG, cT) that

feed back to all stages and increase their outflow.

https://doi.org/10.1371/journal.pone.0204393.g001
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compartment at time t is a Binomial distribution with

Mx;kðtÞ � BinomialðNx;kðtÞ; r0x;kðtÞÞ ð2Þ

for x 2 {C, E, G, T} and all the relevant k.

Stem cell compartment. Cell division in the stem cell compartment is asymmetrical: If a

cell divides, it turns into two daughter cells, one daughter cell is a clone of the stem cell and

stays in the stem cell compartment and the other cell differentiates and leaves the stem cell

compartment. Asymmetric cell division assures that the number of cells in the stem cell com-

partment, NS, stays constant as new cells leave it, hence

NC;0ðt þ DtÞ ¼ NC;0ðtÞ ¼ NS ð3Þ

for all t. MC,0(t) cells leave the stem cell compartment at each time step and enter the next com-

partment, i.e. the first compartment of the common precursors.

Common precursor compartments. The next compartment’s size over time is

NC;1ðt þ DtÞ ¼ NC;1ðtÞ � MC;1ðtÞ þMC;0ðtÞ; ð4Þ

where MC,1(t) is the number of cells that leave it. The cells that leave this compartment divide

symmetrically: Cells that divide themselves turn into two daughter cells and each of them dif-

ferentiates and flows on to the next compartment. Contrary to previous work [13] we do not

take into account potential self-renewal. With this simplification the inflow is 2MC,k−1 and

NC;kðt þ DtÞ ¼ NC;kðtÞ � MC;kðtÞ þ 2MC;k� 1ðtÞ ð5Þ

for all subsequent compartments 1< k� KC (see Fig 1). As there is no self-renewal in any of

the non-stem-cell compartments the number of cell divisions a cell has gone through since it

left the stem-cell compartment automatically determines its stage of maturation.

Committed precursor compartments and blood stream. What is the number of cells in

the first compartment of each lineage? We assume that cells at the last common precursor

stage randomly decide to go into one of the three blood cell lineages with probabilities qE(c(t)),
qG(c(t)), and qT(c(t)) that depend on the current growth factor concentrations c(t):
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for all t. Cells that leave the last compartment of the common precursors divide symmetrically,

as do all all subsequent compartments, and hence the outflow from the previous stage is always

multiplied by two:

Nx;kðt þ DtÞ ¼ Nx;kðtÞ � Mx;kðtÞ þ 2ME;k� 1ðtÞ ð7Þ

for x 2 {E, G, T} and 0< k< Kx. The last stage of each linage models the blood stream, i.e. the

number of erythrocytes NE;KE
, granulocytes NG;KG

, and thrombocytes NT;KT
. Thrombocytes in

the blood stream are not cells, instead platelets are generated from megakaryocytes and each

megakaryocyte nuclear unit gives rise to many platelets. Hence, in order to be able to accom-

modate this fact we multiply the outflow of the previous to last stage with an additional factor

mx, therefore

Nx;Kx
ðt þ DtÞ ¼ Nx;Kx

ðtÞ � Mx;Kx
ðtÞ þ 2Mx;xT � 1ðtÞ �mx ð8Þ
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for x 2 {E, G, T}. For the erythrocyte and granulocyte lineages mE and mG will be set to 1

whereas for the thrombocyte lineage mT will be the number of platelets in a megakaryocyte

nuclear unit.

Proliferation and death rates. It is known that within the bone marrow the proliferation

rates increase with further differentiation (i.e. k). Stem cells divide only about once a year and

the last committed precursors can divide several times a day. Dingli et al. [13] make the

assumption that all rates are constant over time and that the ratio of rates r = rx,k/rx,k−1 at sub-

sequent stages is constant, too. Therefore, rx,k is rkrx,0 for 1< k� Kx and proliferation rates

increase exponentially with differentiation stage k.

Here, we will make a similar but different assumption. The division rates at each stage

should be controlled by the concentration of relevant growth factors (e.g. SCF, GM-CSF, Epo,

G-CSF, TPO, etc.). We make the simplifying assumption that there are just three effective
growth factors, one for each lineage. These could be Epo for the erythrocyte, G-CSF for the

granulocyte, and TPO for the thrombocyte lineage—but more likely there is a combination of

several factors in each lineage.

Each of the growth factors for the three lineages x 2 {E, G, T} has a certain concentration at

each time point. Instead of using the concentrations for each growth factor directly it will be

more convenient to parameterize the model with the logarithm of the concentrations cx(t). Let

us again use the shorthand c(t) = {cE(t), cG(t), cT(t)} for the collection of all three concentra-

tions. The division rates of a cell will depend on the probability that growth factors are bound

to its receptors—which in turn depends on the growth factor concentrations. Note that the

rates for each cell type can potentially depend on the concentrations of all three growth factors.

In fact, we make the assumption that all common precursors (including the stem cells) have

receptors for each of the three growth factors and in order to be able to divide, common pre-

cursors have to have at least one bound growth factor. In contrast, the committed precursors

for the three lineages are only sensitive to their specific growth factor.

Let sx,j be the sensitivity for the specific growth factor of each lineage x 2 {E, G, T} at stage j
where 0� j< KC + Kx (i.e. looking at Fig 1 the stem cells have index j = 0 and the first com-

partment of each committed lineage has index j = KC + 1). The indices 0� j� KC capture the

sensitivity of the common precursors to each of the three growth factors. For example, sE,0 is

the sensitivity of the stem cells to the growth factor of the erythrocyte lineage and sE;KC is the

sensitivity of the last common precursor. The indices KC< j< KC + Kx capture the sensitivities

of the committed precursors. As cells at stage KC + KE are the mature erythrocytes in the blood

stream, the last stage that is sensitive to the E growth factor is KC + KE − 1. We assume that sx,j

is a simple linear function of j, i.e. sx,j = ax j + b for 0� j< KC + Kx with positive slope ax and

constant offset b. This is the key restriction in our model that replaces the constant ratio

assumption of Dingli et al. [13]. Given these sensitivities the simplest model for the probability

that a ligand is bound to a receptor is given by a logistic function:

px;jðcÞ ¼
1

1þ e� axj� b� cx
for 0 � j < KC þ Kx; ð9Þ

where with a slight abuse of notation c = c(t) is the collection of the logarithms of the three

ligand concentrations and cx pulls out the relevant concentration from c. If the diffusion of the

growth factors in the bone marrow is much faster than the division rate of the cells, the binding

of growth factors can be considered to be in steady state relative to the hematopoietic system.

Under this assumption the equation for px,j(c) can be derived from the principles of statistical

mechanics (see e.g. the discussion of Hill functions in [18]).

A Stochastic model of myeloid hematopoiesis
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Panel (A) in Fig 2 shows the binding probabilities for the three growth factors as a function

of the stage j for all cx = 0 (and ax, b, KC and Kx set to realistic values). If the concentrations

increase the curves will shift to the left and the binding probabilities increase at all stages. For a

decrease in concentrations the curves shift to the right and binding probabilities decrease.

We assume there is a maximum division rate rmax that is determined by the cell cycle. This

maximum rate is the same for all cell types. The division rate of each cell type reduces to the

fraction of cells that have growth factors bound. For the common precursors we assume that

they have three receptors, one for each growth factor of the respective lineage. We further

assume they can divide if any of the three receptors have a growth factor bound to them. The

probability that this happens at the common precursor stage k is the same as one minus the

probability that none of the growth factors are bound and hence the rate at which these cells

divide is

rC;kðcÞ ¼ rmax � ð1 � ð1 � pE;kðcÞÞð1 � pG;kðcÞÞð1 � pT;kðcÞÞÞ ð10Þ

for 0� k� KC. The committed progenitors of each lineage only have a receptor for their

respective growth factor and their proliferation rates are accordingly

rx;kðcÞ ¼ rmax � px;KCþkðcÞ ð11Þ

for x 2 {E, G, T} and 1� k< Kx. The last stages KE, KG, and KT of the three lineages are the

erythrocytes, granulocytes, and thrombocytes in the blood stream. The rates at which each of

them leaves the blood stream is assumed to be constant and is only determined by their respec-

tive death rates, i.e for each x 2 {E, G, T}

rx;KxðcÞ ¼ rx; ð12Þ

and is therefore independent of the growth factor concentrations c. Note that the only way for

a cell to die is to become a fully mature blood cell and then be cleared out of the blood stream

after having served its purpose. Of course, in a more realistic model premature cells should

also die sometimes. As it is hard to experimentally estimate the death rates for the various

stages we have decided to ignore this possibility.

Panel (B) of Fig 2 gives a concrete numerical example of how the rates change for the four

cell types as a function of the stage and again with all cx = 0 (with rmax and all rx set to realistic

values). There is a pronounced jump at KC as the common progenitors have receptors for all

three growth factors and the last common progenitor at KC is therefore more active than each

committed progenitor at the next stage. The rates drop to the death rates at the last stage of

each lineage as these are not dependent on the binding probabilities (panel A). For the lower

stages the rates look linear in log space and hence increase exponentially, as in the model of

Dingli et al. [13]. In contrast to their model the rates in our model saturate at rmax.

From last common precursor to the three lineages. We will use the binding probabilities

from Eq (9) to set the probabilities qE(c), qG(c) and gT(c) that common precursor cells enter the

three lineages (see Eq 6). Let us look at the erythrocyte lineage first. We will assume that if a

cell at the last stage of the common precursors has only an E growth factor bound and not any

of the other two then the cell will enter the erythrocyte lineage. If it has an E growth factor and

exactly one of the other two, the probability to enter the E lineage is 1/2. If all growth factors

A Stochastic model of myeloid hematopoiesis
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Fig 2. Model stages. Panel (A) shows binding probabilities for the erythrocyte, granulocyte, and thrombocyte growth factors as a function

of the differentiation stage. Panel (B) shows the corresponding proliferation rates, except for the last stages of each lineage that model the

blood stream. For those the rates correspond to the death rates of erythrocytes, granulocytes, and thrombocytes. Panels (C) and (D) depict

the expected outflow and number of cells at each stage. All curves are for the growth factor concentrations at their target values (all cx = 0)

and with all parameters set to realistic values.

https://doi.org/10.1371/journal.pone.0204393.g002
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are bound the probability is 1/3. Let

q0EðcÞ ¼ pE;KCðcÞð1 � pG;KCðcÞÞð1 � pT;KCðcÞÞ

þ
1

2
pE;KCðcÞpG;KCðcÞð1 � pT;KCðcÞÞ þ

1

2
pE;KCðcÞð1 � pG;KCðcÞÞpT;KCðcÞ

þ
1

3
pE;KCðcÞpG;KCðcÞpT;KCðcÞ

and similarly for q0G;KC and q0T;KC . With these three values we can compute the probability that a

cell that divides at the last common precursor stage enters lineage x 2 {E, G, T} as

qxðcÞ ¼
q0xðcÞ

q0EðcÞ þ q0GðcÞ þ q0TðcÞ
: ð13Þ

Feedback mechanism. The last missing component for the model is the specification of

the feedback mechanism. We assume that feedback regulates the growth factor concentration

for each lineage x 2 {E, G, T} separately. If the number Nx;Kx
ðtÞ of cells or platelets in the blood

is lower than the target number Nx the concentration goes up, otherwise it goes down, i.e.

cxðtÞ ¼
d

Nx
Nx � Nx;Kx

ðtÞ
� �

ð14Þ

where δ/Nx is the gain of the feedback mechanism that, for simplicity, we assume to be the

same for all three growth factors relative to the respective target number Nx. Hence, the feed-

back mechanism tries to keep all cx(t) at zero and therefore Nx;Kx
ðtÞ close to Nx. While the feed-

back signal is a linear function of the deviation, its effect on the binding probabilities (Eq 9)—

and therefore the proliferation rates at each stage (Eq 11)—is non-linear. Also, the feedback

mechanism is deterministic and will reduce the overall noise in the system. In fact, we will see

below (subsection on noise scaling) that the system behaves almost deterministically and

extend it in a way that better reflects the noise in biological systems.

Results

Now that we have presented our model in full detail, the Results section will first give a theoret-

ical analysis of the steady-state behavior of the model. Then this analysis will be used to set the

model’s parameters to physiologically sensible values. Finally, we extend the model slightly to

allow for simulating the effects of single mutations on leukemogenesis.

Conditional steady state analysis

The proliferation rates at all stages and the probability of cells to enter each lineage depend on

the binding probabilities in Eq (9). These, in turn, are completely determined by the growth

factor concentrations cx(t) in the bone marrow. The concentrations for the three growth fac-

tors therefore control the overall output of cells for all three lineages and are themselves con-

trolled by the feedback mechanism that keeps the number of erythrocytes, granulocytes, and

thrombocytes close to their target values (Eq 14). To better understand this system we will ana-

lyze its steady state behavior for given, fixed concentrations cx(t) = cx. For the following deriva-

tions we will again collect these three numbers in one variable c = {cE, cG, cT}.

In steady state the expected number of cells at each state is constant and the expected inflow

equals the expected outflow on all stages. For the common precursors this means that Eq (4)

A Stochastic model of myeloid hematopoiesis
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can be simplified to

E½MC;1 j c� ¼ E½MC;0 j c�

where we have dropped the dependence on t since all time points behave in the same way in

steady state. By the same reasoning Eq (5) can be simplified to

E½MC;k j c� ¼ 2E½MC;k� 1 j c� for 1 < k � KC:

From these two equations it follows that

E½MC;k j c� ¼ 2k� 1E½MC;0 j c� for 1 < k � KC:

For the three downstream lineages x 2 {E, G, T} the same reasoning can be applied to Eqs

(7) and (8) and results in

E½Mx;k j c� ¼ 2kE½Mx;0 j c� for 1 < k < Kx

E½Mx;k j c� ¼ 2kE½Mx;0 j c� �mx for k ¼ Kx

where again the last stage of each lineage Kx needs to be treated differently because there is the

additional factor mx to accommodate the fact that megakaryocytes burst into mT platelets.

The expected inflow for all three lineages x 2 {E, G, T} depends on the expected outflow of

the last common progenitor stage and the probability qx(c) that a cell enters lineage x (Eq 6) is

E½Mx;0 j c� ¼ E½MC;KC
j c� � qxðcÞ

because c is given and therefore qx(c) is not random. Since E½MC;KC
j c� ¼ 2KC � 1E½MC;0 j c� the

preceding equations can be summarized as

E½MC;k j c� ¼ E½MC;0 j c� � 2
k� 1 for 1 � k � KC ð15Þ

E½Mx;k j c� ¼ E½MC;0 j c� � 2
KCþk� 1 � qxðcÞ for 1 � k < Kx ð16Þ

E½Mx;k j c� ¼ E½MC;0 j c� � 2
KCþk� 1 � qxðcÞ �mx for k ¼ Kx ð17Þ

where x 2 {E, G, T}. This shows that the expected outflow of all stages only depends on the

expected outflow of the stem cell compartment E[MC,0jc]. Hence, using these equations the

expected outflow for all compartments can be computed by starting with the expected outflow

of the stem cell compartment

E½MC;0 j c� ¼ E½NC;0 j c�rC;0ðcÞ � Dt ¼ NSrC;0ðcÞ � Dt

where we have used that MC,0 is binomially distributed (Eq 2) and that the number of stem

cells is constant (Eq 3). Panel (C) in Fig 2 shows the expected outflow of cells per day for each

stage for realistic parameter values and all cx = 0. The constant slope in log space is due to the

doubling at each stage for all cell types—except for the stem cell compartment and the last

stage of the thrombocyte lineage. In the former case there is asymmetric cell division and

therefore the outflow of the stem cell compartment and the next compartment are the same. In

the latter case each megakaryocyte results in many more than just two platelets (mT� 1

whereas mE = mG = 1).
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From the expected outflow we can compute the expected number of cells at each stage. For

all the left hand sides of Eqs (15), (16) and (17)

E½Mx;k j c� ¼ E½Nx;k j c�rx;kðcÞ � Dt

because, again, the Mx,k are binomially distributed (Eq 2). Plugging the last two equations back

into Eqs (15), (16) and (17) we find that the expected number of cells at each stage is

E NC;k j c
� �

¼
NSrC;0ðcÞ
rC;kðcÞ

� 2k� 1 for 1 � k � KC ð18Þ

E Nx;k j c
� �

¼
NSrC;0ðcÞ
rx;kðcÞ

� 2KCþk� 1 � qxðcÞ for 1 � k < Kx ð19Þ

E Nx;k j c
� �

¼
NSrC;0ðcÞ
rx;kðcÞ

� 2KCþk� 1 � qxðcÞ �mx for k ¼ Kx: ð20Þ

Panel (D) in Fig 2 shows the number of expected cells for each stage in the hematopoietic

system for realistic parameter values and all cx = 0. The expected number drops a little in the

first compartment after the stem cell compartment because the rate increases (panel B) but the

outflow does not (panel C). The big jumps on entering the blood stream at KC + Kx are due to

the fact that the death rates rx are much lower than the proliferation rates of the last progeni-

tors (panel B).

The blood stream, i.e. the last stage Kx of each lineage, is also special because it produces the

feedback to all the other stages of the hematopoietic system. The concentration of each growth

factor cx is a deterministic and one-to-one function of the number of cells in each last compart-

ment Nx;Kx
(Eq 14). Hence, if cx is known so is Nx;Kx

. In particular, if cx = 0

E½Nx;Kx
j c ¼ 0� ¼ Nx

where we used the abbreviation c = 0 to mean all cx = 0 in c = {cE, cG, cT}. Using the same abbre-

viation let rS = rC,0(0) be the proliferation rate of the stem cells for c = 0, i.e. this is the rate that

the feedback mechanism aims for (Eq 14). Remember that rx ¼ rx;Kxð0Þ are the death rates of

each lineage in the blood stream independent of the growth factor concentrations (Eq 12).

Plugging all these values into Eq (20), the conditional expected number of erythrocytes, granu-

locytes, and thrombocytes at the final stages hence have to fulfill the following constraints:

Nx ¼
NSrS
rx
� 2KCþKx � 1 � qx �mx ð21Þ

for x 2 {E, G, T} and with qx = qx(0).

Furthermore, let NC ¼ E½NC;KC
j c ¼ 0� and rC ¼ rC;KCð0Þ be shorthands for the respective

values of the last common progenitor compartment. Plugging these into Eq (18) for k = KC

gives one more constraint, namely

NC ¼
NSrS
rC
� 2KC � 1: ð22Þ

These constraints can be used to set realistic values for the free parameters of the model.

Importantly, the above steady state analysis is conditional on all cx = 0 and hence ignores the

feedback mechanism (Eq 14). The unconditional steady state is unfortunately more compli-

cated to analyze, also because the feedback signal has a non-linear influence on the system.
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However, the hope is that setting parameters based on the conditional steady state analysis will

still lead to useful values—which is indeed the case as shown next.

Rough parameter estimates

The free parameters of the model are:

• the number of stem cells NS

• the target number of erythrocytes, granulocytes, and thrombocytes in the blood stream, NE,

NG, and NT

• their death rates rE, rG, and rT

• the number mT of platelets in each megakaryocyte

• the maximum proliferation rate of cells rmax

• the sensitivity offset parameter b

• the increase in growth factor sensitivity over stages for each lineage aE, aG, and aT

• the number of stages for each lineage KE, KG, KT

• and for the common precursors KC

• and, finally, the feedback gain δ.

We will use clinical observations and current best estimates to set these free parameters.

First, for the number of stem cell NS we use the same estimate as Dingli et al. [13], namely that

there are roughly 400 hematopoietic stem cells that are active at any one time [19]. For healthy

adults

NE � 5:0 million=mL � 5L � 25:0 trillion erythrocytes

NG � 4000=mL � 5L � 20:0 billion granulocytes

NT � 250000=mL � 5L � 1:2 trillion thrombocytes

are realistic numbers that can be obtained from clinical norms and assuming 5 liters of blood

in the body. Erythrocytes are estimated to die after 110 days on average (1/rE). For granulo-

cytes the available estimates are highly variable. The latest estimates using in vivo labeling are 5

days, considerably higher than previous ex-vivo estimates [20]. However, these measurements

were just for one type of granulocyte and other estimates suggest survival times of only 8

hours. We therefore decided to use a value in between, namely 2 days (1/rG). Classic data on

thrombocytokinetics estimate that thrombocytes leave the blood stream after 10 days (1/rT).

One complication with thrombocytes is that the last committed precursor in the bone marrow,

the megakaryocytes, produce about a thousand platelets. Another complication is that mega-

karyocytes undergo endomitosis, i.e. each cell cycle doubles the chromosomes and nuclear

units within the cell but there is no cell division. In the model we will not distinguish between

normal mitosis and endomitosis and hence mT is the number of thrombocytes in each nuclear

unit of a megakaryocyte. This number is estimated to be around 50 [21]. In contrast, mE = mG

= 1 as the last erythrocyte and granulocyte precursors divide normally. Finally, the cell cycle

takes a certain time and therefore cells cannot divide at arbitrary rates. A realistic number for

the maximum number of cell divisions per day, rmax, is 5 [13].

The remaining parameters are more difficult to set to reasonable values as their relationship

to more easily observable quantities can be non-linear and parameters interact, too. For
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example, from Eq (9) it follows that the offset parameter b and the slopes ax are related to the

log odds of the binding probability at each stage j, i.e.

axjþ bþ cx ¼ log
px;jðcÞ

1 � px;jðcÞ

 !

ð23Þ

for x 2 {E, G, T}. For j = 0 we can, however, solve this equation for b. If all cx = 0, the three

probabilities in the stem cell compartment, j = 0, are equal, i.e. pstem = pE,0(0) = pG,0(0) =

pT,0(0). This is the situation when erythrocytes, granulocytes, and thrombocytes are all at their

target values (Eq 14). With this assumption

b ¼ log
pstem

1 � pstem

� �

:

and using Eq 11 and again using the shorthand rS = rC,0(0) we find that

rS ¼ rmax � ð1 � ð1 � pstemÞ
3
Þ

ð1 � pstemÞ
3
¼ 1 �

rS
rmax

� �

pstem ¼ 1 � 1 �
rS
rmax

� �1
3

:

ð24Þ

We already know rmax but what is the proliferation rate of the stem cells rS? The rate at

which they divide is about once a year, i.e. 1/365. This is the same estimate as used by Dingli

et al. [13] which is based on allometric scaling arguments [19]. It is in between other estimates

that range from once every 25-50 weeks to 0.6 times per year [22, 23]. Anyway, with this num-

ber we can compute pstem and we find that b� −8.61.

With b known, what are the slopes aE, aG, and aT? We assume that we know the rate at the

previous to last stage of each lineage (remember the last stage are the mature blood cells), the

output rate into the blood stream: rblood ¼ rE;KE � 1 ¼ rG;KE � 1 ¼ rT;KE � 1 ¼ 4 times per day. This is

chosen to be just below the maximum rate but leaving a little room to increase the rate for the

feedback mechanism. With this assumption we immediately get from Eq (11) that

pblood ¼ px;KCþKx � 1 ¼ rx;Kx � 1=rmax. Which allows us to solve Eq (23) for ax:

ax ¼
log

pblood

1 � pblood

� �

� b

KC þ Kx � 1

for x 2 {E, G, T}. Unfortunately we can only solve this if we know the number of stages KE, KG,

KT, and KC. From Eq (21) we get that

Kx ¼ 1 � KC þ log
2

Nxrx
NSrS

� �

� log
2
ðqxÞ � log

2
ðmxÞ ð25Þ

for x 2 {E, G, T}. Hence, we can only compute Kx if we know all ax and KC since the qx depend

on those. But remember that ax in turn depends on all Kx, including KC. Assuming that at least

KC is known, say KC� 14, these mutual dependencies suggest an iterative scheme to update

each set of equations in turn. This scheme converges extremely quickly. If applied we find that

aE� 0.25, aG� 0.29, and aT� 0.31. More importantly, we get estimates for the number of

stages in each lineage, namely

KE � 27 KG � 22 KT � 19
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that we rounded to the closest integer. Hence, in order to become an erythrocyte a stem cell

has to go through KE + KC� 41 cell divisions. This number is considerably higher than previ-

ous estimates [13] (in their Eq (1)—that is analogous to our Eq (25) with qx = 1 and mx = 1—

they do not have rS).
Due to the rounding of Kx these estimates will not produce the exact desired expected out-

flow Nxrx for the hematopoietic system that was used to fit the parameters. As we can only

have an integer number of stages, the target numbers of erythrocytes, granulocytes, and

thrombocytes are constrained by the integer powers in Eq (21). In order to make the Nx fit the

desired values we adjust the rx, i.e. the death rates of erythrocytes, granulocytes and thrombo-

cytes according to Eq (21). The new adjusted estimates are

1=rE � 104:41 days 1=rG � 1:62 days 1=rT � 11:20 days

which are still realistic compared to the initial values of 110, 2, and 10 days.

These estimates depend on knowing KC that we have seemingly arbitrarily set to 14. Based

on mutations that affect several lineages it has been estimated that there are between 20 and

100 thousand CFU-GEMM cells [13], i.e. last common progenitors. Say we want to choose KC

such that the expected number of cells at the last common precursor stage is approximately

60000. We can vary KC, fit all other parameters given KC and compute the resulting conditional

expected number of last common precursors NC ¼ E½NC;KC
j c ¼ 0� using Eq (22). We can

then choose KC such that NC� 60000. Using this procedure results in KC� 14, the number we

have used above. The expected behavior of the model with all the parameters set as just

described is shown in Fig 2. Recently, it has been suggested that the textbook view of many

stages of pluripotent common progenitors in hematopoiesis may not be correct and that cells

commit very early to one of the three lineages [24]. If this was true KC would have to be chosen

much smaller, perhaps even set to zero. In the following we will, however, stick to the textbook

view.

Feedback and stem cell transplants. Finally, we set the gain of the feedback mechanism

δ. If the granulocyte count drops to zero, as it can for example happen after radiation- or

chemo-therapy, the stem cells should definitely proliferate more than at their steady state rate

rS, but probably also not at the same maximum rate rmax that cells towards the end of the sys-

tem work at (see Fig 2, panel B). Let r0S be the rate that results in the case when all cx = δ (see

Eq 14). There is a one-to-one correspondence between r0S and δ that can be obtained from Eqs

(23) and (24) when substituting r0S for rS and δ for cx:

d ¼ log
p0stem

1 � p0stem

� �

� b p0stem ¼ 1 � 1 �
r0S
rmax

� �1
3

:

Setting r0S is more intuitive than setting δ directly. As the amplification of the output of the

stem cell compartment is so massive (Eq 17) even a small increase from rS to r0S can lead to a

big change in the blood counts. Also, normal fluctuations around the steady state should not

lead to big fluctuations of the proliferation rate of the stem cells. Still, even with these con-

straints it is challenging to set r0S without detailed data on the dynamics of the system. We will

set this parameter by simulating a stem cell transplant and making sure that the time course of

the simulated parameters roughly matches clinical observations. In this simulation, and most

simulations to be reported below, we have set Δt = 1/rmax/5. We have also simulated most

results of this paper with a Δt twenty times smaller and do not find significant deviations in the

results. For the few simulations that simulated several years we set Δt = 1/rmax.

The left side panels of Fig 3 depict the erythrocyte, granulocyte, and thrombocyte counts

after a stem cell transplant that happened at t = 0. To simulate the stem cell transplant we first
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simulate the effect of chemo-therapy or radiation-therapy. After a couple of weeks of therapy

we assume that all blood production came to a halt and the reserves in the bone marrow have

been used up, i.e. there are no more cells at any of the stages of the model, except the blood

stream. The erythrocytes and thrombocytes are assumed to be at normal levels because they

have been transfused to stabilize the patient. Granulocytes, in contrast, cannot be transfused

easily and hence because of their short half-life we assume they have been completely depleted

(patients are treated with antibiotics to prevent infections). Then, at t = 0, a short time after the

transplantation all stem cells are assumed to be back to their normal functioning and start

replenishing the bone marrow. It then takes a while until the first fresh cells arrive in the blood

stream. There is an overshoot in the granulocytes and thrombocytes and the system takes a

while to return to the steady state. Erythrocytes respond a lot more slowly. The time until the

system starts responding (the granulocyte counts start going up) shortens with an increase in

r0S but this also results in a bigger overshoot and a longer time to resettle. We have set r0S ¼ 1:00

by eye such that it takes less than two weeks until granulocytes and thrombocytes are back up

but the overshoot does not become unrealistically large.

Comparison to clinical data. The time scale of less than two weeks is consistent with clin-

ical experience simply because we have set the parameters accordingly. But do the details of

the dynamics that our model shows fit clinical observations, too? This is not easy to answer.

Allogeneic transplantation has the complication of graft versus host disease, hence it is simpler

to consider autologous transplantation only. As a first validation of the model, we have there-

fore looked up clinical records of 24 lymphoma patients who received autologous

Fig 3. Simulation of stem cell transplant. The left side panels depict erythrocyte, granulocyte, and thrombocyte counts for a simulation of a stem cell

transplant (for details see main text). The right side panels show the same with increased noise scaling.

https://doi.org/10.1371/journal.pone.0204393.g003
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hematopoietic stem cell transplantation after myeloablative conditioning. The time courses of

their blood counts can be seen in Fig 4 along with the median time-course.

Consider the erythrocytes first. As expected, the model and the data show a very slow time-

course with relatively small changes over the 90 days after the transplant. The main difference

is that the patients are anemic. As we calibrated the model with data from healthy subjects it is

not surprising that the absolute numbers are different.

As for the leukocytes: The simulation only models the granulocytes as the most frequent

leukocytes and therefore the numbers in Figs 3 and 4 are not directly comparable but the

median time-course of the overshoot and the slow resettling to the steady state are remarkably

similar—even though we only gathered these data after having fixed the parameters.

The thrombocyte counts show a very different median time-course than expected. In par-

ticular, there is no overshoot in the clinical data. It could be that we simply need to change the

gain parameter for the thrombocyte feedback loop separately from the other gains (Eq 14).

However, in contrast to leukocytes, thrombocytes can be transfused and patients do receive

Fig 4. Clinical data from autologous stem cell transplants. The erythrocyte, leukocyte, and thrombocyte counts for

24 lymphoma patients around the time of their stem cell transplant are shown. The faint colors depict the individual

patients with dots denoting actual measurements. The bold colors depict the median time-courses of linear

interpolations of the single-patient data.

https://doi.org/10.1371/journal.pone.0204393.g004
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transfusions during their treatment. Our simulation assumed therefore that patients go into

the transplantation with a normal thrombocyte count. This is clearly not the case in the data.

Patients receive transfusions at varying time-points during their treatments and these transfu-

sions have a big effect on the thrombocyte counts. Also, patients vary in the time that passed

between the myeloablative conditioning and the stem cell transplant. There might be an

increased demand of thrombocytes during the transplant, too. Given all these uncontrolled

factors, the median time-course of the patient data is not easily comparable to the model simu-

lation for the thrombocyte counts. In general, given the large differences between single

patients it seems desirable for future work to try to model single patients and not just prototyp-

ical behavior.

Noise scaling. A striking feature of the simulation depicted in the left panels of Fig 3 is

that the curves are extremely smooth and the system seems to behave almost deterministically,

despite the fact that random choices are made at every stage of the system. Apparently the

numbers of cells are so big, the difference between inflow and outflow so small, and the feed-

back mechanism so effective that there is hardly any significant variation in cell counts. In fact,

when running the simulation for a year in steady state the absolute average deviation from the

target values is at most 0.026%. Such low variance in the blood counts is, of course, unrealistic.

In reality there will be many more sources for variability in the data, e.g. additional noise in

the growth factor concentrations due to infections or temporarily increased oxygen demand.

The simulation should look more like the right panels in Fig 3. As the main source of variance

in the model are the binomial random variables (Eq 2) one simple way to inject more noise

into the system is to change the binomial to a beta-binomial to allow for overdispersion. This

can be achieved by changing Eq (1) to

r0x;kðtÞ � Beta
ax;kðtÞ

g
;
bx;kðtÞ

g

� �

ax;kðtÞ ¼ rx;kðcðtÞÞ

bx;kðtÞ ¼ 1 � ax;kðtÞ

and in this way the expectation of Mx,k(t) stays the same (Eq 2), hence keeping the conditional

steady state analysis intact. The variance, however, increases with the noise scaling parameter

γ. For γ! 0 the original model is recovered. In the limit of Δt! 0 a beta process is obtained

instead of the Poisson process of the original model [25].

Unfortunately, the introduction of the noise scaling parameter γ leads to shifts in the

unconditional steady-state values of the erythrocyte, granulocyte, and thrombocyte counts

away from their target values NE, NG, and NT (Eq 14). The left side panels in Fig 5 show the

steady state behavior of the system for γ = 0.03. There are small shifts of the average counts

compared to the desired target values (the dashed horizontal lines) but they are hardly notice-

able. In the panel on the right the relationship between γ and the expected values of the steady

state behavior is explored systematically. The noise scaling parameter γ is varied and the devia-

tion of the average counts from their target values over a simulation of one year is shown. The

deviations increase with the noise scaling parameter. This effect can be explained by the non-

linear feedback that quickly increases the proliferation rate of the stem cells whenever the out-

put is too low but cannot decrease the proliferation rate to the same degree whenever the out-

put is too high—simply because the proliferation rate of the stem cells is already very low for

the target values. In the following we have set γ = 0.03. This value was chosen by eye to give a

reasonable range for the variances of the erythrocytes, granulocytes, and thrombocytes but

results only in a relatively small average deviation from the target values.
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Simulation of myeloid leukemia

Ultimately, models for hematopoiesis should be useful for understanding clinical conditions.

As a first step in this direction, we will extend the model to capture some aspects of acute mye-

loid leukemia (cf. [16]). We assume leukemia develops through mutations in crucial pathways,

the so-called hallmarks of cancer [8, 9, 26]. Here, we will focus on two such pathways: The

pathway that controls the replicative capacity of a cell and the pathway that controls its further

differentiation. We extend the above model of hematopoiesis by allowing for two kinds of

mutations, one in each pathway.

First, we allow for mutations that give cells unlimited replicative capacity. This requires the

introduction of a limited replicative capacity for “normal” cells (which was ignored in [16]).

Normal cells are limited in their replicative capacity by the Hayflick limit. We assume all cells

that leave the stem cell compartment can replicate a fixed number of times, and this number is

the same for all cells. This number has to be greater than the number of stages that the erythro-

cytes have to go through—otherwise no mature erythrocytes will be produced—but decreases

with increasing age and for adults should therefore be lower than the absolute Hayflick limit of

about 70. Here we have arbitrarily set it to 60. In the model we keep track of the remaining

number of divisions for a cell by adding subcompartments to each stage accordingly: A com-

partment collects all cells at a certain stage with a certain remaining replicative capacity. For

normal cells the remaining replicative capacity decreases as they differentiate further and cells

that have exhausted their replicative capacity vanish from the simulation. Unlimited replicative

Fig 5. Deviation from target values. The panels on the left show the erythrocyte (NE;KE
), granulocyte (NG;KG

), and thrombocyte (NT;KT
) counts for the

hematopoietic system in steady state. The noise scaling parameter γ is varied in the panel on the right and the resulting average deviation of the counts

from their target values is shown for one year-long run of the simulation.

https://doi.org/10.1371/journal.pone.0204393.g005
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capacity can now be modeled by simply not decreasing the replicative capacity of a cell. That

is, the two children of a cell move on to the next differentiation stage without a decrease in

their replicative capacity and so do all their children and all their children, and so on, giving

rise to an exponential growth of cells with this particular mutation. For the left panel of Fig 6

such a mutation was introduced at the tenth stage of the granulocyte lineage. The number of

clones with this mutation is shown as a function of time for one run of the simulation. Even

though these cells have unlimited replicative capacity they quickly die out as the daughter cells

eventually differentiate further into mature granulocytes that do not divide any more and are

quickly removed from the blood stream.

Second, we allow cells to develop a complete differentiation block, i.e. they do not differen-

tiate further. Instead all their daughter cells (and their children and so on) remain at the same

stage of the hematopoietic system. A differentiation block leads to an exponential increase in

cells at the stage where the block occurs. The proliferation rate is given by the proliferation rate

of cells at this stage (see panel B in Fig 2). Hence, a mutation at an earlier stage will lead to a

slower increase in clones than a mutation at a later stage. However, the exponential increase

will eventually slow down and will be followed by a decrease of clones once the clones have

exhausted their replicative capacity. This time course is depicted in the right panel of Fig 6.

The peak number of cells depends on the stage where the mutation occurs. Later stages have

already used up more of their replicative capacity and therefore cannot proliferate as much. In

order to get a number of mutated cells in the bone marrow that is comparable in magnitude to

the number of normal cells in the bone marrow during steady state the mutation has to occur

at a very early stage.

Say, a differentiation block occurs at the common precursor stage k = 8, much earlier than

in Fig 6. As cells at this early stage have not used up as much of their replicative capacity as

later cells they can produce a much larger number of descendant cells. Fig 7 shows that a dif-

ferentiation block that occurs early can produce a number of clones that produce problems for

hematopoiesis. In order to make the model a bit more realistic, we have assumed that there is a

hard limit to the number of cells that can be hosted by the bone marrow, either because of

space limitations or other finite resources. Excess cells—mutated and normal cells—are

Fig 6. Single mutations. Mutations are introduced in the granulocyte lineage at stage k = 10 at time zero. In the left panel the mutation gives the

mutated cell and all its daughter cells unlimited replicative capacity. The plot shows the number of cells with this mutation as a function of time

(measured per microliter blood in the body). The clones quickly die out because they differentiate into mature granulocytes and are subsequently

removed from the system. In the right panel the mutation blocks further differentiation but also these clones die out once they have exhausted their

replicative capacity.

https://doi.org/10.1371/journal.pone.0204393.g006
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assumed to be pushed out of the bone marrow and into the blood stream at random. As one

symptom of leukemia is the presence of immature blood cells in the blood stream this assump-

tion seems reasonable. The pushed-out cells are subsequently removed from the blood stream

just like other cells that do not belong there. For the simulation shown in Fig 7 we have set the

limit for the number of cells in the bone marrow to 30000 per microliter, roughly twice the

average number of cells in the bone marrow. This number was chosen to ensure that normal

steady state fluctuations in the number of cells in the bone marrow do rarely lead to cells being

pushed out. The left panel of Fig 7 shows the number of normal and the number of mutated

cells in the bone marrow over time. The right panels of Fig 7 show the corresponding erythro-

cyte, granulocyte, and thrombocyte counts in the blood. As the mutated clones completely

take over the bone marrow no more normal mature blood cells and platelets can be produced

and hematopoiesis breaks down completely. The break-down is very sudden due to the expo-

nential growth of mutated cells—consistent with the sudden onset of acute leukemia. Hence,

in our simulations a single mutation that leads to a complete differentiation stop at an early

stage can lead to acute leukemia.

In order to develop acute myeloid leukemia at a later stage of the hematopoietic system a

cell has to acquire more than one mutation: It has to have unlimited replicative capacity and a

differentiation block. Say both mutations come together in the granulocyte lineage at stage

Fig 7. Early differentiation block. A differentiation block is introduced in the common precursor stage k = 8 at time zero. The blue plot in the left

panel shows the number of normal cells in the bone marrow (per microliter blood in the body). After a nascent phase with slow growth the number of

clones, shown in black, explodes. As in the right panel of Fig 6 the number of clones here is bound by a limited replicative capacity and comes down

again. However, here we assume in addition that there is a limit to the number of cells that can be hosted by the bone marrow (dashed horizontal line)

and excess cells are pushed into the blood stream. The panels on the right show the corresponding development of erythrocyte, granulocyte, and

thrombocyte counts in the blood. After the bone marrow has been taken over completely by the mutated cells there is no more production of mature

blood cells and hematopoiesis breaks down completely.

https://doi.org/10.1371/journal.pone.0204393.g007
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k = 10 and at time t = 0, where one mutation alone washes out quickly as shown in Fig 6). The

left panel of Fig 8 shows how, after a much shorter nascent phase, the number of clones with

both mutations grows extremely quickly until hematopoiesis breaks down (see right panels).

Hence, if mutations for a differentiation block and unlimited replicative capacity come

together, acute leukemia can also develop at later stages in our model. Still, importantly, all

that is needed are two specific mutations in one cell.

The duration of the nascent phase and the growth rate of the mutated cells depend on the

proliferation rate of cells at the stage where the differentiation block occurs. Hence, faster and

slower growth correspond to differentiation blocks at later and earlier stages, respectively. This

can also be seen when comparing the time axes of Figs 7 and 8. If limited replicative capacity is

ignored, it is easy to derive an analytic expression for the expected time to diagnosis and the

expected time until the complete break-down happens as a function of the stage where the

mutations occur. We know the rate at which cells at that stage proliferate when the system is in

steady state: rx,k (see panel B Fig 2). The number of cells that are added in each time step fol-

lows Eq (2) and for sufficiently small Δt the expected growth of mutated cells at this stage is

therefore

lim
Dt!0
ð1þ rx;kDtÞ

t
Dt ¼ erx;kt:

For a given number of mutated cells this equation can be solved for t, the time point at

which this number is reached. We assume that the diagnosis is made when there are half as

many mutated cells in the bone marrow as normal cells in steady state. The time until the

Fig 8. Late mutations. Mutations for unlimited replication and a differentiation block are introduced in the granulocyte lineage at stage k = 10 at time

zero. The break-down of hematopoiesis happens much earlier than in Fig 7, where the mutation occurred earlier in the system.

https://doi.org/10.1371/journal.pone.0204393.g008
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diagnosis is made as a function of the stage where the mutations happen is shown on the left

axis of Fig 9. Furthermore, we assume that the break-down happens when twice as many

mutated cells occupy the bone marrow as normal cells in steady state. The time that passes

between diagnosis and break-down is shown on the right axis of Fig 9. If at time t = 0 a cell

with differentiation block and unlimited replicative capacity appeared at common precursor

stage k = 1 (i.e. j = 1), it takes almost 20 years until the diagnosis is made. From this time point

it takes about one year until the mutated cells have completely taken over the bone marrow.

One could have hoped that the only difference between acute and chronic leukemia is that

chronic leukemia develops much more slowly because the mutations occur very early in the

hematopoietic system. However, even for mutations that happen at the first stage of the system,

one year after the diagnosis there are already twice as many mutated cells in the bone marrow

than normal cells in steady state. While this is a much slower break-down of hematopoiesis

than in Fig 8 it is still too fast for some cases of chronic leukemia.

Therefore, modeling chronic myeloid leukemia might require including the self-renewal

mechanism of the original model of Dingli et al. [13] that we have ignored so far (cf. [16, 27–

29]). The self-renewal parameter of the original model balances self-renewal and differentia-

tion: While in our model a cell without a differentiation block always produces two daughter

cells that are more differentiated than their parent, in the original model there is always the

possibility that the two daughter cells are of the same type as their parent. In fact, in the origi-

nal model all cells at all stages have a non-zero probability to self-renew. Hence, in the original

model a differentiation block can be modeled in a graded fashion by simply increasing the

probability for self-renewal at the cost of differentiation. In this way, the probability for self-

renewal allows for a more fine-grained control of the growth of leukemic cells and also allows

for much slower growth rates than depicted in Fig 9. Unfortunately, including self-renewal

complicates the model further and requires changes to the parameter estimates, too. Further-

more, the self-renewal capabilities of non-stem-cell precursor cells are not very well under-

stood and the assumption of the original model that all progenitors have the same capability to

self-renew is at least questionable (see e.g. [30]). More experimental and theoretical work will

Fig 9. Time course of leukemia. Mutations for unlimited replication and a differentiation block are introduced at stage j at time zero. The time until leukemia

is diagnosed is set to the time point when there are half as many mutated cells expected in the bone marrow as normal cells in steady state. This time is shown

on the left y-axis. On the right y-axis the time from the diagnosis to the expected break-down of the bone-marrow is shown. This time point is assumed to be

reached when there are twice as many mutated cells in the bone marrow as normal cells in steady state.

https://doi.org/10.1371/journal.pone.0204393.g009
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be required before we feel comfortable to include self-renewal in our model. Alternatively, if

the number of stem cells was larger than assumed here (based on the allometric scaling argu-

ments of [19]), the proliferation rate of the stem cells could in fact be lower, while the expected

outflow of the stem cell compartment stays the same. A lower proliferation rate for the early

stages could thus also make the model more consistent with the slow progression of chronic

myeloid leukemia without using an additional mechanism. Another simple fix could be to

assume that leukemic cells have a proliferation rate that is slower than for normal cells at the

same stage.

Discussion

We have presented a model for myeloid hematopoiesis. It is based on the model of Dingli et al.

[13] but extends it to explicitly include the erythrocyte, granulocyte, and thrombocyte lineages

of blood formation. Considering different lineages complicates the model considerably com-

pared to the original model. In particular, feedback in our model requires that different lineage-

specific growth factor concentrations are taken into account. We have provided a conditional

steady state analysis and we have shown that rough parameter estimates can be obtained from

common clinical observations and readily available estimates from the literature.

For future work it will be desirable to obtain more quantitative data, i.e. beyond the blood

counts for stem cell transplants already discussed, and use more principled statistical methods

for parameter estimation that also produce confidence intervals (as e.g. in [17]). Such a more

quantitative model should then also include the lymphoid side of blood production so that it

can account for the majority of cells in a blood count.

Another direction for developing the model further is to use it to model cyclic neutropenia.

The original model of Dingli et al. [13] has already been extended to capture cyclic neutropenia

by also including a feedback mechanism [15], but our feedback mechanism is harder to ana-

lyze due to its non-linearity. Nevertheless, with some effort their insights can probably be

transferred to our model.

Here, we have concentrated on modeling acute myeloid leukemia and extensions that

seemed necessary to understand it. One such extension was the addition of a limited replicative

capacity for normal cells—a property that up to now was ignored by similar models of acute

myeloid leukemia (e.g. [16]). This part of the model should be made more realistic by follow-

ing the lead of Werner et al. [17] who measured and modeled the distribution of telomere

lengths in blood cells. They find, as expected, that with age telomere length—and therefore

replicative capacity—decreases and they also show in their model that this effect can be

explained by telomere shortening in the stem cell compartment. In brief, they find that telo-

mere length decreases by roughly 50-75 base-pairs per year, which under the assumption that

one cell division takes off around 50 base-pairs means that all stem cells replicate about once a

year (see also [31, 32]).

A back-of-the-envelope calculation shows that the estimates that we use are, however,

inconsistent with these results. We assume that there are 400 stem cells and that their prolifera-

tion rate is once a year [13, 19]. Hence, according to current estimates [17] roughly all of the

400 cells reduce their replicative potential by 1 each year. If we only had these 400 stem cells

then after 30 years we could not produce any more erythrocytes as the absolute Hayflick limit

is around 70 and there are about 40 stages from the stem cell compartment to the erythrocytes

in our model. Luckily, the current best estimates for the overall number of hematopoietic stem

cells is around 12000—of which only 400 are active at any one time (see also [19]). If we

assume that the 400 active stem cells take turns, i.e. a cell that replicated is replaced by a fresh

cell from the full pool, then it will take 30 years until each of the 12000 cells has divided itself
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once. Hence, even after 90 years the stem cells will only have used up 3 of their 70 cell divisions

given by the Hayflick limit. This is, however, inconsistent with the observed telomere shorten-

ing of around 50 base-pairs per year in mature blood cells, because this shortening implies one

cell division of all cells in the full stem cell pool per year. So perhaps 400 active stem cells is too

small a number and the allometric estimates on which this number is based cannot be trusted.

It is thus crucial as one of the next steps to combine models for telomere shortening [17] with

models of hematopoiesis and jointly estimate the number of active stem cells, their prolifera-

tion rates and the number of stages from quantitative data that include telomere distributions

and blood counts. Importantly, the data that go into these models and the resulting latent

parameter estimates have to be accompanied by uncertainty estimates. Otherwise it is impossi-

ble to tell whether the described inconsistencies are real or whether they are well within plausi-

ble ranges given the available data. For stochastic models like Dingli’s or ours it is thus very

desirable to go beyond quick-and-dirty parameter estimates and use fully Bayesian inference

methods in the future (as in [17]).

Finally, as we assume in our model that leukemia is the result of mutations in specific path-

ways that control a cell’s replicative capacity and its differentiation—in line with the concep-

tion of cancer hallmarks [8, 9, 26]—it would be desirable to link the model to genetic data. It

has been suggested that only two to eight driver mutations typically lead to tumorigenesis and

that only 12 signaling pathways with about 140 genes might be involved [10]. For acute mye-

loid leukemia these genes and mutations have recently been catalogued systematically [7] and

it might hence be possible to get quantitative estimates for the probability of, for example, an

acquired differentiation block.

Even without precise numbers one can make some qualitative inferences: Just like the

model of Dingli et al. [13] our model suggests that many more mutations should occur at the

later stages of the hematopoietic system than at the early stages, simply because there are many

more cell divisions at the later stages. In fact, at about stage j = 25 the expected outflow is 107

cells per day (see panel C in Fig 2) and all these cells divide. Assuming that 10−7 mutations hap-

pen per gene per cell division [33] we thus expect one mutation per gene per day just for cells

at this stage (cf. [34] where only stem cell divisions are considered). Luckily, mutations in just

one gene at a late stage will quickly wash out as we have shown above for unlimited replicative

capacity and differentiation block (see Fig 6). And mutations at an earlier stage, where the

mutation has a bigger impact (see Fig 7), are less likely due to the lower number of cell division

at earlier stages. Still, given that mutations should be extremely common in the hematopoietic

system it seems likely that combinations of several mutations, like a differentiation block

together with unlimited replicative capacity, can still occur relatively frequently at later stages.

The exact probability to encounter combinations of mutations is hard to compute though as

the order of acquiring the mutations matters. For example, on the one hand, as an unlimited

replicative capacity washes out more quickly than a differentiation block (Fig 6) it seems more

likely that the differentiation block was acquired first. On the other hand, an unlimited replica-

tive capacity at an early stage of the system produces a huge number of descendants that can

also acquire a differentiation block. Understanding such dependencies between mutations

might ultimately guide the design of therapeutic protocols that target the effects of mutations

in different pathways in different orders.
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