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Abstract: Digital twin (DT) and artificial intelligence (AI) technologies have grown rapidly in recent
years and are considered by both academia and industry to be key enablers for Industry 4.0. As
a digital replica of a physical entity, the basis of DT is the infrastructure and data, the core is the
algorithm and model, and the application is the software and service. The grounding of DT and AI
in industrial sectors is even more dependent on the systematic and in-depth integration of domain-
specific expertise. This survey comprehensively reviews over 300 manuscripts on AI-driven DT
technologies of Industry 4.0 used over the past five years and summarizes their general developments
and the current state of AI-integration in the fields of smart manufacturing and advanced robotics.
These cover conventional sophisticated metal machining and industrial automation as well as
emerging techniques, such as 3D printing and human–robot interaction/cooperation. Furthermore,
advantages of AI-driven DTs in the context of sustainable development are elaborated. Practical
challenges and development prospects of AI-driven DTs are discussed with a respective focus on
different levels. A route for AI-integration in multiscale/fidelity DTs with multiscale/fidelity data
sources in Industry 4.0 is outlined.

Keywords: artificial intelligence; machine learning; deep learning; digital twin; digital shadow;
Industry 4.0; sustainability; sustainable smart manufacturing; robotics; review

1. Introduction

Industry 4.0 and smart manufacturing are crucial fundamentals of modern industry
and the national economy. Industry 4.0 aims to construct a universal networked archi-
tecture that addresses the interoperability and compatibility issues within and across all
levels of the automation systems and factories, thus improving the flexibility and agility of
conventional manufacturing. Equally indispensable to smart manufacturing is advanced
robotics, which serves as an intelligent agent appearing in every corner of production lines.
With the profound research and development of Industry 4.0 and artificial intelligence
(AI), digital twin (DT) has drawn growing research attention [1–4]. As a digital replica of
a physical entity, the basis of DT is the infrastructure and data, the core is the algorithm
and model, and the application is the software and service. In recent years, the progressive
aggravation of environmental problems, such as carbon emission and nuclear pollution,
has required national industries to shift from conventional extensive economic growth to
sustainable development. Achieving holistic sustainability commonly requires a balance
within the financial, environmental, social and governance dimensions, i.e., FESG factors [5].
This increases the costs of manufacturing enterprises and simultaneously raises severe
challenges for their organizations and processes. Against this backdrop, AI-powered DT
technology is expected to adapt the traditional model-based approaches to the evolving
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boundary conditions and provide a demand-oriented, real-time capable evaluation ba-
sis to efficiently support decision making in multi-objective problems. There is already
much research that discusses and characterizes DT from the view of general concepts and
technologies [1,6–11] as well as certain fields, without targeted focus on AI, this novel
enabler, i.e., product design [12,13], modeling and simulation [14], fault diagnostics and
prognostics [15]. Practically, different engineering application scenarios have separate
challenges and concerns. The grounding of DT and AI is even more dependent on the
systematic and in-depth integration of domain-specific expertise. Currently, there is still a
lack of comprehensive industry-oriented review of “AI + DT” technologies in the context
of sustainability and circular economy. To further contribute to developing and landing of
these general-purpose technologies (GPT) in smart manufacturing and advanced robotics,
the following research questions (RQ) are proposed in conducting this survey:

RQ1: What are the current research and concrete case solutions on DTs?
RQ2: What is the current state of AI integration in DTs in the above two areas?
RQ3: What are the benefits of AI-enabled DTs, considering sustainability?
RQ4: What are the challenges in practice and future work with AI-enabled DTs?
This paper endeavors to address this research gap by revisiting current developments

on DTs from a domain-specific perspective, analyzing implemented AI methods in each
subarea, sorting out the role they play in sustainable development, and summarizing
practical challenges in various application fields. The following contributions are delivered
in this study:

1. The general development and application cases with common AI methods in
AI-driven DTs of Industry 4.0 are concluded.

2. The advantages of AI-driven DTs in sustainable development are elaborated regard-
ing the FESG factors, which enable a quantitative assessment of sustainability.

3. Challenges and development prospects of AI-driven DTs in smart manufacturing
and advanced robotics are discussed with a respective focus on different levels.

4. A route for AI-integration in multiscale/fidelity DTs with multiscale/fidelity data
sources along the product lifecycle is outlined.

1.1. Topic Definitions
1.1.1. Digital Twin

The concept of DT was described by the National Aeronautics and Space Adminis-
tration (NASA) as a multiphysics, multiscale, probabilistic simulation that uses physical
models, sensor updates, fleet history, etc., to mirror the life of its twin [16]. Later, DT
was indicated by Grieves and Vickers as a dynamic model based on massive amounts of
information and computing capability that change over the lifecycle, including creation,
production, operations and disposal [17]. Based on the architecture in [18], Tao et al. pro-
posed an extended five-dimension DT model, comprising a physical entity, a virtual entity,
service, data and connection [15].

1.1.2. Digital Shadow

The concept “digital shadow” was mainly advocated by the German Academic So-
ciety for Production Engineering (WGP), whereby it is understood to be the sufficiently
accurate representation of the processes in production, development and adjacent areas
with the aim of generating a real-time capable evaluation basis of all relevant data [19].
Compared with the DT, a digital shadow does not require a high-resolution database, but a
complete one [20]. Together with all of its subsystems, the digital shadow is designed as
an information system or a multi-perspective information model to allow a more efficient
operation of value creation systems, and is thus considered an enabler for data analytics in
product lifecycle management (PLM) [21,22].
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1.1.3. Digital Thread

The concept of “digital thread” was initially proposed by the U.S. Air Force as a
framework to merge detailed design models with model-based systems engineering (MBSE)
conceptual and top-level architectural models [23]. This idea was further driven by the
National Institute of Standards and Technology (NIST) with the purpose of exchanging
information, including product design and quality and equipment performance and health,
across the product lifecycle [24]. A single digital thread is, thus, created with the model-
based ensemble of data in design, manufacturing, and inspection, which enables full-
process traceability in a seamless, real-time, collaborative development among the project
participants [25].

1.2. Topic Delimitation and Coverage

This survey provides in-depth insight into the current progress of AI-driven DT tech-
nologies, including the three aforementioned concepts, in Industry 4.0. Although there
are various interpretations of the connotations and extensions of the DT, they share the
same philosophy, namely, how to utilize digital replicas with near real-time capabilities
to effectively enhance traditional organizations and processes across the product lifecycle,
thereby improving industry competitiveness and optimizing resource allocation. Cor-
respondingly, 5G communication and Internet of Things (IoT) technologies as well as
standalone machine learning (ML) technologies without digital replicas are not the focus
here. Over 300 manuscripts are covered on this basis.

1.3. Paper Organization

As illustrated in Figure 1, the rest of the review paper is organized as follows. In
Section 2, we analyze the digital production twins toward sustainable resilient manufac-
turing at three different levels; in Section 3, we discuss the applications of DT in robots
and human–robot interaction/human–robot collaboration. After dissecting AI-enabled
case studies and branch-specific challenges of the development and deployment of DTs in
industry verticals, Section 4 compares AI methods horizontally; Section 5 concludes the
contributions of this paper and addresses the future work.

Figure 1. Overview of the review.
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2. Sustainable Resilient Manufacturing
2.1. Overview

The core task of manufacturing industry lies in producing qualitative products in a
productive and available manner. Balancing these partially competing objectives under
time-varying boundary conditions is becoming a challenge in the course of ever-shortened
decision-making horizons [26]. In recent years, intensive research has been conducted
in the areas of Industry 4.0 [27], cyber–physical production systems [28,29], and inte-
grative production techniques [30] to address the VUCA (volatile, uncertain, complex,
ambiguous) market environment. The widespread application of simulation models and
ubiquitous connectivity provide a solid foundation for building digital production twin
throughout the product lifecycle, which is considered a key enabler for future manufac-
turing transformation and upgrading in the era of big data [1,31,32]. In the context of
the circular economy and sustainability pledges (e.g., European Green Deal), traditional
resource-intensive productivity thinking is being replaced by a future vision of a more
ecologically minded society, namely “sustainable productivity” [33]. This understanding
of productivity incorporates FESG factors as a novel indicator for quantitatively assessing
sustainable production as well as the performance (with tangible and intangible services as
well as business models) and value creation systems (consisting of resource, process, and
organization) of manufacturing companies, thus pushing them to embrace the required
sustainability transformation, as illustrated in Figure 2. Various research of DTs, including
general developments and AI-integrated cases, in terms of enhancing the trilemma of
productivity, availability, and quality (financial) toward sustainable resilient manufacturing
(environmental, social, governance) are discussed in the following three levels: factory and
shop floor (Section 2.2), machinery and equipment (Section 2.3), as well as process and
material (Section 2.4).

Figure 2. An illustration of holistic assessment of sustainable production [33]. © WZL—RWTH Aachen.

2.2. Factory and Shop Floor
2.2.1. General Developments

The megatrend toward the volatile market environment and individual customer
demand poses new challenges, primarily for production systems and management in
industrial enterprises, which can significantly influence the profitability and productivity of
manufacturing. Within the various presented concepts and frameworks [34–39], automated
production systems, including mixed reality assistance systems [40,41], could be rapidly
modularized [42] and reconfigured [43–45], enhanced with AI [46,47] and sensors [48,49]
and, in combination with cloud and edge computing [50], transformed into distributed
control systems, while detailed production environments can be generated and updated
in the form of 3D point clouds [51–56]. Based on these infrastructures, DT demonstrates
the capability of handling increasingly complex operational problems, such as production



Sensors 2021, 21, 6340 5 of 35

planning and scheduling [57–60], production monitoring and control [61–66], quality
control and management [67–75], as well as logistics [76–78], supply chain management
(SCM) [79–81], disassembly and remanufacturing [82–84].

2.2.2. AI-Integration

The availability of industrial production data in a networked system landscape acts
in this background as a technical enabler to increase the relevance of topics, such as AI
and data-driven approaches. This further opens up new potentials for optimizing (novel)
manufacturing systems, e.g., line-less mobile assembly systems in Figure 3, which enable
agile assembly of large components by leveraging modeling and scheduling systems [85].
The primary objective of utilizing AI at this level is to improve the adaptability of DTs
to dynamically changing boundary conditions on the factory and shop floor scale. Typi-
cal application subfields with AI-integrated DTs are production planning (Section 2.2.2.1),
production control (Section 2.2.2.2), and quality control (Section 2.2.2.3), as shown in Table 1.

Figure 3. An illustration of DT in manufacturing: line-less mobile assembly system [85]. © WZL—
RWTH Aachen.

Table 1. Summary of AI-enabled DTs in smart manufacturing: factory and shop floor level (Section 2.2).

Subfield AI-Category Key Methods Application-Case Ref.

Production
Planning
(Sec-
tion 2.2.2.1)

Supervised
Learning Decision tree Material selection; tool holder selec-

tion; tool wear level prediction [86]

Reinforcement
Learning DQN Dynamic scheduling of flexible manu-

facturing systems [87]

Computational
Intelligence

GA, DES Optimization of production schedul-
ing

[88]

GA Optimization of smart assembly lines [89]

Supernetwork Scheduling optimization of a gear pro-
duction workshop [90]

Multi-objective optimization Design of automatic flow-shop manu-
facturing system [91]
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Table 1. Cont.

Subfield AI-Category Key Methods Application-Case Ref.

Production
Control
(Sec-
tion 2.2.2.2)

Supervised
Learning

PGM Resource allocation for sequential man-
ufacturing operations [36]

DNN Assembly commissioning process opti-
mization [92]

AdaBoost, CART, Gradient boosting Identification of real-time factors that
influence throughput in a semiconduc-
tor fab

[93]

AdaBoost, XGBoost, decision tree Optimum yield of the light oil [94]

Deep reinforcement learning Geometrical quality improvement in as-
sembly [95]

Reinforcement Q-Learning Box sorting in a material flow control
system

[96]

Learning DQN Optimization of the workflow in a semi-
conductor wafer processing plant [97]

DQN Optimization of conveyor systems [98]

TRPO Optimizing order dispatching [99]

TRPO Human behavior forecasting [100]

Quality
Control
(Sec-
tion 2.2.2.3)

Supervised
Learning

ANN Welding quality prediction (deforma-
tion) in an assembly line [101]

Decision tree, k-NN, SVM Anomaly detection of surface devia-
tions of a truck component [102]

CNN Feature recognition of parts [103]

ResNet Recognizing machining features on
CAD by inputting its views [104]

CNN, autoencoder, U-Net Fringe projection profilometry for 3D
reconstruction [105]

Logistics Computational
Intelligence Self-learning generic positioning Abnormal condition detection and lo-

cation information preservation [106]

DQN: Deep Q-Network; GA: Genetic Algorithms; DES: Discrete Event Simulation; PGM: Probabilistic Graphical Model; DNN: Deep
Neural Network; AdaBoost: Adaptive Boosting; CART: Classification and Regression Tree; XGBoost: eXtreme Gradient Boosting;
TRPO: Trust Region Policy Optimization; ANN: Artificial Neural Network; CNN: Convolutional Neural Network; k-NN: k-Nearest
Neighbors algorithm; SVM: Support Vector Machine; ResNet: Residual Neural Network.

2.2.2.1. Production Planning

According to the maturity model of production planning and control (PPC) proposed
by Busch et al. [107], toward digitally connected, intelligent and adaptive PPC systems,
AI is envisioned to support production planners in determining plans with improved key
performance indicators (KPI), derive optimization measures and autonomously implement
the identified measures prospectively to achieve better sequencing and reallocation of
resources (E-factor). At the green design and production planning stage, decision tree could
be applied in DT to create classic rules used in smart systems, thus facilitating decision
making in multidimensional processes and strategic planning [86]. Hu et al. introduced a
Petri-net-based dynamic scheduling approach via a deep Q-network (DQN) with graph
convolution network (GCN) to solve the dynamic scheduling problems involving shared
resources, route flexibility, and stochastic arrivals of raw products [87]. Metaheuristic
methods, such as the genetic algorithm (GA) and other optimization methods [88–91] were
similarly widely employed to deal with the scheduling problems in production lines.
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2.2.2.2. Production Control

At the production control stage, DNN [92], decision tree [93,94], and tree-based ensem-
ble models, such as AdaBoost [93,94] and XGBoost [94], were implemented in assorted
digital production twins to optimize resource allocation and manufacturing performance
indicators in a timely manner (E-factor). However, the multi-objective problems at the
factory level are usually interpreted as non-deterministic, polynomial-time hard, due to
the complexity and dynamics in production environments. To address this challenge,
reinforcement learning (RL), such as DQN and deep RL, were employed as a substitute
for heuristic optimization and supervised approaches in various investigations, where the
major task is normally mathematically formalized as a Markov decision process (MDP),
with the objective of autonomously achieving the global optimal economic and logistic KPIs
in a factory or logistic simulation environment [96–99] (EG-factor). In order to incorporate
humans as a critical element in smart manufacturing, May et al. presented a concept for the
situational selection of production control agents by forecasting human behavior modeled
through a reinforcement learner [100] (ES-factor).

2.2.2.3. Quality Control

At the quality control stage, classical supervised ML models, such as ANN, decision
tree, and SVM, were expected to detect or predict potential deformations and surface
deviations in production [101,102]. Deep learning (DL) computer vision models, including
residual and convolutional neural networks were deployed to recognize eventual quality
issues during the automatic production and machining features of parts [103,104], which
could be further utilized to enhance the quality and efficiency of assembly processes [108]
(E-factor), or retraced to the production planning stage in order to support decision making
on the basis of historical production knowledge [109], as a “smart expert” in a collaborative
environment (SG-factor). Following the general concept of integrating ML methods into
the digital production twins [110], DTs of production systems in combination with MBSE
can be modeled and adapted modularly as a virtual testbed, which in turn could provide a
runtime environment for simulation-based optimization [111,112].

2.2.3. Interim Summary

Business profitability remains the prerequisite for sustainable operation. DTs at this
level elevate the productivity, resilience, and transparency of production processes, which
enable end-to-end availability of data along the entire value chain as well as a holistic
sustainability assessment on this basis. From a business development perspective, AI-
enabled DT can additionally be considered a service agent [113], providing innovative
smart services via DT network platforms [114] and subscription business models [115], thus
contributing sustainably to long-term innovation for manufacturers, and helping them in
accomplishing a paradigm shift from the one-time provision of production hardware to the
ongoing delivery of manufacturing solutions (SG-factor). The importance of a diversified
product and service portfolio is particularly evident in times of global crisis. For small- and
medium-sized enterprises (SMEs), innovative services from research institutes and major
manufacturing equipment suppliers can facilitate the conduction of the comprehensive
balance sheet assessment covering FESG factors in order to achieve a smooth transition
to sustainability.

2.3. Machinery and Equipment
2.3.1. General Developments

The availability of production machinery and equipment has a direct impact on the ef-
ficiency of manufacturing processes and overall equipment effectiveness, and is, therefore,
equally significant for sustainable production, especially regarding energy consumption
and resource utilization (E-factor). Since their degradation and damage level can be affected
by working operations as well as other disturbances in harsh manufacturing environments,
such as lubricants, soiling, and temperature, the results from traditional wear and fatigue
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models are connected with considerable uncertainties. DT-driven condition monitoring
(CM) and predictive maintenance (PdM) highlight the possibility for the process-parallel
monitoring and diagnosis of the health status of the critical components (i.e., tools [116,117],
bearings [118], ball screws [119], gears [15,120,121], pumps [122]) and the energy efficiency
of the equipment [123,124] in order to handle the conflict between the unplanned main-
tenance operations and the resulting costs and productivity, particularly in SMEs, due
to their limited capacity for the full deployment of a PdM strategy [125]. Additionally,
DT-based optimal control [126,127] as well as machine dynamics issues [128,129] from a
rotating system [130] to feed drive [131,132] are other important aspects.

2.3.2. AI-Integration

Conventional model-based approaches of CM and PdM lie in the evaluation of pro-
cess indicators, which are either recorded from sensors directly or determined indirectly
by them. While the installation of external sensors (e.g., force measurement platforms
and rotating dynamometers) increases costs and, more seriously, could negatively affect
machine properties and manufacturing stability, DT combined with ML as a promising
(soft) sensing technique provides an economically reasonable and sufficiently accurate
approach to identifying such indirectly measurable process parameters (EG-factor). Table 2
provides an overview of AI-enabled cases in condition monitoring (Section 2.3.2.1), predictive
maintenance (Section 2.3.2.2), and dynamics and control (Section 2.3.2.3).

Table 2. Summary of AI-enabled DTs in smart manufacturing: machinery and equipment level (Section 2.3).

Subfield AI-Category Key Methods Application-Case Ref.

Condition
Monitoring
(Sec-
tion 2.3.2.1)

Supervised
Learning

ANN Prediction of process forces [133]

CNN Prediction of process forces [134]

CNN, SVDD Defect recognition of steel surfaces [135]

CNN-DLSTM based
transfer learning Fault detection of rolling bearings [136]

Unsupervised
Learning

GAN Prediction of machining vibration signals [137]

Dictionary learning,
transfer learning

Wave field prediction for damage detection
with ultrasonic guided wave [138]

Computational
Intelligence Fuzzy inference Brake CM of an overhead crane [139]

Predictive
Maintenance
(Sec-
tion 2.3.2.2)

Supervised
Learning

PGM, MCMC Prediction of stress-intensity factors and RUL [140]

RCM Prediction of RUL of a drilling machine [141]

RF, particle filter Prediction of tool wear [142]

Deep Stacked GRU Prediction of tool wear [143]

LSTM Equipment utilization prediction [144]

LSTM Tool condition prognostic model [145]

LSTM Estimation of RUL of the machine components [146]

Unsupervised
Learning

GMM Tool failure prediction [147]

SSAE-PHMM Prediction of tool wear [148]

SSAE, deep transfer
learning

Fault prognosis in a car body-side production
line [149]

GAN, VAE Generation of a health indicator for PHM of
rotating systems [150]

CAE Construction of a health indicator for bearings [151]

Distributed k-means Assessing MAS for collaborative PdM [152]

Computational
Intelligence Bayesian network Mission planning under uncertainty with re-

spect to fatigue cracking [153]
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Table 2. Cont.

Subfield AI-Category Key Methods Application-Case Ref.

Dynamics
& Control
(Sec-
tion 2.3.2.3)

Supervised
Learning

RNN Prediction of dynamic states in metal cutting [154]

ANN Prediction of resonances frequencies of a thin
bulk acoustic wave resonator [155]

Computational
Intelligence

Gaussian process Estimation of single-degree-of-freedom dy-
namic systems [156]

Gaussian process Prediction of the dynamic response [157]

GWO Optimization of motion control system in ma-
chine tools [158]

SVDD: Support Vector Data Description; RCM: Random Coefficient Model; RF: Random Forest; MCMC: Markov Chain Monte
Carlo; GRU: Gated Recurrent Units; (D)LSTM: (Deep) Long Short Term Memory; GMM: Gaussian Mixture Model; GAN: Generative
Adversarial Network; SSAE-PHMM: Stack Sparse AutoEncoder Parallel Hidden Markov Model; VAE: Variational AutoEncoder;
CAE: Convolutional AutoEncoder; MAS: Multi-Agent System; RNN: Recurrent Neural Network; GWO: Grey Wolf Optimization.

2.3.2.1. Condition Monitoring

For condition monitoring of machining tools and processes, Königs et al. [133] proposed
a hybrid modeling method, whereby an ANN utilized machine internal signals and the
cutter-workpiece engagement map generated from a real-time virtual machining simu-
lation as inputs to predict the cutting force as an essential indicator. Su et al. proposed
another machining force prediction model based on the cutter frame image data using
CNN [134]. Gao et al. [135] introduced a deep lifelong learning method based on CNN
and an SVDD-based (support vector data descriptor) detector, which enables recognizing
multiple tool defects (crazing, patches, scratches, etc.) with novel classes by learning
relevant tool images. CNN-DLSTM based transfer learning [136], generative models [137],
and dictionary learning [138] were furthermore employed to assist in abnormal signals
detection and fault prognosis (E-factor).

2.3.2.2. Predictive Maintenance

Based on the monitoring status, health indicators, such as remaining useful life (RUL),
could be estimated, particularly under non-stationary operation conditions, thus enabling
effective predictive maintenance planning (E-factor). Besides statistical [140,141] and hybrid
modeling [142] approaches, DL models for time-series forecasting, such as LSTM [144–146],
were adopted in numerous studies to estimate wear status and equipment utilization.
However, the acquisition of massive, structured and labeled data, especially regarding
complex rotating equipment and components, is normally tied up with high costs since
the fault-free operation is a frequent case in production. Considering this fact, several
attempts with unsupervised and semi-supervised learning models, e.g., GMM (Gaussian
mixture model) [147], SSAE (stacked sparse autoencoder) [148,149], and GAN (generative
adversarial network) [150], were investigated in order to reduce the reliance on historical
failure data in terms of prognostics and health management (PHM). Regarding the cost
factor, Palau et al. [152] provided a methodology to assess the optimal multi-agent system
(MAS) architecture for collaborative PdM in large fleets of industrial assets by using a
distributed k-means clustering algorithm (ES-factor).

2.3.2.3. Dynamics and Control

The manufacturing stability and reliability are furthermore closely related to the dy-
namic behavior of production machines and process machine interactions (e.g., chatter),
namely, dynamics and control, which are due to complex damping effects and structure mod-
ification (e.g., tool changing), which are, in practice, difficult to estimate accurately and/or
efficiently (E-factor). In this respect, Kabaldin et al. [154] selected RNN to estimate the
statistical model of the dynamic state in cutting. ML models, such as ANN [155], and prob-
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abilistic modeling methods, such as the Gaussian process [156,157,159], could likewise be
adopted to develop a surrogate model and implemented in a control context [157,158,160].
Alternatively, model order reduction techniques can transfer highly detailed and complex
simulation models to other domain and life cycle phase, e.g., building efficient finite ele-
ment model for dynamic structural analysis through reducing the degree of freedom, while
maintaining required accuracies and predictability [161–163].

2.3.3. Interim Summary

As the backbone of the manufacturing industry, research on machinery and equipment
has a protracted history, yet complex and varying working conditions with relatively sparse
datasets in practice frequently make it challenging to transfer research findings, commonly
in the form of elaborate analytical/empirical models, to real industrial environments. From
a data perspective, the networked production landscape provides an additional unique
opportunity to use each manufacturing system as a “test bench” in order to continuously
enhance the database and the amount of labeled training samples regarding these indi-
rectly measurable and non-measurable indicators. The improved availability of scarce
datasets prospectively extends the previous model boundaries and transferability through
ML/DL in equipment fault diagnosis and system behavior prediction, which remain as
central concerns within the scope of sustainable manufacturing (E-factor). High data rates
empowered by 5G technology [164] similarly open up novel prospects for research on
AI-driven DTs in the field of PHM, e.g., for sensing high-frequency phenomena in high
speed/performance cutting. Figure 4 illustrates the application of digital twin for CM and
PdM in the networked, adaptive production.

Figure 4. An illustration of DT in manufacturing: CM in the networked, adaptive production [165]. © Fraunhofer IPT.

2.4. Process and Material
2.4.1. General Developments

At this level, we are more concerned about the quality issues and mechanical prop-
erties of manufactured parts. The quality of parts is normally determined in quality
assurance after the entire machining process by testing quality specifications, such as form
and position tolerances, as well as surface roughness. Regarding the optimization of the
current quality control loop and the associated costs, the digital process twin represents
a core element in modern manufacturing. For instance, the surface quality of parts can
be estimated in parallel to the process within a GPU-enabled (graphical processing unit)
material removal simulation with a subsequent virtual measurement, which significantly
reduces the latency between machining and the detection of defective parts [166,167]. A
sufficiently accurate virtual representation of the machining process [26,168–171] also en-
ables cause-and-effect analysis and, therefore, robust process design and control [172–176]
as well as the exploitation of potential process productivity [177]. Further cases of pro-
duction processes with knowledge-based approaches include welding [178,179], injection
molding [180,181], linear winding [182], tape laying [183], metal forming [184], laser polish-
ing [185], automated fiber placement [186], sheet molding compound [187], fused filament
fabrication [188], and metal additive manufacturing (AM) [189–193].
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2.4.2. AI Integration

While the refining scale of models allows deeper insights into the mechanism of
manufacturing processes, their modeling takes correspondingly more time. In addition to
leveraging the parallel computing power of GPUs for near real-time process simulation, it
is common practice in engineering to compensate online with the results of preprocessed
offline simulations. ML and DL methods can thus be trained as surrogate models in order
to efficiently update time-consuming numerical simulations at the process and material
scale. These ML/DL-equipped lightweight models could be used for faster production
ramp-up as well as soft sensory for inline-quality monitoring (EG-factor). They also deliver
additional process understanding, thus optimizing the space-time yield and accelerating
process development [194]. Table 3 presents a summary of cases of AI-driven digital
process twins for major manufacturing techniques involving metal cutting (Section 2.4.2.1),
metal AM and laser material processing (Section 2.4.2.2), and composite material processing
(Section 2.4.2.3).

Table 3. Summary of AI-enabled DTs in smart manufacturing: process and material level (Section 2.4).

Subfield AI-Category Key Methods Application-Case Ref.

Metal
Cutting
(Sec-
tion 2.4.2.1)

Supervised
Learning

PIO, SVM Prediction of surface roughness [195]

Ensemble methods,
ANN

Modeling of the rheological behavior of
drilling fluids [196]

ANN Prediction of stress and fatigue damage (FE
surrogate) of flexible risers [197]

DNA-based computing,
Markov chain

Prediction of surface roughness [198]

Reinforcement
Learning DDPG Optimization of decision-making based on

performance and machinability of parts [199]

Computational
Intelligence PSO Inverse determination of material model pa-

rameters from cutting simulation [200]

Metal AM
and Laser
Material
Processing
(Sec-
tion 2.4.2.2)

Supervised
Learning

SVM Prediction of the occurrence of defects in metal
AM (LPBF, LMD) [201]

CNN, LSTM, RNN Quality assurance in metal AM (LPBF) [202]

CART Prediction of additive manufacturability [203]

HMM Model adaptivity and quality assessment of
laser material removal processes [204]

Unsupervised
Learning k-means Anomaly detection and process optimization

of 3D laser cutting processes [205]

Composite
Material
Processing
(Sec-
tion 2.4.2.3)

Supervised
Learning

CNN, transfer learning Detection of dry points in the production of
carbon fiber reinforced plastics [206]

AdaBoost, XGBoost, RF Prediction of temperature distribution of ther-
moplastic composites [207]

DNN FE surrogate for a composite textile draping
process [208]

PML Prediction of material properties of a compos-
ite material system [209]

Computational
Intelligence ISRES Identification of material parameters of a

prepreg sheet [210]
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Table 3. Cont.

Subfield AI-Category Key Methods Application-Case Ref.

Joining Supervised
Learning DNN, GA Prediction of distortion in welding [211]

Forming Supervised
Learning ANN Prediction of the ingate velocity during sand

mold filling [212]

PIO: Pigeon-Inspired optimization; DDPG: Deep Deterministic Policy Gradient; PSO: Particle Swarm Optimization; HMM: Hidden
Markov Model; PML: Probabilistic Machine Learning; ISRES: Improved Stochastic Ranking Evolution Strategy.

2.4.2.1. Metal Cutting

For conventional metal cutting techniques, e.g., milling and drilling, the part quality is
primarily determined by sophisticated machine behavior and cutter-workpiece engage-
ment, which can become particularly intricate in multi-axis machining or for parts with
thin-walled structures. Zhao et al. constructed a self-learning surface roughness predic-
tion model based on pigeon-inspired optimization and SVM in order to stabilize the part
quality with a self-adaptation adjustment method [195]. Approaches combining ANN
and semantic modeling for fatigue and quality prediction were discussed in [196–198].
Following the philosophy of DfX (Design for X), Zhou et al. utilized the DDPG (deep
deterministic policy gradient) approach to optimize decision making, according to the
performance and machinability of parts, which could shorten cycles and save costs in the
product development [199] (SG-factor). At the material scale, evolutionary algorithms,
such as PSO, were investigated by Hardt et al. to inversely identify the material model
parameters in finite element (FE) simulations of orthogonal cutting processes [200].

2.4.2.2. Metal AM and Laser Material Processing

For advanced metal AM and laser material processing techniques, e.g., laser powder bed
fusion (LPBF) and laser melting deposition (LMD), research efforts focus on the subtle
impacts of thermal effects on materials, such as the microstructure and parts’ distortion,
during such non-contact processes. As Gaikward et al. in [201] presented the temperature
distribution of parts, predicted based on a graph–theoretical computational heat transfer
approach and subsequently combined it with an SVM model in order to detect potential
quality faults in printing processes. Another attempt of grey box modeling for build quality
in dependency of process parameters and in situ sensor signatures was proposed in [202] by
Gaikward et al., where the a priori knowledge of physical processes was incorporated into
three sequentially connected shallow ANNs and consequently achieved better performance
in comparison with purely data-driven methods (CNN, LSTM, RNN, among others). With
respect to DfX and knowledge engineering, Ko et al. employed CART to predict additive
manufacturability, which was further fed back to a knowledge-query formulation phase in
order to continuously construct and broaden an AM knowledge base [203] (EG-factor). In
addition, HMM and k-means demonstrated their applications for quality assessing and
monitoring in [204,205].

2.4.2.3. Composite Material Processing

For similarly novel but not yet matured composite material processing techniques, e.g.,
lightweight production of fiber-reinforced polymers, hybrid modeling of non-measurable
process variables and process signatures refined therefrom, are anticipated to provide more
process understanding and transparency (EG-factor). Stieber et al. proposed a CNN-based
transfer learning approach to in situ monitor the polymerization progress of resin transfer
molding (RTM) [206]. Hürkamp et al. implemented AdaBoost, XGBoost, and random
forest as finite element surrogate models to predict temperature distribution during the
fabrication of overmolded thermoplastic composites [207]. Similarly, DNN was applied by
Pfrommer et al. as surrogate modeling to optimize the manufacturing process parameters
of a composite textile draping process [208]. A probabilistic ML approach with statistical
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inference was developed by Ghanem et al. to efficiently update numeric simulations of a
composite material system and reveal multi-scaling relationships of mechanical properties
and behaviors [209]. Kanyuck et al. introduced a methodology for identifying sheet
material parameters using the ISRES algorithm and implemented a thin-shell simulator for
predicting the material behavior, which enabled a defect-free layup of prepreg composite
sheets in human–robot collaborative cells [210] (ES-factor).

2.4.3. Interim Summary

AI-driven digital process twins are envisioned to learn and interpret implicit correla-
tions between manufacturing processes and material/process/environmental parameters
from an aggregation of (heterogeneous) data with the objective of optimizing process devel-
opment, production ramp-up, and quality assurance cycle. From an engineering implemen-
tation perspective, we have noted that despite the significance of algorithms and models,
novel sensor technologies [167,213–217] and networked digital process chains [218–222]
should not be neglected, as they are essential pillars for constructing DTs and can consid-
erably influence the effectiveness and efficiency of their development and deployment in
practice. Figure 5 shows an example of a DT dynamically mapping the manufacturing
process of an aerospace part and the data sources involved from the contextualized CAD-
CAM-CNC-CAQ process chain. As yet, these immature manufacturing techniques, such
as 3D printing and lightweight production of metals and composites, are still set up in a
trial-and-error manner [223]. Their maturation will not only lead to innovative concepts
(SG-factor) and resource savings (E-factor) in the design and manufacturing phase, but
also provides a pivotal basis for the sustainable operation, maintenance, and reuse of the
product downstream, thus reducing energy consumption and carbon emissions across the
product lifecycle. The resulting sustainability upgrades are, therefore, all-encompassing.

Figure 5. An illustration of DT in manufacturing: workpiece quality monitor [26]. © WZL—RWTH Aachen.

2.5. Challenges and Outlook

Key practical challenges and future work are included as follows.
1. Vertical interoperability in the production context (basis/infrastructure): despite

various proposed concepts and cases, a standard framework for developing and deploying
multi-scale DTs combining with AI methods has not yet been established. A valid reference
framework covering separate manufacturing levels should be defined in the future. For
this purpose, interdisciplinary cooperation is indispensable [224].

2. Horizontal interoperability in the production context (basis/data): sufficiently high
data quality is a fundamental prerequisite for building AI-driven DTs. In the production
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context, however, the usage of heterogeneous data sources from different software and
hardware across the product life cycle is associated with high costs. Through consistently
and comprehensively contextualizing and interconnecting of these data silos, the full
potential of DTs can be exploited in terms of further optimizing the agility, traceability,
resiliency, and transparency of current manufacturing. Interfaces for standard information
exchange are, therefore, imperative [225].

3. High-fidelity, lightweight models with uncertainty quantification (core): real manu-
facturing processes are characterized by numerous, partly stochastic variables with highly
complicated cause–effect relationships. In the course of increasing product variants driven
by the market, frequently changing technical boundary conditions bring more parame-
terization efforts and potential uncertainties. Conventional, complex and non-real-time
capable models are, therefore, gradually reaching their limits in the industrial environment.
In this sense, data-driven approaches with the incorporation of prior knowledge promise
to extend the current model boundaries, thereby improving the industrial objectives in
terms of productivity, availability, and quality (F-factor).

4. Smart services and business models (application): novel digital platforms contribute
to long-range collaboration and innovation, ensembling isolated AI-equipped DT-solutions
from diverse levels, and thus offering new opportunities for manufacturers to deliver prod-
ucts and solutions sustainably, e.g., through the X-as-a-Service (XaaS) model. Moreover,
the transparency distilled from the entire product value chain serves as an on-demand and
real-time capable analytical foundation for the holistic assessment of sustainable resilient
manufacturing in order to achieve a balance in the financial, environmental, social, and gov-
ernance dimensions. The concept of “sustainable productivity” based thereon is depicted
in Figure 6 selected from the white paper by Boos [33]. Therein, the vision of “Internet
of Production” provides the infrastructure for harnessing data along the product lifecy-
cle [226], while the transparency generated from the (AI-powered) DTs enables product
design, manufacturing, and usage exclusively, according to actual demand-, quantity-, and
user-oriented requirements [33].

Figure 6. An illustration of sustainable resilient manufacturing [33]. © WZL—RWTH Aachen.

3. Advanced Robotics
3.1. Overview

Along with the widespread deployment of robotic systems in industry and daily
life [227], having a digital twin of robots becomes more and more critical in practical scenar-
ios, such as multi-robot coordination/collaboration as well as those that require safe human–
robot interaction (HRI) and/or complex human–robot collaboration (HRC) [228–231],
which place human safety as a high priority, thus helping to create a sustainable work-
ing environment (SG-factor). Many have used traditional simulation/cloud framework to



Sensors 2021, 21, 6340 15 of 35

attempt robot DT implementations, such as the ones shown in Figures 7 and 8. Other exam-
ples could be found in kinematics [232], communication [233,234], control [235–237], plan-
ning [238], and industrial robot energy modeling [239], in use cases like welding [240], clean-
ing [241], pick-and-place [242], assembly [243–246], manufacturing [247], warehouse [248,249],
maintenance [250], and construction [251]. Some well-known robotics simulation tools are
Gazebo [252], MuJoCo [253], and CoppeliaSim (aka V-REP) [254]. Recently, new concepts
and cases utilizing artificial intelligence towards semi- and fully autonomous robotic sys-
tems have been reported, e.g., transfer learning [255] and imitation learning (also known
as apprenticeship learning or learning from demonstration) [256,257]. While traditional
DTs have been developed for systems that we have a solid grasp of (in other words, model-
based), data-driven and AI-equipped DTs help with complex robotic systems for which
building high-fidelity dynamics models is not feasible (model-free). The latter has been
applied in more and more cases, even for biomimetic robotic system development (e.g.,
robotic fish [258]). Table 4 summarizes AI-equipped DTs and categorizes them based on
learning algorithms used and subfields, such as control (detailed in Section 3.2), planning
(detailed in Section 3.3), and HRI/HRC (detailed in Section 3.4).

Figure 7. An illustration of DT in robotics: in a joint project MX3D, ABB, and Altair demonstrated how a 3D-printed robot
can be improved by using a digital twin process to achieve more precise positioning [259]. ©Altair.

Table 4. Summary of AI-enabled DTs in advanced robotics.

Subfield AI Category Key Methods Application-Case Ref.

Control
(Section 3.2)

Supervised and Unsuper-
vised Learning SVM, PCA Object recognition of a smart gripper [260]

Reinforcement learning Trial-and-error search Weightlifting robot control [261]

Supervised Learning GD Understanding the added value of integrated
models for through-life engineering services [262]

Computational
Intelligence

Vision-based Markovian chain Automate fan-blade reconditioning for
aerospace maintenance, repair and overhaul [263]

QP Supporting rescuers on disaster-response mis-
sions [264]
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Table 4. Cont.

Subfield AI Category Key Methods Application-Case Ref.

Planning
(Section 3.3)

Reinforcement
Learning

Proximal policy optimization Pick-and-place tasks for an industrial robotic
arm [265]

DDPG
Control and trajectory planning of a planar 3-
DOF manipulator and 3D arms of a humanoid
robot

[266]

DQN Automate smart manufacturing systems [267]

Proposed LSTM-MACG Collision avoidance for a number of UAVs in
a confined airspace [268]

Computational Intelligence Ant colony optimization Path planning of industrial robots [269]

HRI/HRC
(Section 3.4)

Supervised
Learning

CNN Standing-posture recognition in HRC [270]

DL Mechatronics system [271]

ANN Enabling industrial robots to bypass obstacles [272]

LSTM Visual question answering for HMC system [273]

Supervised and Unsuper-
vised Learning FFT-PCA-SVM HRI welding and welder behavior analysis

(identifying the professional level) [274]

Reinforcement Learning DDPG COVID-19, improve efficiency in assembling
medical equipment [275]

Predictive
Maintenance

Supervised
Learning DNN

System health monitoring [276]

Maximizing the overall plant availability of
modern manufacturing systems [277]

Workspace
Modeling Supervised Learning Monte Carlo method Simulating the workspace of the mechanisms [278]

Others Supervised Learning RF Estimation of lawn grass lengths for robotic
lawn mower [279]

PCA: Principal Component Analysis; GD: Gradient Descent; QP: Quadratic Programming; MACG: MultiAgent Computational
Guidance; FFT: Fast Fourier Transform; UAV: Unmanned Aerial Vehicle.

3.2. Control

A key part of modern robotic control is feedback, which expects accurate information
collected from physical sensors installed on robots and in the external environment and
to provide commands for the next loop of execution. Sometimes, real time is required to
enable safer controllers on these robotic systems. Many efforts utilizing AI + DT have been
attempted in this subfield. Compared with traditional DTs, those equipped with AI and
driven by data have advantages of gaining better generalizability and higher adaptability
in a varying environment, and accomplishing nontrivial sensing/manipulation tasks. At
the sensing stage, Jin et al. reported a smart soft-robotic gripper system based on triboelec-
tric nanogenerator sensors to capture the continuous motion and tactile information for
soft gripper control, where PCA and SVM were used to realize real-time prediction [260].
Data- or AI-driven approaches can also be found in other touch/haptic/force sensing for
obtaining better system understanding and task performance [280–282]. One level higher,
at the controller stage, Verner et al. implemented online reinforcement learning via a fabri-
cated digital twin, to enable a humanoid robot to lift a weight of unknown mass through
autonomous trial-and-error search [261]. Similarly, in [283], Grinshpun et al. reported
the development and deployment of control algorithms for soft robots, with particular
reference to industrial peg-in-hole insertion tasks. Vrabič et al. used DT and gradient
descent to optimize controller parameters of a mobile robot [262]. More data/AI-driven
examples in robot control include [284,285]. At the application level, one example is that
Oyekan et al. utilized vision-based Markovian chain to automate fan-blade reconditioning
for aerospace maintenance, repair and overhaul with a 6DOF robotic arm [263] (E-factor).
Another example is that Klamt et al. built a DT for the famous CENTAURO robotic system
to support rescuers on disaster response missions [264] (S-factor).
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3.3. Planning

Once the low-level robotic control is in good shape, the high-level robotic planning, as
another critical part of realizing autonomous robotic systems, comes into play. Unlike the
low-level control subfield, which emphasizes the system response and robustness, high-
level planning focuses more on strategically finding a close-to-optimal solution among
all feasible options, under specific constraints. Compared with traditional search-based
motion planning algorithms, reinforcement learning has demonstrated huge potentials
in bringing intelligence to complex systems planning, e.g., a humanoid robot with high
degrees of freedom (DOFs) [286]. However, it is usually difficult to train reinforcement
learning because obtaining the data from the real physical system is both finance- and
time-consuming. The curse of dimensionality may also disable the system from learning
something useful [287]. As a robotic system’s digital twin grows up and provides reliable
data, the combination “DT + RL” seems to be a promising approach (SG-factor): in [265],
Matulis et al. integrated digital twin and reinforcement learning for a 6DOF robotic
manipulator to plan pick-and-place motions; in [266], Liu et al. proposed a multitasking-
oriented robot arm motion planning scheme based on deep reinforcement learning and
twin synchro-control; in [267], Xia et al. proposed a DT to train deep reinforcement learning
agent for automating smart manufacturing systems; and in [268], Zhao et al. demonstrated
collision avoidance for a number of UAVs in a confined airspace, using LSTM-MACG.
While RL has become popular in recent years, it is not the only AI strategy that is integrated
with DTs. For example, Bansal et al. developed an ant colony optimization algorithm for
industrial robot programming in a digital twin [269].

Figure 8. An illustration of DT in robotics: Altair digital twin platform [288]. ©Altair.

3.4. HRI and HRC

Under the context of Industry 4.0, one of the very important benefits that DT could
bring to robot-involved scenarios is safer human–robot interaction and human–robot
collaboration [289,290] (SG-factor). HRI and HRC scenarios are, intuitively, more complex
and challenging than robot-only applications, due to not only the uncertainties in the
environment and sensors, but also the randomness and diversity of human behavior. One
of the advantages of AI-equipped DTs over conventional ones is the ability to better respond
to these (sometimes implicit, such as [291]) variables that are nontrivial to exhaustively
model and analyze. For example, in [292], Wang et al. proposed a real-time process-
level digital twin for collaborative human–robot construction work. The proposed DT
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utilized immersive virtual reality (VR) and combined the as-designed BIM model and
the evolving as-built workspace geometry obtained from on-site sensors, to provide the
capability for both planning and improvising. Similarly, in [270], Li et al. proposed DL-
based human standing-posture recognition in HRC. Other supervised learning applications,
such as visual question answering for the HMC system, are included in Table 4 [271–273].
A supervised/unsupervised learning example is [274], where Wang et al. used FFT–
PCA–SVM–based DT for human–robot interactive welding and welder behavior analysis.
In [275], Lv et al. proposed a reinforcement learning–based DT for improving medical
equipment assembly efficiency during COVID-19.

3.5. Robot Maintenance and Other Applications

Robotic systems, like other machines with a physical entity, have downtime and
need maintenance as well (E-factor). Without explicitly mentioning the concept of DT,
Khalastchi et al. and Vallachira et al. reported applications of using data-driven methods
in robot anomaly/failure detection in [293] and [294], respectively. In [276], Anton et al.
used deep learning equipped DT for global system health monitoring as well as predictive,
customized maintenance. Similarly, in [277], Aivaliotis et al. integrated degradation
curves in the predictive maintenance of industrial robots. Some other applications, such
as using the Monte Carlo learning method in calculating the workspace of a serial robot
manipulator [278] and random forest based estimation of lawn grass lengths for robotic
lawn mower [279], can be found in Table 4.

3.6. Challenges and Outlook

There are several key challenges in developing and implementing digital twins in the
field of robotics [295,296]. First, the multibody physical simulation is intrinsically difficult,
due to the complex interaction properties at the interfaces of robot–robot, robot–human,
and robot–environment. In addition, since robot movement can often be extremely fast
(e.g., in an assembly line), real-time feedback from sensors is critical to the digital twin’s
effectiveness in making short-term decisions. Many researchers in academia choose to use
simulators, such as Gazebo (e.g., [297,298]), as the simulation environment for developing
robots, but even after years of evolution, those robotic simulators still have many unsolved
limitations and may require high-performance computing (HPC) platforms. Second, inputs
and disturbances from the human user add another layer of uncertainty and unpredictabil-
ity to the whole collaborative system/workspace, and thus, compromise HRI/HRC safety.
While standard-compliant (e.g., ISO 13482) safety measures must be facilitated on both
physical and digital sides, having virtual reality or augmented reality (AR) technologies
involved is another thread to make the human–robot interaction intuitive [299]. Rückert et
al. also suggested the consolidation of product life cycle information within human–robot
collaborative assembly tasks [300].

4. Discussion

DTs have shown remarkable potentials to contribute to industrial economic growth or
F-factor (i.e., the productivity, availability, and quality of manufacturing) while continu-
ously upgrading sustainable aspects, such as the E-factor (e.g., reduced carbon emission
and resource consumption through CM, PdM, 3D printing and lightweight production of
metals and polymers) and SG-factor (e.g., enhanced working conditions, collaboration and
innovation through HRI/HRC, XaaS model, and intelligent/soft sensing of novel produc-
tion indicators) as summarized in Table 5. In this range of cross-domain engineering cases,
AI techniques arm digital twins with tools to create models based on observed behavior
and historical data, which improves the efficiency of data analysis and increases prediction
accuracy by integrating data from a collection of disparate and incompatible sources.
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Table 5. Summary of AI-enabled DTs in sustainable development and FESG factors.

F-Factor E-Factor SG-Factor

Productivity
(Section 2.2) Production Planning (Section 2.2.2.1) Intelligent Sensing of Novel Indicators

(Sections 2.2.2, 2.3.2 and 2.4.2)
Production Control (Section 2.2.2.2)
Quality Control (Section 2.2.2.3)

Availability
(Section 2.3) Condition Monitoring (Section 2.3.2.1) Innovative Robot Planning and Control

(Sections 3.2 and 3.3)
Predictive Maintenance (Section 2.3.2.2)
Dynamics and Control (Section 2.3.2.3) HRI/HRC (Section 3.4)
Robot Maintenance (Section 3.5)

Quality
(Section 2.4) Metal Cutting (Section 2.4.2.1) DfX (Sections 2.4.2.1 and 2.4.2.2)

Metal Additive Manufacturing (Section 2.4.2.2) XaaS and Business Model (Section 2.2.3)
Composite Material Processing (Section 2.4.2.3)

The AI techniques involved in digital twins can be roughly categorized into four
classes: supervised learning, unsupervised learning, reinforcement learning and other in-
telligent computational methods. Supervised learning algorithms refer to machine learning
methods in which models are trained using labels. Typical supervised learning methods
used in digital twin include supper vector machine (SVM) [195,201], decision trees [86,93,94],
k-nearest neighbors [102], convolutional neural networks (CNN) [103,135,202,206,270] and
recurrent neural networks (RNN) [202]. In practice, data labeling can be an expensive task.
Most supervised learning algorithms require a large amount of labeled data at the training
stage to obtain a model with high prediction accuracy. In general, the more complex the
architecture is, the more data are needed to produce viable results. The results of super-
vised learning algorithms also depend on the selection of feature vectors and the accuracy
of labeling.

In unsupervised learning methods, there is no labeling of data required, and the model
is expected to infer patterns from the unlabeled input data. Clustering algorithms, such as
principle component analysis (PCA) [260,274] and k-means methods [205] and generative
models using generative adversarial network (GAN) [137,150] and variational autoen-
coders (VAE) [150] all use unlabeled data at the training stage, thus falling into the category
of unsupervised learning. One of the challenges in applying unsupervised learning meth-
ods is that the number of clusters is normally not known a priori. For clustering algorithms,
the clusters are determined by the metric used to measure similarity—Euclidean, cosine,
Gaussian distance—of which the criteria are not clear for a given task. Reinforcement
learning algorithms are concerned with how intelligent agents ought to take actions in
an environment in order to maximize the notion of cumulative reward. Researchers have
applied reinforcement learning algorithms, including Q-learning [96], deep reinforcement
learning [95,97,267] and deep deterministic policy gradient [199,266,275] to optimize the
decision-making process of box sorting, conveyor systems and other DT scenarios. The
performance of a reinforcement learning system generally heavily depends on the correct-
ness of data logging and the choice of reward structures. Logging to incorrect references
might corrupt the information and lead the whole system to break down during training.

From the above, the fidelity of AI-driven DTs depends largely on the model granularity,
the selection of which (core level) is, in turn, related to the environment complexity (applica-
tion level) and dataset quality (basis level). Based on the review of over 300 manuscripts,
we sketched a route for AI-integration in multiscale/fidelity DTs in the real-world case of
multiscale/fidelity data sources, as outlined in Figure 9. This multiscale nature is reflected
in both spatial and temporal terms. Vertically, the demand for real-time capability in
digital twins alters with different levels of the automation pyramid. While the higher-scale
planning and management typically require a longer response time to deal with changing
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production environments, time-sensitive sensing and manipulation rely on the in-depth in-
sight of physical processes gained through refining scale modeling. Horizontally, datasets
of varying difficulty and fidelity are constructed from heterogeneous sources over the
product lifecycle. In the development phase, simulation tools and laboratory experiments
separately provide comparatively large amounts of data with a moderate degree of fidelity
and limited high-accuracy data under controlled conditions. As products are manufac-
tured and utilized, obtaining reliable labeled data, such as quality indicators and RUL,
becomes increasingly scarce and expensive. On this basis, AI methods can be developed
and deployed in pipelines. In general, supervised learning remains the most stable and
extensively used approach in digital twins. Reinforcement learning is often advantageous
in scenarios with complex environments and long response cycles, unsupervised and
semi-supervised learning are quite proactive in state detection and lifetime prediction, and
traditional intelligence methods are still commonly used and can be flexibly combined
with other learning methods.

Figure 9. An illustration of AI-integration in multiscale/fidelity DTs along the product lifecycle.

5. Summary

Traditional profit-maximizing industrial technologies have transformed human society
while causing significant—and mostly irreversible—negative impacts on the environment
and climate. Sustainable development strategies are gaining attention, but still have a
long way to go, as all aspects within the FESG dimensions have to be balanced in real
implementation. According to a report from the WBA Tooling Academy Aachen [301],
classic evaluation for manufacturing companies with a focus on value added and equity
ratio could show a significantly worse outcome in the extended analysis that incorporates
ESG criteria in the balance sheet. For sustainable thinking and practices, which have been
increasingly deliberated and advocated worldwide, digitalization and AI are powerful
enablers. Through consistently linking, processing, and analyzing all available data across
the entire value chain, and connecting them to a digital twin or shadow, a holistic assess-
ment of sustainability, namely, the consideration of ESG factors alongside profitability
(F-factor), can be achieved so that companies can develop and operate sustainably. For
Industry 4.0, which is facing new challenges from climate-neutral products and production,
AI-driven DTs are expected to provide the additional manufacturing transparency and



Sensors 2021, 21, 6340 21 of 35

understanding that enable a demand-oriented and real-time capable analytical foundation,
considering FESG factors along the product lifecycle. The main contributions of this study
are concluded as follows.

1. The general development and application cases with common AI methods in
AI-driven DTs of Industry 4.0 are concluded.

2. The advantages of AI-driven DTs in sustainable development are elaborated regard-
ing the FESG factors, which enable a quantitative assessment of sustainability.

3. Challenges and development prospects of AI-driven DTs in smart manufacturing
and advanced robotics are discussed with a respective focus on different levels.

4. A route for AI integration in multiscale/fidelity DTs with multiscale/fidelity data
sources along the product lifecycle is outlined.

In the past, typical production issues, such as predicting the behavior of machine tools
as single systems, were already well approximated by complex analytical and empirical
models; their application in industry environments, however, has often been handicapped,
due to both the lack of real-time capabilities and transferability in varying frameworks.
AI promises in this circumstance to extend the model boundaries of traditional model-
based approaches, particularly within changing boundary conditions. As regards the
relatively sparse and expensive datasets in engineering, incorporating prior knowledge can
reduce the dependence of pure data-driven approaches on the amount of historical data
and improve the predictivity and transferability of models. Moreover, statistically-based
uncertainty quantification similarly plays an essential role in building AI-driven DTs, as it
allows to assess the reliability of the modeled results and, thus, influences their acceptance
and the decision-making based thereon in real, high-risk engineering.

Meanwhile, we have noted that the development and deployment of AI-enabled
algorithms and models, the core of the DT, are still constrained by the current infrastructure
and that constructing the latter requires interdisciplinary collaboration and integration of
domain-specific expertise (basis level). New breakthroughs in novel sensors and benefits
from 5G communications and OPC UA TSN are expected in the near future. In terms of
the application level, while smart service and new business models facilitate the paradigm
shift for manufacturers, a prerequisite is the willingness to share data and knowledge with
partners to a healthy extent. Standardized concepts for data ownership and data security
must constitute the basis for this. A further survey on the AI-driven DT technologies in
the application fields of renewable energy, smart city and mobility, and healthcare will be
covered in future work. By reorganizing and aggregating several highly relevant topics
both horizontally and vertically, we believe that a synergistic effect will emerge that can
allow the work in this study to contribute to more AI-driven, DT-related research and help
various branches build new developments in their respective sustainable and smart areas.
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CAQ Computer-Aided Quality Assurance
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HMM Hidden Markov Model
HPC High-Performance Computing
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
IoT Internet of Things
ISRES Improved Stochastic Ranking Evolution Strategy
k-NN k-Nearest Neighbors algorithm
KPI Key Performance Indicators
LMD Laser Melting Deposition
LPBF Laser Powder Bed Fusion
LSTM Long Short-Term Memory
MAS Multi-Agent System
MBSE Model-Based System Engineering
MCMC Markov Chain Monte Carlo
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MDP Markov Decision Process
MES Manufacturing Execution System
ML Machine Learning
NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology
NN Neural Network
PCA Principal Component Analysis
PDA Production Data Acquisition
PdM Predictive Maintenance
PGM Probabilistic Graphical Model
PHM Prognostics and systems Health Management
PIO Pigeon-Inspired Optimization
PLM Product Lifecycle Management
PML Probabilistic Machine Learning
PPC Production Planning and Control
PSO Particle Swarm Optimization
QP Quadratic Programming
RCM Random Coefficient Model
ResNet Residual Neural Network
RF Random Forest
RL Reinforcement Learning
RNN Recurrent Neural Network
RTM Resin Transfer Molding
RUL Remaining Useful Life
SCM Supply Chain Management
SME Small and Medium-sized Enterprise
SSAE-PHMM Stack Sparse AutoEncoder Parallel Hidden Markov Model
SVDD Supported Vector Data Descriptor
SVM Support Vector Machine
TRPO Trust Region Policy Optimization
UAV Unmanned Aerial Vehicle
VR Virtual Reality
VUCA Volatile, Uncertain, Complex, Ambiguous
WGP German Academic Society for Production Engineering
XaaS X-as-a-Service
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