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Abstract

Diffusion MRI (dMRI) can probe the tissue microstructure but suffers from low signal-to-noise 

ratio (SNR) whenever high resolution is combined with high diffusion encoding strengths. Low 

SNR leads to poor precision as well as poor accuracy of the diffusion-weighted signal; the latter 

is caused by the rectified noise floor and can be observed as a positive bias in magnitude signal. 

Super-resolution techniques may facilitate a beneficial tradeoff between bias and resolution by 

allowing acquisition at low spatial resolution and high SNR, whereafter high spatial resolution 

is recovered by image reconstruction. In this work, we describe a super-resolution reconstruction 

framework for dMRI and investigate its performance with respect to signal accuracy and precision. 

Using phantom experiments and numerical simulations, we show that the super-resolution 

approach improves accuracy by facilitating a more beneficial trade-off between spatial resolution 

and diffusion encoding strength before the noise floor affects the signal. By contrast, precision 

is shown to have a less straightforward dependency on acquisition, reconstruction, and intrinsic 

tissue parameters. Indeed, we find a gain in precision from super-resolution reconstruction is 

substantial only when some spatial resolution is sacrificed. Finally, we deployed super-resolution 

reconstruction in a healthy brain for the challenging combination of spherical b-tensor encoding 

at ultra-high b-values and high spatial resolution—a configuration that produces a unique contrast 

that emphasizes tissue in which diffusion is restricted in all directions. This demonstration 

showcased that super-resolution reconstruction enables a vastly superior image contrast compared 

to conventional imaging, facilitating investigations that would otherwise have prohibitively low 

SNR, resolution or require non-conventional MRI hardware.
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1. Introduction

Diffusion MRI (dMRI) is a non-invasive method for investigating tissue microstructure in 

healthy and pathological tissue. Investigations of subtle microstructure features rely on the 

use of strong diffusion-weighting (ultra-high b-values) or tensor-valued diffusion encoding 

(Jensen et al., 2005; Tax et al., 2020; Westin et al., 2016), both of which frequently 

suffer from low signal-to-noise ratios (SNR). Low SNR may cause poor signal accuracy 

in magnitude imaging due to the so-called rectified noise floor, which causes a positive 

signal bias (Gudbjartsson and Patz, 1995). Unlike precision, signal accuracy is not improved 

by averaging over magnitude signals unless the phase is coherent across the observations 

(Jones and Basser, 2004). This is challenging because the diffusion encoding causes phase 

variation in the presence of tissue motion (Eichner et al., 2015; Prah et al., 2010). Therefore, 

it is challenging to perform accurate measurements of diffusion-weighted signal at low SNR.

In addition to strong diffusion-weighting, an approach that regularly suffers from low SNR 

is spherical or isotropic b-tensor encoding, especially at ultra-high b-values. Although high 

b-value spherical encoding is challenging, it is desirable because it emphasizes signal from 

tissue in which diffusion is restricted along all directions. For example, it can be used to 

highlight the tightly packed granule cells in the cerebellar cortex, which are affected in 

diseases such as spinocerebellar ataxis and Alzheimer disease (Fukutani et al., 1996; Xia 

et al., 2013). So far, this contrast has been demonstrated at preclinical MRI (Lundell et al., 

2019) and MRI systems with ultra-strong gradients and low spatial resolution (Tax et al., 

2020). Making this imaging contrast available at clinical MRI scanners and high spatial 

resolution may enable studies of the cerebellum in a wide range of neurological conditions.

Super-resolution reconstruction (SRR) is a promising solution to the problem of low SNR 

in dMRI. In SRR, data is acquired at a low spatial resolution—with improved precision and 

accuracy—and a specialized image reconstruction is used to reconstruct a high-resolution 

image. Several approaches have been proposed throughout the years, showing SRR methods 

can balance the trade-off between SNR, spatial resolution and acquisition time (Greenspan, 

2009; Greenspan et al., 2002; Jeurissen et al., 2018; Plenge et al., 2012; Poot et al., 

2013; Scherrer et al., 2012; Shilling et al., 2009; Souza and Senn, 2008; Van Reeth 

et al., 2012; Van Steenkiste et al., 2016; Yang et al., 2018). For example, Yang et al. 

proposed a strategy where joint information from the adjacent scanning directions was used 

to improve resolution. Poot et al. (2012) demonstrated increased resolution of diffusion 

tensor parameters from a set of super-resolved diffusion-weighted images with fully sampled 

diffusion-weightings and gradient directions, while Van Steenkiste et al. (2016) showed 

increased spatial resolution of diffusion tensor parameters when optimizing both k- and 

q-space sampling. More recently, Jeurissen et al. (2018) showed an improvement of 

both accuracy and precision in q-space trajectory imaging parameter estimation, where 

higher diffusion-weightings are used. These studies also illustrate a flexibility in how 

the low-resolution data is acquired. For example, the image acquisition can comprise 

three orthogonal low-resolution axes (Souza and Senn, 2008), slice shifting along the low-

resolution direction (Greenspan et al., 2002), or multiple stacks of slices rotated about a 

common axis (Shilling et al., 2009). This flexibility allows SRR to be tailored to the needs 
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of echo-planar imaging (EPI) which is the imaging readout strategy most used in dMRI. For 

example, using a common phase encoding direction across the low-resolution acquisitions 

avoid that local field inhomogeneities cause variable geometric distortions (Jezzard et al., 

1998).

Although SRR has seen uptake in several MRI applications, the literature lacks a systematic 

treatment of noise propagation and how it affects accuracy and precision. For example, 

imaging at a low resolution allows faster imaging (shorter repetition times), but leads 

to a complex interplay between SNR, scan time, repetition time, and T1-relaxation. 

An understanding of these trade-offs is necessary for an optimized experimental design. 

Furthermore, the application of SRR for spherical b-tensor encoding at ultra-high b-values 

and high resolution are yet to be explored. In this work, we aim to formally analyze noise 

propagation in SRR and experimentally verify the impact of SRR on signal accuracy and 

precision. Finally, we demonstrate the value of SRR in the challenging combination of 

spherical b-tensor encoding at a b-value of 4.0 ms/μm2 and 1.6 mm3 isotropic resolution in 

the brain.

2. Theory

Super-resolution reconstruction aims at recovering a high-resolution image from multiple 

low-resolution images that sample the object in complementary ways. Here we acquired 

multiple stacks of thick slices rotated around the phase encoding direction (Shilling et al., 

2009). To reconstruct an image with isotropic voxels, the lower limit of low-resolution 

rotations N R is given by (Plenge et al., 2012)

NR ≥ π
2 · α , (1)

where α is the aspect factor, i.e., the ratio between the long and short axis of the voxel. Note 

that this factor also captures the volume ratio between the low and high-resolution voxels, 

assuming that all other parameters are unchanged, and that the SNR is proportional to the 

voxel volume in multi-slice acquisitions (Edelstein et al., 1986).

The mapping from a high-resolution image (x) to a low resolution image (y) can be 

described by a linear system (Elad and Feuer, 1997)

yk = Akx + εk, (2)

where k is an index of the low-resolution image sample and ε is random noise. The 

sampling matrix A k describes the rotation/translation, down-sampling and blurring of the 

high-resolution image. As these factors are known, A k can be constructed from the image 

dimensions, voxel spacing and slice profile. Here, we used a box function to describe the 

slice profile. Both y k and x are expressed as column vectors such that a square image with 

N voxels on each side is represented by a N 2 × 1 vector. The complete sampling of all 

low-resolution images can be described in a single linear system
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y = Ax + ε . (3)

Assuming the noise is independent and normally distributed with zero mean, the solution to 

recover x given A and y can be expressed as a least-squares problem, such that

x = argmin
x

∥ Ax − y ∥2
2 . (4)

The greater the number of complementary observations in y, the better the condition of the 

problem becomes. However, the problem in Eq. (4) often remains ill-posed due to the down-

sampling operation included in A. There are several ways of solving the reconstruction 

problem, as thoroughly described in (Plenge et al., 2012). The solution requires some form 

of regularization, which often translates to imposing a smoothness to the solution (Van Reeth 

et al., 2012). A common approach is Tikhonov regularization (Tikhonov and Arsenin, 1977), 

that penalizes high spatial-frequencies in the estimated high-resolution image. Including this 

regularization, the regularized least-squares problem becomes

x = argmin
x

∥ Ax − y ∥2
2 + λ ∥ R(x) ∥2

2 , (5)

where R is the regularization term and λ is a scalar weight. We will here use a general 

regularization term independent of the image content: R(x) = I, where I is the identity 

matrix. This enables the use of the closed form solution, according to

x = ATA + λ I −1ATy . (6)

Note that A T y produces the average low-resolution signal on the high-resolution grid, i.e., a 

blurred image. Without regularization (λ = 0), the remaining term (A T A)−1 is a sharpening 

operator, ideally reproducing the true image when applied to A T y. As λ increases, the 

sharpening is reduced. However, as λ alters the denominator in Eq. (6), the intensity scale of 

x is dependent on λ. To remove this dependence, and thereby simplify comparisons among 

sampling schemes as described later, we can rewrite Eq. (6) according to

x′ = 1 − λ′ ATA + λ′ · NR · α · I −1ATy = Cy, (7)

where C contains the entire reconstruction operation. The new regularization factor is 

constrained to 0 ≤ λ′ ≤ 1, such that λ′ = 1 merely returns the average low-resolution 

signal on the high-resolution grid, but corrected for the intensity gain caused by larger voxel 

volumes. Fig. 1 illustrates the SRR process for an in vivo acquisition for weak, moderate, 

and strong levels of regularization (different values of λ′). Weak regularization amplifies 

noise, while strong regularization results in a blurred image. Moderate regularization 

balances the two.
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2.1. Signal accuracy and precision

As we evaluate the performance of SRR in terms of signal accuracy and signal precision, 

we will outline the tools used to assess these. Across repeated measurements under identical 

conditions, signal accuracy (or trueness)1 concerns the distance between the average signal 

to the true value, while signal precision concerns the spread of the signal. Both terms 

are influenced by the distribution that characterizes the MR signal. The noise in the 

complex MR signal is normally distributed, whereas the magnitude signal used in dMRI 

is approximately Rice distributed (Gudbjartsson and Patz, 1995) (for a detailed review 

of MR data distributions, see (den Dekker and Sijbers, 2014) or (Veraart et al., 2013)). 

Consequently, an approximation of the measured signal M is given by (Gudbjartsson and 

Patz, 1995)

M = S2 + ( σ π /2)2, (8)

where S is the signal in the absence of noise and σ is the standard deviation of the noise. 

In absence of a true signal, the rectified noise floor causes the expected value to be π /2. 

This gives rise to a positive signal bias that becomes prominent at low SNR. Therefore, 

we employ the signal-to-noise-floor ratio (SNFR) as a measure of overall signal accuracy, 

defined as (Lätt et al., 2007)

SNFR = S(0)
σ π /2 , (9)

where S(0) is the mean of measured non-diffusion weighted signal over repeated 

measurements. Note that the SNFR characterizes the maximum achievable signal attenuation 

for accurate signal sampling. As a measure of precision, we use the signal-to-noise ratio 

(SNR) defined as

SNR = S(0)
σ . (10)

Note that SNR and SNFR are both proportional to the voxel volume whereas noise levels are 

independent of the voxel volume (Edelstein et al., 1986).

To enable comparisons of precision between SRR and a conventional high-resolution 

acquisition (referred to as direct sampling), we define the SNR efficiency factor (ρ), 

according to

ρ = SNRSRR
SNRD

· TAD
TASRR

, (11)

1We use the terminology where accuracy is only a description of systematic errors. This is referred to as ‘trueness’ in the more recent 
ISO standard (BS ISO 5725-1, 1994).
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where SNRSRR and SNRD are the SNR levels and TASRR and TAD the acquisition 

times of SRR and direct sampling at a given spatial resolution. To evaluate Eq. (11), 

we study how noise propagates from y into x. For SNR > 3 the noise distribution is 

approximately Gaussian, independent and identically distributed (Cárdenas-Blanco et al., 

2008; Gudbjartsson and Patz, 1995). Under the assumption of identical noise levels among 

the individual low-resolution images, the signal variance in the reconstructed image can 

be easily computed from the linear operations in Eq. (7) based on the additive property 

of variance. We define the noise propagation factor (κ) as the average ratio of the noise 

standard deviation in the high-resolution reconstructed and low-resolution images, according 

to

κ = 1
n∑

i = 1

n

σx (i)
σy

= 1
n∑

i = 1

n

∑
j = 1

m

C(i, j)2 (12)

where n is the total number of reconstructed voxels in the reconstructed image, indexed 

by i, and m is the total number of low-resolution input voxels, indexed by j. The 

noise propagation factor is dependent on properties of the sampling (A, NR, α) and the 

regularization (λ′).

To characterize the impact of SRR on SNR efficiency, we also consider how the signal level 

changes between a directly sampled and an SRR acquisition. For a setup where the only 

difference between the two is related to the SRR configuration (slice thickness, number of 

slices, repetition time and number of slice orientations), Eq. (11) can be extended to include 

the relevant effects of imaging parameters (Appendix A) to

ρ = 1
κ · 1 − exp −TRSRR/T1

1 − exp −TRD/T1 · TRD
NR · TRSRR

, (13)

where TRD and TRSRR are the repetition times for direct sampling and SRR respectively, 

and T1 is the longitudinal relaxation time. The TR is approximately proportional to the 

number of slices, and the number of slices to cover the same area in an SRR acquisition can 

be reduced with a factor of α. Therefore, the minimal TRSRR is given by

TRSRR = TRD
α . (14)

When TRD TRD ≫ T1, both 1 − exp(−TRSRR/T1) and 1 − exp(−TRD/T1)will approach 

unity, as will their ratio. When sampling directly, approximately 1% signal is lost due to 

incomplete T1 recovery when TRD/T1 = 4.6. However, when using α = 6 and a minimal 

TRSRR, this corresponds to a signal loss of 46%. For this reason, as the aspect factor 

increases and the TR is minimized, the expected SRR gain will eventually be negated by 

incomplete T1-recovery.
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3. Methods

We evaluated the performance of the SRR by three lines of investigation. First, we 

investigated signal accuracy in a water phantom, both numerically and experimentally. 

Second, we investigated signal precision in terms of SNR efficiency, both numerically, 

analytically, and experimentally in vivo. Third, we demonstrated the utility of SRR for 

spherical b-tensor dMRI at ultra-high b-values in vivo. All simulations and data analysis 

were performed in Matlab (The MathWorks, Inc., Natick, Massachusetts, USA). The SRR 

framework is available on https://github.com/filip-szczepankiewicz/Vis_NIMG_2021/.

3.1. Data acquisition

All experiments were performed on a 3T-scanner (MAGNETOM Prisma, Siemens 

Healthcare, Erlangen, Germany) using a 20-channel head and neck coil. The study was 

approved by the local ethics committee and informed consent was obtained from all 

volunteers. A prototype pulse sequence was implemented based on a single-shot spin-echo 

sequence with echoplanar imaging readout that facilitates user-defined gradient waveforms 

for diffusion encoding (Szczepankiewicz et al., 2019a). Gradient waveforms for spherical b-

tensor encoding were numerically optimized (Sjölund et al., 2015), including compensation 

for concomitant gradients (Szczepankiewicz et al., 2019b). The waveforms were constrained 

to a maximal gradient magnitude of 80 mT/m (L2-norm) and a slew rate of 100 T/m/s 

(Appendix B). Detailed information on acquisition parameters will be described per 

experiment.

Low-resolution data was acquired with slices rotating around a fixed phase encoding 

direction in the antero-posterior direction. Each FOV covered the entire object with a margin 

of several voxels, to allow SRR of the entire object. As experiments were performed for 

various aspect factors, we used the minimum number of low-resolution rotations per aspect 

factor according to Eq. (1). In simulations, Eq. (2) was used to obtain low-resolution data. In 

all experiments, low-resolution data was reconstructed per slice to high-resolution according 

to Eq. (7).

3.2. The impact of noise floor on signal accuracy

We characterize the effect of the rectified noise floor on signal accuracy when modulating 

the aspect factor as well as the strength of diffusion encoding. We use a mono-exponential 

signal model in water given by

S( α , b) = S0 · α · exp( − b · D), (15)

where S is the signal in the absence of noise, S0 is the non-diffusion weighted signal at α = 

1, b is the strength of the diffusion encoding and D is the diffusion coefficient. To obtain a 

signal model that includes the contribution of Rician noise, we use the simplified analytical 

model as described in Eq. (8).

Measurements were performed in a phantom filled with deionized water at room 

temperature. Data were acquired in a single slice with an in-plane resolution of 1.6 × 1.6 
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mm2 and slice thicknesses between 1.6 mm and 9.6 mm, resulting in aspect factors between 

1 and 6. A constant TR of 4 s was used to remove influence of T1-relaxation. A single 

slice acquisition was used to ensure that the same part of the phantom was imaged for all 

aspect factors, thereby providing a fair comparison of baseline signals. We used b-values 

ranging from 0 to 3 ms/μm2 in steps of 0.3 ms/μm2 and 5 repetitions. The average measured 

signal S( α , b) was estimated for each aspect factor and b-value in a homogeneous area of 

the phantom. The non-diffusion weighted signal S0, diffusivity D and noise level σ were 

estimated by a least-squares fit of the measured data to Eq. (8) given Eq. (15)

S0, D, σ = arg min
S0, D, σ

‖ S0 · α · exp( − b · D) 2 + ( σ π /2)2 − S( α , b)‖2
2

. (16)

The same conditions were reproduced in numerical simulations. The simulations were 

matched to the observations in the water phantom, and used S0 = 1 and D = 2.2 μm2/ms. 

Instead of using the analytical model for noise contribution, the noise characteristics were 

simulated by adding noise sampled from a normal distribution with standard deviation σ 
= 0.014. Independent realizations of noise were added to the real and imaginary part of 

complex signal generated by Eq. (15), whereafter its magnitude was computed. This yielded 

an SNR of 71 and 426 for α = 1 and 6, respectively. The average signal S( α , b) was 

estimated from 104 realizations of noise.

Finally, similar simulations were performed within SRR for aspect factors between 1 and 

6, deployed on a digital phantom of a cylinder filled with water (S0 = 1 and D = 2.2 μm2/

ms). For each aspect factor, a single noisy (σ = 0.014) set of low-resolution measurements 

was synthesized using Eq. (2) and reconstructed to high-resolution, after which the average 

signal S( α , b) was computed in a ROI within the cylinder.

The estimate SNFR for each aspect factor, we fitted Eq. (16) to the signal generated by the 

three methods to obtain σ. From σ and the measured signal S( α , 0), we computed SNFR 

according to Eq. (9). To capture the trend of how SNFR affects the accuracy of signal, we 

computed the threshold attenuation factor (βthr = b · D) at which the signal bias exceeds 5%, 

i.e., f = S( α , b)/S( α , b) > 1.05, using

βthr = log S0 · α · f2 − 1
σ π /2 . (17)

The threshold attenuation factors were investigated as a function of aspect factors to 

visualize how bias thresholds can be extended by imaging at lower resolution.

3.3. Analysis of precision and SNR efficiency

We performed numerical simulations to investigate the relationship between SNR efficiency, 

aspect factor, T1-relaxation and acquisition time. We expect the SNR efficiency to 

monotonically increase with the aspect factor when TR is relatively long compared to T1. 

We used a Shepp-Logan phantom to visualize the effect of regularization on resolution. 

Vis et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Low-resolution data was sampled for aspect factors between 1 and 8 assuming S ∝ α and 

Sα=1 = 1 in the largest part of the phantom, mimicking white matter. Gaussian noise with σ 
= 0.1 was added and the SNR efficiency was estimated from the reconstructed images in a 

homogenous area according to Eq. (11), where we set 
TASRR

TAD
=

NR
α .

Since the regularization in SRR incurs a blurring, it may also cause an unfair advantage 

in terms of signal precision. To compensate for this effect, we compared SNR efficiency 

at similar effective spatial resolutions. A graphical overview of this process is given in 

Appendix C, Fig. C1. Briefly, we ensure similar effective spatial resolutions by matching the 

effect of smoothing due to regularization in SRR to gaussian smoothing in direct sampling. 

We base the matching on a noise-free image that depicts a random texture (each voxel value 

is drawn form a normal distribution). To obtain directly sampled references, this image was 

smoothened with 2D Gaussian filters with kernel sizes of 0.40 (weak), 0.47 (moderate) 

and 0.54 (strong) in units of voxels. The SRR counterparts were created by adjusting the 

regularization strength (λ′ in Eq. (7)) such that the sum of square distances was minimized 

between the direct and SRR variants. This was done for every combination of kernel size 

and SRR imaging setup. To avoid the effect of partial SRR sampling at the edges of the FOV, 

we only matched the region that was covered in all rotations of the FOV. The obtained pairs 

(smoothing kernel/regularization strength) were used throughout.

The estimation of SNR efficiency was also performed analytically using Eq. (13). As we 

expect that reducing the TR in SRR leads to reduced SNR efficiency due to T1-relaxation 

effects, we included T1-weighting in the same equation. We used values of T1 as found in 

brain at 3T, with T1 = 0.8 s and T1 = 1.6 s to mimic white and gray matter, respectively 

(Wright et al., 2008). In gray matter, we evaluated SNR efficiency at moderate regularization 

for TRD = [5 10 20] s. We set TRSRR to the minimum possible value for each aspect factor 

(Eq. (14)). However, TRSRR does not necessarily have to assume the minimal value and 

can be increased at the expense of scan time. Increasing TRSRR will lead to an increased 

SNR efficiency by promoting T1-relaxation, which is counteracted by a decrease in SNR 

efficiency as the additional time can be used for averaging the direct acquisition (Eq. (13)). 

Therefore, we investigated how an increased TRSRR affects the SNR efficiency in both gray 

and white matter for α = 8.

3.3.1. Analysis of precision in vivo—SNR efficiency was evaluated in a healthy brain 

in vivo (male, 28 years) for aspect factors between 1 and 6. All experiments used b = [0 0.5] 

ms/μm2 with 1 and 10 repetitions respectively, FOV = 220 × 220 × 144 mm3, TE = 100 ms, 

partial-Fourier factor = 6/8, an in-plane acceleration factor of 2 (GRAPPA), and bandwidth 

= 1725 Hz/pixel. Imaging parameters that depended on the aspect factor are summarized in 

Table 1. All images were reconstructed at a resolution of 1.6 × 1.6 × 1.6 mm3. To enable a 

fair comparison with the direct acquisition approach, it was smoothened using 2D Gaussian 

with a kernel size of 0.47 to yield an effective spatial resolution similar to a moderately 

regularized SRR. The SNR efficiency was estimated according to Eq. (11) in the central 

white matter, brainstem, corpus callosum and cerebellar white matter at b = 0.5 ms/μm2, 

whereas images acquired at b = 0 ms/μm2 are shown.

Vis et al. Page 9

Neuroimage. Author manuscript; available in PMC 2022 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4. In vivo dot fraction imaging

We demonstrated the utility of SRR by visualizing the presence of the so-called dot fraction 

in the brain with a higher contrast than that from direct sampling. The dot fraction is 

linked to the relative signal that remains at very high b-values when using spherical b-tensor 

encoding. As anisotropic tissue is effectively attenuated by spherical b-tensor encoding, the 

remaining signal can be attributed to environments in which the apparent diffusivity is low 

or zero in all directions (Dhital et al., 2018; Tax et al., 2020).

A healthy volunteer (male, 27 years) was scanned at b = [0 1 4] ms/μm2 using 1, 3, and 13 

repetitions, NR = 8, resolution = 1.6 × 1.6 × 7.2 mm3 (α = 4.5), FOV = 211 × 211 × 144 

mm3, TE = 120 ms, TR = 4200 ms, TA = 9:31 min, 2x in-plane acceleration (GRAPPA), 

partial-Fourier = 6/8 and bandwidth = 1720 Hz/pixel. A directly sampled set was acquired 

for comparison with the same settings, at b = [0 1 4] ms/μm2 using 1,6, and 33 repetitions, 

resolution = 1.6 × 1.6 × 1.6 mm3, FOV = 211 × 211 × 188 mm3, TR = 14,200 ms and 

TA = 9:28 min. As regularized SRR reduces the spatial resolution slightly, another directly 

sampled set was acquired with the same settings at a resolution of 1.8 × 1.8 × 1.8 mm3 with 

FOV = 238 × 238 × 162 mm3.

The TR was set to the minimum value possible without the use of through-plane 

acceleration. To reduce the impact of system heating and drift, we used simultaneous 

multislice acceleration of factor 2 and randomized the b-values across volumes (Hutter et 

al., 2018; Szczepankiewicz et al., 2021; Vos et al., 2017). All raw data were denoised using 

Marchenko-Pastur principle component analysis (Cordero-Grande et al., 2019; Tournier et 

al., 2019). The low-resolution images were reconstructed at a resolution of 1.6 × 1.6 × 1.6 

mm3 using SRR. A moderate regularization of λ′ = 0.026 was used.

We assume a dot compartment with signal fraction fdot and isotropic diffusivity Ddot equal to 

zero, accompanied by a fraction of other tissue (1 – fdot) with non-zero isotropic diffusivity. 

Assuming Gaussian diffusion and no exchange, the diffusion-weighted signal S(b) is given 

by (Dhital et al., 2018; Tax et al., 2020)

S(b) = S0 · fdot exp −b · Ddot + 1 − fdot exp −b · Dother , (18)

where S0 is the non-diffusion weighted signal. For very high b-values, the exp(−bhigh · 

Dother ) ≈ 0, and only signal in the dot compartment remains since Ddot ≈ 0, which 

simplifies Eq. (18) and allows us to rewrite to

S(b) ≈ S0 · fdot and fdot ≈ S(b)
S0

. (19)

The resulting signal map is weighted by both S0 (T2-weighting) and fdot (influenced by 

density of cells exhibiting restricted diffusion in all directions). Note that, under these 

assumptions, fdot only gives an upper limit on the true value as other tissues as well as the 

rectified noise floor may contribute to the remaining signal.
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Both the super-resolved and directly acquired high-resolution images were averaged for b = 

4 ms/μm2. The gray-to-white matter signal ratio was calculated between gray matter voxels 

in the cerebellar cortex and white matter voxels in the cerebellum. fdot was calculated using 

Eq. (19). We compared the images to a corresponding T1-weighted morphological scan and 

to a similar Nissl-stained contrast that emphasize neurons found in brain histology from the 

BigBrain atlas (Amunts et al., 2013).

4. Results

4.1. The impact of noise floor on signal accuracy

Fig. 2 shows that the rectified noise floor causes an overestimation of the signal at high 

b-values where SNR is low (Fig. 2a). The bias can be partially avoided by using higher 

aspect factors to increase the SNFR. This means that higher b-values can be employed 

before reaching a given signal bias. In the experiments, the measured signal at α = 1 

exhibited an SNFR of 60, which could be increased to 360 at α = 6. By doing so, the 

maximal b-value could be increased from 1.32 to 2.13 ms/μm2 before reaching the 5% signal 

bias in water at room temperature (Fig. 2b). More generally, increasing the aspect factor 

from 1 to 6 enabled the attenuation coefficient to become 62% larger (Eq. (17)). Both single 

voxel and SRR simulations agreed with measurements. Note that TR was here constant 

across measurements to avoid contributions from T1-weighting.

4.2. Analysis of precision and SNR efficiency

Fig. 3 shows the SNR efficiency for SRR with different aspect factors for the three levels 

of regularization (see Appendix C, Fig. C2 for the regularization values). SNR efficiency 

generally increases with aspect factor. For example, the SNR efficiency is 1.6 for an 

aspect factor 8 when using moderate regularization. As expected, strong regularization 

leads to higher SNR efficiency, but may cause reduced spatial resolution and blurred edges. 

Conversely, weak regularization may substantially inflate the effects of noise, resulting in 

SNR efficiency below 1 for all aspect factors. As analytical and numerical results agree, the 

analytical expression can guide the regularization accurately. Note that this analysis does not 

include T1-relaxation effects.

Fig. 4 shows the effect of T1-relaxation on SNR efficiency, which decreases with TRD (Fig. 

4a). This effect is more evident for higher aspect factors. For example, for aspect factor 

8, SNR efficiency reduces from 1.6 to 0.6 as we go from the case where T1-relaxation is 

neglected (TRD ≫ T1) to a case where TRD = 5 s for a T1 value mimicking gray matter. 

SRR in this case leads to a reduced SNR efficiency, rather than an increase. However, when 

TRD ≫ T1, T1-effects are less evident and SNR efficiency is still above unity for SRR. 

This situation occurs for example when TRD is relatively high and/or low aspect factors are 

used. Note that TRSRR can be increased to promote T1-relaxation. However, this leads to 

an increased scan time, which benefits the direct acquisition as this time can be used for 

signal averaging. As illustrated for an aspect factor of 8, we see it is beneficial to set TRSRR 

to a minimum when TRSRR/T1 > 1.25 (Fig. 4b). Until this point is reached, the benefits 

of rapid signal-sampling outweigh the benefits of prolonged T1-relaxation in terms of SNR 

efficiency.
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4.2.1. Analysis of precision in vivo—Fig. 5 shows the results of SRR in vivo for 

different aspect factors at similar effective resolution. It shows that SRR in vivo is feasible, 

as resolution is regained for all aspect factors. Ringing artefacts are observed near high-

contrast transitions, such as around the ventricles (Gottlieb et al., 1992). As the aspect 

factor increases and the TRSRR is reduced, T1-weighting becomes more visible. This can for 

example be observed in the contrast decrease between white matter and CSF, with T1 of 0.8 

s and 4.5 s, respectively (Shin et al., 2009).

Fig. 6 shows SNR efficiency for measured and simulated data in white matter at b = 0.5 

ms/μm2. In central white matter and the corpus callosum, experiments and simulations (T1 

= 0.8 s) follow similar trends of increased SNR efficiency with aspect factor, up to α = 5. 

In the brainstem and cerebellar white matter, simulations overestimate the SNR efficiency 

for all aspect factors and the trends are more similar to simulations with a longer T1 of 

1.6 s, mimicking gray matter. A potential explanation for this trend is that ROIs in both 

brainstem and cerebellum contain gray matter with relatively long T1, thereby reducing 

SNR efficiency according to Eq. (13). Regardless, the SNR efficiency is still above unity for 

all cases, meaning that SRR has a higher precision than its directly sampled equivalent for 

this protocol.

4.3. In vivo dot fraction imaging

Fig. 7 shows results for the dot fraction imaging. Direct sampling at 1.6 mm3 isotropic leads 

to poor image contrast throughout the brain, as the image is dominated by the noise floor. 

When sampling directly at a resolution of 1.8 mm3 isotropic, the cerebellar cortex becomes 

faintly visible, but the contrast is still poor. On the other hand, SRR enables a vastly 

improved image contrast where the cortex of the cerebrum is visible with prominent signal. 

The contrast ratio between cortex and white matter of the cerebellum are 1.86 for SRR 

versus 1.06 and 1.31 for direct sampling at 1.6 mm3 and 1.8 mm3 isotropic, respectively. 

Fig. 8 shows that a part of this contrast is due to T2 effects, as the map of fdot shows a 

less pronounced difference between cerebellar white- and gray matter. A similar contrast is 

observed in neuron-stained brain histology, where the cerebellar cortex shows high density 

of neurons.

5. Discussion

In this work, we investigated the performance of super-resolution reconstruction and its 

impact on signal accuracy and precision in diffusion MRI. We found that SRR improved 

accuracy in a challenging application that would not be feasible without it (Fig. 7). We also 

expect that the increase in signal accuracy by SRR will lead to an improved accuracy in 

parameters estimated from dMRI data (Jeurissen et al., 2018).

SRR improves the accuracy of the diffusion-weighted signal by avoiding sampling signal 

that is biased by the rectified noise floor. This gain is linear with voxel volume in terms of 

SNFR, which allows the use of stronger diffusion encoding before a signal bias is introduced 

(Fig. 2). An alternative method to improve accuracy is averaging complex data, which is 

challenging due to the need of phase correction (Eichner et al., 2015; Prah et al., 2010). The 

presented methodology uses the magnitude signal, which allows us to avoid this challenge. 
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Although SRR and complex averaging are, in principle, compatible, the investigation of such 

an approach was outside the scope of this work. Moreover, as signal bias is mostly avoided 

rather than corrected, SRR does not have to rely on prior knowledge of the data distribution. 

This differs from postprocessing methods that have been proposed to remove the bias 

(Andersson, 2008; Kristoffersen, 2007; Veraart et al., 2013, 2011) and can be challenging 

due to, for example, non-trivial coil-combination methods. An alternative SRR technique is 

g-slider (Setsompop et al., 2018) where signal is acquired in slabs with different excitation 

profiles. Although this approach has excellent SNR efficiency, SRR based on rotating FOVs 

can be deployed with off-the-shelf sequences, whereas g-slider requires a specialized pulse 

sequence. Nevertheless, a combination of g-slider, spherical b-tensor encoding and high 

spatial resolution may enable even better resolution, contrast and/or shorter acquisition 

times.

We found that SNR efficiency can be preserved or even improved using SRR, depending on 

the aspect factor, T1-weighting, and regularization. The established analytical formulation 

for SNR efficiency (Eq. (13)) may help setting the regularization strength to decide the 

tradeoff between SNR efficiency and effective spatial resolution (Fig. 3). Simulations 

show that SNR efficiency is generally increased for large aspect factors, however, effects 

of T1-relaxation become dominant at sufficiently high aspect factors (Fig. 4). Previous 

studies suggested larger aspect factor would lead to larger improvements in SNR efficiency 

(Van Steenkiste et al., 2016). However, this was under the assumption of complete T1-

recovery. The effects of T1-relaxation counteract the SRR improvement when relatively 

short repetition times are used, which has become more common since the simultaneous 

multi-slice techniques were made available (Barth et al., 2016). Furthermore, the use 

of thicker slices increases sensitivity to motion-induced gradient imbalances leading to 

intravoxel dephasing and therefore loss of signal, which may partially explain the mismatch 

between simulations and in vivo results (Fig. 6) and put a practical limit on the maximum 

achievable aspect factor (Gumus et al., 2014). Generally, we see that the potential precision 

increase is heavily dependent on acquisition, reconstruction, and intrinsic tissue parameters.

The gain in precision from SRR was only modest, while accuracy can be substantially 

improved by SRR in low SNR scenarios. In practice, this leads to an improved contrast, as 

the use of larger voxels will reduces the influence from the noise floor and therefore allow 

for a better differentiation of true signal differences. We demonstrated this in vivo for so 

called dot-fraction imaging, which visualizes densely packed cells located in the cerebellar 

cortex and was first demonstrated on a custom MRI system with ultra-strong gradients 

and at a poor spatial resolution (Tax et al., 2020). Using SRR, we enabled high-resolution 

imaging at 1.6 mm3 isotropic at b = 4 ms/μm2 with spherical tensor encoding, where the 

elevated SNFR causes contrast to be substantially improved compared to direct sampling 

(Fig. 7). If a linear relationship with voxel volume is assumed, the same SNFR is expected 

for direct sampling only at 2.7 mm3 isotropic. We believe that this approach facilitates 

high-resolution studies of neurodegenerative diseases where isotropic tissues are affected. 

Current acquisition times are just below 10 min, and the sampling scheme can be further 

optimized to comply with clinical routine.
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Under high-SNR conditions, the simplicity of direct sampling may outweigh the benefits of 

SRR. However, a remaining benefit of SRR is that it may be used for acceleration when used 

in combination with a diffusion model (Jeurissen et al., 2018; Van Steenkiste et al., 2016). 

Acceleration can be achieved by subsampling the diffusion encoding directions or b-tensors 

over the acquired low-resolution images, such that directional information needed to fit the 

model can be acquired in a shorter time.

We have identified five primary limitations of the present study. First, to compare 

regularized SRR and direct sampling at similar effective resolution, we matched the effect 

of regularization strength and Gaussian smoothing kernel size. However, matching spatial 

resolutions across filtering and/or reconstruction methods remains a challenge as metrics 

of spatial resolution are lacking (den Dekker and van den Bos, 1997). Notably, both 

regularization and smoothing always lead to an effective resolution that is lower than 

the original or nominal resolution. As such, sampling directly at the effective resolution 

would increase both SNFR (Fig. 2) and SNR efficiency (Scouten et al., 2006) compared to 

sampling at the original resolution and performing post-hoc smoothing. For an evaluation 

of effective spatial resolution and therefore better assessment of SRR, suitable phantoms 

could be used in future work (Fellner et al., 2001; Price et al., 1990). Second, our analysis 

does not include motion and eddy current correction in the SRR model, while perfect 

registration in SRR is of importance to obtain non-blurry high-resolution results. Including 

such corrections could improve the sharpness of in vivo results. Third, we used the identity 

matrix as the regularization matrix (Eq. (7)). Using data-driven regularization that depends 

on image content can have benefits, such as edge-preservation (Khattab et al., 2020). Forth, 

the multi-stack rotation SRR model suffers from signal over- and undershoot problems 

at contrast-rich regions due to regularization, as more thoroughly described by (Shilling 

et al., 2009). This could be a confounder in quantitative measures extracted from the 

images, for example when estimating the dot-fraction. Fifth, while concomitant gradients 

are compensated in the diffusion encoding (Szczepankiewicz et al., 2019b), the read-out 

gradients are rotated along with the FOV and their concomitant gradients may cause 

rotation-dependent artefacts (Du et al., 2002).

In conclusion, we have presented a comprehensive analysis of SRR that outlined the 

major features influencing the precision and accuracy of the diffusion-weighted signal. 

The primary benefit of SRR is the improved signal-to-noise-floor ratio, but precision can 

also be improved given beneficial imaging conditions. We showcased the use of SRR in a 

challenging combination of high resolution and spherical tensor encoding with ultra-high 

b-values, where SRR can suppress noise floor effects and recover high signal accuracy. 

We share the tools developed herein in open-source and expect that the present work will 

support future experimental design, such that both acquisition and reconstruction parameters 

can be optimized for specialized purposes.
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Appendix A. Derivation of SNR efficiency

We derive ρ as given in Eq. (13). We start from Eq. (11), stating

ρ = SNRSRR
SNRD

· TAD
TASRR

. (A1)

To find our final expression, we express both SNRSRR and SNRD in terms of SNRLR, the 

SNR of a low-resolution acquisition. For all cases,

Sx ∝ V x · 1 − exp −TRx/T1 , (A2)

where S is the mean signal, V is the voxel size and x the reflecting component, i.e. LR, SRR 

or D (direct sampling). As VLR = α · VD, we rewrite Eq. (A2) to

SD = SLR
α · 1 − exp −TRD/T1

1 − exp −TRLR/T1 . (A3)

As σ is independent of voxel size, σD = σLR (Edelstein et al., 1986), and combining both Eq. 

(A3) and Eq. (10) gives

SNRD = 1
α · 1 − exp −TRD/T1

1 − exp −TRLR/T1 · SNRLR . (A4)

Along the same way we can find an expression for SNRSRR. As TRSRR = TRLR, T1-effects 

are the same for both measurements, and we use Eq. (A2) to see that

SSRR = SLR
α . (A5)

We use the definition of the noise propagation factor κ of Eq. (12) and Eq. (10) to find

SNRSRR = 1
α · κ · SNRLR . (A6)

As for SRR the repetition time decreases, but the number of slice orientations increases with 

a factor N R, we find

TASRR
TAD

= NR · TRSRR
TRD

. (A7)

Combing Eq. (A4), Eq. (A6) and Eq. (A7) in Eq. (A1), gives the SNR efficiency ρ defined in 

Eq. (13), being
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ρ = 1
κ · 1 − exp −TRSRR/T1

1 − exp −TRD/T1 · TRD
NR · TRSRR

. (A8)

Appendix B. Gradient waveforms

Conventional, or linear diffusion encoding yields a pair of trapezoidal pulsed field gradient 

on each side of the refocusing pulse in a spin-echo sequence (Stejskal and Tanner, 1965). 

In this work, we used more advanced, spherical encoding where all three gradients are 

continuously used (Szczepankiewicz et al., 2019a). The gradient waveforms we used are 

depicted in Fig. B1.

Fig. B1. 
Optimized gradient waveforms were used to yield spherical tensor encoding (STE) in all 

practical experiments, and the one used for in vivo measurements is shown under conditions 

that yield b = 4.0 ms/μm2. Radiofrequency pulses (RF) are depicted in between gradients. 

This waveform and other resources related to the free waveforms sequence are available at 

https://github.com/filip-szczepankiewicz/fwf_seq_resources.

Appendix C. Matching the effective spatial resolution

The effective spatial resolution between super-resolution reconstructed and directly sampled 

images are matched, as illustrated in Fig. C1. The regularization values used for different 

aspect factors are given in Fig. C2.
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Fig. C1. 
Matching the effective spatial resolution of directly sampled and super-resolution 

reconstructed images. A noise-free high-resolution image x is smoothened with a given 

Gaussian kernel size σ and separately down sampled to low-resolution y with a given down 

sampling matrix A (A is dependent on the aspect factor). The super-resolution reconstructed 

image x A, λ′  has similar effective spatial resolution as the smoothened directly sampled 

image x(σ) for a regularization strength λ′ that minimizes the sum of squares distance 

between them. Images are cropped before comparison to avoid influence of edge-artefacts.
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Fig. C2. 
Values of regularization strength λ′ matched with Gaussian kernel sizes σ in terms of 

induced effective spatial resolution for different aspect factors. λ′ decreases with increasing 

aspect factor, with a smaller decrease for higher aspect factors. λ′ increases with increasing 

σ.

Data availability statement

The data that support the findings of this study are not available due to ethical restrictions.
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The super-resolution reconstruction framework is available in open source at https://

github.com/filip-szczepankiewicz/Vis_NIMG_2021/.
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Fig. 1. 
Illustration of the super-resolution reconstruction process in coronal view. Step 1: Multiple 

images are acquired with low through-plane resolution rotated around the anterior-posterior 

axis indicated by the blue cross. Step 2: The images are up-sampled to the high-resolution 

grid by application of the up-sampling operator to each individual image. Step 3: The joint 

up-sampling operator results in the sum of the individual images, i.e., a smooth image on the 

high-resolution grid. Step 4: The sharpening operator is applied to finalize the reconstruction 

process and obtain a high-resolution image. The regularization parameter λ’ determines the 

trade-off between resolution and noise propagation; a higher λ’ leads to a blurrier, but less 

noisy image. Steps 2 to 4 are shown as a magnified view of the region indicated by the 

red square. Color bars show how the intensity scale changes with each step. α is the aspect 

factor and N R is the number of low-resolution images.
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Fig. 2. 
Effect of the rectified noise floor on signal accuracy for aspect factors (α) up to 6. Panel 

(a) shows the simulated and measured mean signal in a water phantom as a function of the 

b-value, normalized to signal at b0. Panel (b) shows the threshold attenuation factor where 

the signal bias caused by the noise floor exceeds 5% versus aspect factor. This is shown for 

measured SNFR (SNFR 60 at α = 1, SNFR = 360 at α = 6), as well as for various SNRF 

ranging from 15 for α = 1 to 720 for α = 6. The SNFR grows linearly with voxel size, 

and the threshold attenuation factor shows similar trends for varying SNFR. Sampling with 

larger voxels improves accuracy and allows for the use of higher b-values before the noise 

floor affects the signal. Simulations and experimental results (circles versus triangles) show 

high agreement.
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Fig. 3. 
SNR efficiency as a function of aspect factor at multiple regularization strengths, evaluated 

numerically (dashed line) and analytically (solid line). An SNR efficiency above unity 

means that precision increases compared to direct sampling with matched spatial resolution 

and acquisition time. Both the increase in aspect factor and regularization strength lead to 

a higher SNR efficiency. The magnified Shepp-Logan phantom images (right) show the 

effect of regularization on image characteristics (spatial resolution/noise propagation), and 

are reconstructed from 5 low-resolution images with an aspect factor of 3 and a SNR of 30 

in the region mimicking white matter. Effects of T1-relaxation were not simulated in this 

analysis.
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Fig. 4. 
Effect of T1 relaxation on SNR efficiency. Panel (a) shows the SNR efficiency using T1 

= 1.6 s and the minimum TRSRR for a given TRD and aspect factor. SNR efficiency 

decreases as TRD decreases, with a faster decrease for higher α. Panel (b) shows the effect 

of changing TRSRR above its minimum at the expense of scan time, for α = 8 and T1 of 1.6 

s and 0.8 s, mimicking gray- and white matter, respectively. SNR efficiency is maximized 

when TRSRR/T1 is as close as possible to 1.25. Simulations were performed with moderate 

regularization.
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Fig. 5. 
Direct sampling and super-resolution reconstruction (SRR) for various aspect factors (α). 

Image were obtained in a healthy brain in vivo at b = 0 ms/μm2 and reconstructed 

at a resolution of 1.6 × 1.6 × 1.6 mm3. All images were reconstructed with moderate 

regularization and are thus matched in terms of effective resolution (σ = 0.47 voxels), 

meaning Gaussian smoothing was applied to the direct case. Due to different signal 

intervals, the maximum of the colormap is scaled separately for each image. Note that 

the overall image contrast changes with aspect factor due to T1 effects because a higher 

aspect factor allows a shorter TR. This results in a smaller signal difference between the 

white matter (T1 = 0.8 s) and the cerebrospinal fluid (T1 = 4.3 s).
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Fig. 6. 
SNR efficiency in vivo. The values were obtained from simulations as well as estimated 

from experimental data, for different aspect factors. In central white matter and the corpus 

callosum, trends up to α = 5 are similar to simulations with T1 = 0.8 s, mimicking white 

matter. The SNR efficiency in brainstem and cerebellum is more similar to simulations 

with T1 = 1.6 s, mimicking gray matter. Generally, the SNR efficiency in white matter is 

overestimated by the simulations (black circles) compared with measurements (triangles). 

Note that SNR efficiency is above unity in all cases.
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Fig. 7. 
In vivo illustration of the accuracy-related benefit of super-resolution reconstruction (SRR). 

The figure shows diffusion-weighted images from a SRR protocol (left) and direct 

acquisition (middle) with spherical encoding at b = 4 ms/μm2 in coronal and sagittal view 

at 1.6 × 1.6 × 1.6 mm3. As regularization in SRR slightly decreases spatial resolution, we 

also compare to a direct acquisition at 1.8 × 1.8 × 1.8 mm3 (right). A vastly higher contrast 

is observed with SRR compared with direct sampling at both the target resolution and the 

slightly reduced resolution. Quantitatively, this corresponds to an increase in the contrast 

ratio between the cerebellar cortex and white matter to 1.86 from 1.06 (middle) or 1.31 

(right). Acquisition times are similar.
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Fig. 8. 
Analysis of the image contrast. The top row shows signal retention using diffusion-weighted 

imaging with spherical encoding at b = 4 ms/μm2 (left) and estimation of fdot (right). The 

bottom left panel shows a T1-weighted image of the corresponding slice. The bottom right 

image shows a neuron-stained histology slice from the human brain, obtained from the 

BigBrain atlas (Amunts et al., 2013). Regions of high diffusion-weighted signal and high fdot 

are found in the cerebellar cortex where granule cells are densely packed.
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