
Rugowska et al. Clin Epigenet           (2021) 13:13  
https://doi.org/10.1186/s13148-021-01001-z

REVIEW

Epigenetic modifications in muscle 
regeneration and progression of Duchenne 
muscular dystrophy
Anna Rugowska , Alicja Starosta  and Patryk Konieczny* 

Abstract 

Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the pheno-
type varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skel-
etal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due 
to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem 
from the dystrophin absence-mediated serine–threonine protein kinase 2 (MARK2) misplacement/downregulation in 
activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, 
we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during 
muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these 
epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments 
increasing the regenerative potential of diseased muscles based on this acquired knowledge.
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Introduction
Duchenne muscular dystrophy (DMD, OMIM 310200), 
the most severe and the most common adult form of 
muscular dystrophy in humans, is caused by a lack of 
functional dystrophin due to mutations in the dystro-
phin gene (DMD) [1, 2]. This largest gene in the human 
genome (> 2.5 Mbp) gives rise to several transcripts 
that encode protein isoforms ranging in size from 40 to 
427  kDa, which are variously distributed in many cell 
types [3–11]. Because DMD is located on the X chro-
mosome (Xp21.2 region), the disease primarily affects 
boys with estimates of incidence ranging from one in 
every 3500 to more recent estimates of 1:5000 live births 

[12–14]. Interestingly, females also suffer from DMD in 
rare instances (1:50,000,000 live births) [15] and approxi-
mately 8% of female mutation carriers experience mus-
cle weakness [16]. The genetic defects in the DMD gene 
include deletions (65%), duplications (5–10%), and point 
mutations (10–15%) [17–19].

The first sign of the disease is muscle weakness, which 
starts in boys at around the age of four and progresses 
quickly (Fig.  1a). It is usually accompanied by a loss of 
muscle contraction in the thigh and pelvis muscles fol-
lowed by arm muscle weakness. At this point, the clas-
sic DMD symptoms begin to emerge, i.e., Gowers’  sign 
(patients use their hands and arms to ‘walk-up’ their body 
to stand from a sitting or squatting position), rocking 
gait, or walking on toes. In the second phase of the dis-
ease progression, movement causes increasing problems 
as patients experience difficulty walking, climbing stairs, 
or getting up from the floor. At this stage, cooperation 
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with physiotherapists is needed, but also with a psychol-
ogist who will prepare the child for loss of mobility. As 
a result of the disease progression, the function of the 
lower extremities deteriorates and it becomes more diffi-
cult for the patient to maintain the correct body position. 
With time, the affected boys are forced to use a wheel-
chair. The consequence of the fragility and progressive 
loss of DMD myofibers is the accumulation of fibrotic 
and adipose tissue, thus contributing to skeletal muscle 
mass loss and function [20]. Ultimately, DMD leads to 
premature death in the twenties or thirties due to dia-
phragm dysfunction or cardiac failure [21, 22].

The skeletal muscle has the intrinsic ability to regener-
ate damaged myofibers after injury or as a consequence 
of a disease process. High regenerative capacity is directly 
linked to the presence of satellite cells (SCs) (Fig. 1b) [23], 
which are undifferentiated skeletal muscle precursor cells 
residing in a niche between the muscle fiber membrane 
(sarcolemma) and the basement membrane surround-
ing each muscle fiber [24–27]. In principle, these cells 
are required not only for myofiber regeneration but also 
for the growth and maintenance of skeletal muscle. SCs 
are normally mitotically quiescent (QSCs) but are poised 
to act and enter the cell cycle in response to stress stim-
uli such as injury [28]. Activated satellite cells (ASCs) 
undergo asymmetric division, myogenic differentiation, 
and self-renewal to restore the pool of QSCs (Fig. 1b, left 
panel). Defects in SCs have been shown to contribute to 
the etiology of some muscle diseases [29]. Specifically, 
DMD progression has been linked to a failure of SCs to 
divide asymmetrically and maintain the damage-repair 
cycle (Fig. 1b, right panel). This is due to the fact that in 
the dystrophin–glycoprotein complex (DGC), dystrophin 
is associated with the serine–threonine protein kinase 2 
(MARK2), which plays a pivotal role in establishing cell 
polarity (Fig. 1c). Moreover, over time, the SC pool in dis-
eased tissues undergoes exhaustion [30, 31] and cannot 

replenish damaged myofibers as underscored by the pro-
gressive loss of muscle mass in DMD patients. Inflamma-
tory processes downstream of dystrophin deficiency, as 
well as metabolic abnormalities and defective autophagy, 
additionally contribute to muscle pathology in DMD. 
Particularly, chronic inflammation caused by muscle 
damage in DMD patients has an important impact on 
disease progression [32, 33].

The structural role of dystrophin is closely related to its 
participation in the DGC, which can be subdivided into 
three smaller subcomplexes: the dystroglycan complex 
(α- and β-dystroglycan, generated by proteolytic cleav-
age of a single precursor protein); the sarcoglycan com-
plex (α-, β-, δ-, γ-sarcoglycan); and the complex located 
in the cytoplasm (Fig.  1c) [34]. The generally accepted 
role for the DGC is to stabilize the plasma membrane 
during muscle contraction, signified by the fact that dis-
ruption of the linkage between the cytoskeleton and the 
extracellular matrix (ECM) occurs in DMD [35–37]. Fur-
thermore, the DGC also plays a pivotal role in the organi-
zation of neuromuscular junctions, where it stabilizes the 
postsynaptic machinery, including receptors for the neu-
rotransmitter acetylcholine [38, 39]. However, the role 
of dystrophin is not limited to the structural function. 
Growing evidence suggests that dystrophin, through its 
multiple protein connections, plays a major role in gene 
expression via regulating signal transduction (Fig.  1c), 
including pathways that activate nitric oxide (NO) pro-
duction,  Ca2+ entry, and the production of reactive oxy-
gen species (ROS) [40].

Despite the undoubted progress in the development of 
experimental therapeutic approaches, DMD is still incur-
able. Symptomatic treatment of the progressive loss of 
muscle tissue, caused by myofiber degeneration and their 
inefficient regeneration, is currently limited to corticos-
teroids that alleviate secondary inflammatory processes 
in DMD. In recent years, it has become more evident 

Fig. 1 DMD—the disease of satellite cells and myofibers. a A timeline showing the progression of DMD symptoms. The affected boys develop 
motor skills until the age of 4–6, however, at a lower rate than their peers. Muscle weakness and Gowers’ sign are apparent from the age of 4. The 
condition of the muscles deteriorates quickly and the patients are forced to use a wheelchair in their teens. Typically, in the late teens, they need 
to start to use a temporary and then 24-h ventilation aid as a consequence of dysfunctional respiratory muscles. The boys die usually in their 
twenties/thirties, due to respiratory or cardiac failure. b In response to damage, QSCs (marked sky blue) that reside between the basal lamina and 
the plasmalemma, are activated and divide asymmetrically to generate SCs that return to the quiescent state (marked orange) and SCs undergoing 
differentiation into myoblasts that participate in muscle repair (marked pink). The asymmetric division is driven by dystrophin in combination 
with its binding partner, MARK2 (see in c). Lack of dystrophin leads to diminished levels of MARK2 and β-syntrophin in satellite cells (and 
α-syntrophin in skeletal muscle and NMJs), lower amounts of asymmetric divisions, and an increase in abnormal mitotic divisions. Also, note the 
elevated numbers of satellite cells in DMD muscles that are generated through symmetric divisions as well as increased fibrosis (marked red) and 
infiltration of immune cells (marked yellow). c DGC in the plasmalemma of satellite cells and myofibers performs structural and signal transduction 
functions, including those that pertain to NO production. In DMD muscles, the loss of dystrophin results in partial compensatory assembly of 
the utrophin-based complex (UGC) as well as other proteins and protein complexes (not shown). In neither case, the correct signal transduction 
functions are restored

(See figure on next page.)
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that epigenetic mechanisms such as DNA methylation 
or histone modification have a pivotal role in regulating 
muscle regeneration and regenerative medicine is provid-
ing novel therapeutic strategies by developing epigenetic 
drugs aimed to manipulate the chromatin targets of indi-
vidual signaling pathways. In this review, we discuss the 
epigenetic regulation of various stages of skeletal muscle 
regeneration and the interplay of numerous factors that 
define the specific state of epigenetic homeostasis in 
health and DMD.

Epigenetics: the basics
The term epigenetics was first used by a British embry-
ologist, Conrad H. Waddington, in 1942 [41]. At that 
time, epigenesis referred to the differentiation of cells 
from their initial totipotent state during embryonic 
development. Today, the term epigenetics indicates a 
field of science that studies the relationship between 
the genetic code and the living environment—mental 
and physical and, more specifically, that describes the 
mechanisms and effects of biochemical modification of 
genome expression without changing the DNA sequence 
[42]. Genome expression can be modified by environ-
mental factors, lifestyle, upbringing, or emotions, and 
to some extent, these modifications can be inherited. 
At any stage of human life, from conception to death, 

intracellular stimuli and environmental factors such as 
nutrition, physical activity, environment pollution, stress, 
and bacterial infections also regulate the expression of 
our genes [43, 44].

In general, the major epigenetic signals include modifi-
cations related to (1) covalent posttranslational reversible 
modifications of histone proteins, such as methylation, 
acetylation, phosphorylation, ubiquitination, or incorpo-
ration of histone variants (Fig. 2a), (2) DNA methylation 
and demethylation (Fig.  2b), and (3) gene regulation by 
noncoding RNAs (ncRNAs), (Fig.  3) [45]. It is impor-
tant to realize that epigenetic changes occur naturally 
in normal development and health as well as in aging 
and disease. Below we describe the selected epigenetic 
mechanisms.

Histone modifications
Chromatin activity is regulated by chromatin-modify-
ing multiprotein complexes, whose catalytic subunits 
induce reversible posttranslational histone modifica-
tions such as acetylation, methylation, phosphorylation, 
or ubiquitination and are associated with permissive 
and repressive chromatin states [46–51]. Among them, 
histone acetylation and methylation are the most com-
mon mechanisms in myogenesis regulation, while phos-
phorylation and ubiquitination occur less frequently. In 

Fig. 2 Basic principles of epigenetic modifications. a Epigenetic mechanisms regulating gene expression via histone modifications. Chromatin 
transcription permissive histone modifications such as H3K9ac/H4K4ac (acetylation) and H3K4me3/H4K4me3 (methylation) are catalyzed by HATs 
and HMTs, while repressive, including H3K27me3, H3K9me2/3, H4K20me2/3 (methylation), and deacetylation, through the action of HMTs and 
HDACs. Histone modifications and enzymes catalyzing the corresponding reactions are marked with matching colors. b Epigenetic mechanisms 
regulating gene expression via DNA modifications. Methylation and demethylation of CpG islands in the promoter regions of genes cause gene 
silencing and transcriptional activation, respectively. DNMTs and the process of CpG demethylation are, respectively, color-matched to methylated 
and demethylated CpGs
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Fig. 3 Noncoding RNAs in chromatin modifications. a miRNAs induce degradation of target mRNAs containing matching sequences via the RNA–
protein complex. b, c lncRNAs can recruit or inhibit various enzymes or protein complexes to induce transcription repressive and permissive DNA 
(b) or histone modifications (c)
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general, acetylation of lysine residues of histones H3 and 
H4 (H3K9ac, H4K4ac) and trimethylation of lysine 4 of 
histones H3 or H4 (H3K4me3, H4K4me3) are associ-
ated with activation of transcription (permissive chro-
matin), whereas trimethylation of lysine 27 of histone H3 
(H3K27me3), di-/trimethylation of lysine 9 of histone H3 
(H3K9me2/3), and di-/trimethylation of lysine 20 of his-
tone H4 (H4K20me2/3) cause gene repression by chro-
matin condensation (Fig. 2a) [52].

Histone acetylation is dynamically regulated by the 
antagonistic action of histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) (Fig.  2a) that oper-
ate as catalytic centers of multiprotein assemblies. HATs 
are classified based on their cellular localization in the 
nucleus (type A) and the cytoplasm (type B). While not 
much is known about cytoplasmic HATs, several nuclear 
HATs have been identified and further divided into 
three major families that differ in their primary struc-
ture homology, represented by (1) p300/CBP-associated 
factor (PCAF), (2) the p300/CBP family, including p300 
and cAMP response element-binding (CREB) protein 
(CBP), and (3) the MYST family [53, 54]. Generally, his-
tone acetylation is achieved by the addition of an acetyl 
group (–CH3CO) transferred from acetylcoenzyme to 
one or more lysine residues in the ϵ-amino group of his-
tones, resulting in the relaxation of chromosomal DNA 
[55]. Conversely, mammalian HDAC enzymes remove 
the acetyl group from histone proteins, causing chromo-
somal DNA to be less accessible to transcription factors 
[56, 57]. There are currently 18 known human HDACs 
grouped into four classes. Classes I, II, and IV are zinc-
dependent HDACs, while class III (also called Sirtuins, 
SIRT) comprises HDACs that require  NAD+ [58]. Inter-
estingly, class I and IV HDACs are predominantly sub-
localized in the nucleus, whereas class II HDACs shuttle 
between the nucleus and the cytoplasm [59]. Similar to 
class II, class III HDACs can occur in the nucleus and 
cytoplasm; however, enzymes from this class can also act 
in the mitochondria [60].

Histone methylation occurs on lysine and arginine 
residues and is generated by the activity of histone lysine 
methyltransferases (HKMTs), (Fig.  2a), and protein 
arginine methyltransferases (PRMTs). The first group 
includes, among others, the following families: suppres-
sor of variegation 3–9 (SUV39), e.g., G9a methyltrans-
ferase that methylates lysine 9 of histone H3 (H3K9); 
enhancer of zeste homolog (EZH); SET1, which includes 
lysine methyltransferase 2A (MLL); SET2; SET7 and 
suppressor of variegation 4–20 (SUV4-20). The group 
of arginine methyltransferases comprises of ten mam-
malian PRMTs (PRMT1-10) that have been identified to 
date [61]. Here, PRMT4 or coactivator-associated argi-
nine methyltransferase 1 (CARM1) was the first PRMT 

characterized as an activator of transcription by meth-
ylating histone H3 [62]. Conversely, the methyl groups 
from histones are removed by the action of two classes of 
histone demethylases (HDMs; not shown) [63], a lysine-
specific histone demethylase 1 (LSD1), which has mono- 
and di-demethylating histone H3 activity (H3K4, H3K9) 
and the Jumonji C (JmjC) domain-containing family of 
HDMs, which unlike LSD1, is capable of removal of tri-
methylation [64].

Functional protein complexes are often required for 
HMTs to exert their catalytic activities, for example poly-
comb repressive complex 2 (PRC2) targets H3K27me3 
addition to developmentally regulated genes. In humans, 
PRC2 consists of four core subunits required for its opti-
mal functioning: EZH1 or EZH2, suppressor of zeste 12 
(SUZ12), embryonic ectoderm development (EED), and 
retinoblastoma suppressor-associated proteins 46/48 
(RbAp46/48) (Fig.  4). EZH1 and EZH2 are Su(var)3–9, 
enhancer of zeste, and trithorax catalytic (SET) domain-
containing proteins harboring HKMT activity, while 
SUZ12 and EED are involved in the PRC2 stability and 
are required for the EZH1/2 catalytic activities [65, 
66]. In turn, RbAp46/48 that constitute  the fourth core 
subunit of PRC2 are histone chaperones that play a piv-
otal role in establishing and maintaining the chromatin 
structure and are  not required for the enzymatic activ-
ity of EZH [67, 68]. Moreover, protein complexes that 
catalyze the repressive state of chromatin often cooper-
ate. Boros et al., for example, proposed a model, in which 
H3K27me3-bound PRC2 stabilizes H3K9me3-anchored 
heterochromatin protein 1α (HP1α), a structural adapter 
necessary to form and maintain a condensed structure 
of heterochromatin in two ways: directly by interaction 
with SUZ12 or indirectly through an unknown factor 
[69], as was recently suggested by Canzio et  al. [70]. In 
contrast, the main complex involved in permissive chro-
matin changes, the trithorax group protein (TrxG), is 
most commonly linked to gene activation by inducing 
H3K4me3 due to MLL1/2 HKMT activity (Fig. 4) [71].

Changes in chromatin conformation require energy, 
which is obtained during the ATP hydrolysis reaction. 
In the remodeling process that activates transcrip-
tion, the DNA-histone contact is loosened, allow-
ing the nucleosomes to move along a specific DNA 
sequence [72, 73]. An important multisubunit enzy-
matic complex involved in this process is the SWItch/
sucrose non-fermentable (SWI/SNF) (Figs.  4b and 5), 
which in humans consists of complexes that contain 
either Brahma (BRM) or Brahma-related gene 1 (BRG1) 
ATPases, associated with BRG1-associated factors 
(BAFs) [74]. The function of the SWI/SNF complex is 
to form the RNA polymerase II preinitiation complex 
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that promotes transcriptional elongation. In detail, the 
ATPase subunits contain bromodomains that can rec-
ognize acetylated lysine on histone proteins and are 
responsible for nucleosome remodeling [75]. SWI/
SNF enzymes can also physically interact with HATs 

and HDACs, showing the potential for coordination of 
chromatin remodeling activities [76].

DNA methylation
DNA methylation is a heritable yet reversible epige-
netic modification and increasing evidence shows that 
methylated DNA is an important regulator in many 

Fig. 4 Epigenetic regulation of the quiescent and proliferative state of SCs. a In QSC and during self-renewal, the PAX7 promoter is active, holding 
permissive chromatin marks through the TrxG activity, while MYF5/MYOD expression is repressed despite containing both permissive and repressive 
marks, including H3K4me3 (TrxG) and H3K27me3 (PRC2, YY1-EZH2 complex), respectively. Repression of MYF5 and MYOD is also induced by 
SUV39H1 (H3K9me2/3) and by removal of acetylation marks carried by HDACs. Furthermore, note that MYOD expression is repressed by ID, SIR2 
as well as MEF2 and SUV4-20H1/H2 (H4K20me2/3). The MYOG gene expression is inactivated via the cooperative action of PRC2 and HDACs. b In 
proliferating myoblasts, CARM1 targets and methylates PAX7 protein, which facilitates recruitment of TrxG to the MYF5 promoter. In addition, PRC2 
and HDACs are removed from the MYOD promoter, which enables binding of TrxG, PCAF-p300/CBP, SRF and phosphorylated MEF2 as well as the 
SWI/SNF complex that induces chromatin relaxation and MYOD transcription. Also note that at this stage of myogenesis, phosphorylated MYOD as 
well as SUV39H1 halt expression of MYOG in addition to PRC2 and HDACs
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biological processes, including X-chromosome inactiva-
tion, genomic imprinting, and gene expression [77–82], 
signified by the fact that aberrant DNA methylation pat-
terns are often observed in many diseases [81]. In mam-
malians, the most often methylated nucleotide is cytosine 
(5-methylcytosine) in cytosine-guanine (CpG) adjacent 

sites (Fig. 2b) and also adenine at the 6-nitrogen position 
of the purine ring in the symmetric tetranucleotide motif 
5′-G-A-T-C-3′ [82]. In adult mammals, palindromic 
CpGs of both DNA strands are methylated at the level of 
3.5–4.5% in a cell- and tissue-dependent manner [83, 84]. 
Interestingly, about 70% of promoters within the human 

Fig. 5 Epigenetic regulation in differentiating myogenic cells. a In the initial stage of differentiation, PAX7 and MYF5 expression is inhibited via 
H3K27me3 catalyzed by PRC2 (YY1-EZH2 complex) and additionally, other unknown factors (inhibition of MYF5). Conversely, MYOD gains active 
transcription marks (H3K4me3, acetylation) through the combined action of TrxG, MEF2, PCAF-p300/CBP, SRF, as well as the SWI/SNF complex. The 
high level of MYOD contributes to an increase in the production of MYOG and via the action of KDM4A, TrxG, phosphorylated MEF2, UTX, SET7 and 
also by SWI/SNF complex. Additionally, EZH1 must be present on the MYOG promoter to enable its transcription. The combined action of MYOD 
and MYOG leads to the expression of genes characteristic for late differentiation, such as MRF4 (b), then levels of MYOD and MYOG decrease in 
response to the G9a HKMT and the PRC2-YY1 complex, respectively, and due to other unknown factors. c In the terminal differentiation, the level of 
MRF4 remains high and proteins characteristic for mature skeletal muscle such as MYHC, CKM, and ACNT1 are generated
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genome contain CpG sequences and their methylation is 
related to gene expression silencing (Fig.  2b). Addition-
ally, asymmetric methylation at non-GpG sites is also 
observed [85–87].

The methyl mark is deposited by DNA methyltrans-
ferases (DNMTs), enzymes that transfer a methyl group 
from S-adenosyl-L-methionine (SAM) to the cytosine at 
the 5′ position (Fig. 2b) [88]. To date, three active meth-
yltransferases have been identified in humans: DNMT1, 
DNMT3A, and DNMT3B. All of them require accessory 
proteins for their biological function, such as ubiquitin-
like containing plant homeodomain (PHD) and ubiqui-
tin-like with PHD and ring finger domain 1 (UHRF1) or 
DNMT3-like (DNMT3L) [89]. Interestingly, the previ-
ously considered methyltransferase, DNMT2, turned out 
not to methylate DNA, but instead position 38 in aspar-
tic acid tRNA [90]. Thus, to better reflect its biologi-
cal function, its name has been changed from DNMT2 
to TRDMT1 (tRNA aspartic acid methyltransferase 1) 
[91]. DNMT3L was also previously considered as a DNA 
methylating enzyme, related to DNMT3A and DNMT3B 
in structure; however, unlike the other DNMTs, it does 
not possess any inherent enzymatic activity, despite its 
critical role in the DNA methylation process [92]. Human 
DNMT1 has a high preference for hemimethylated DNA 
and thus is called maintenance DNA methyltransferase, 
while DNMT3A and DNMT3B can place methylation 
marks on previously unmethylated CpGs and thus are 
mainly responsible for the  de novo  DNA methylation 
[93, 94]. Importantly, a relation between DNA methyla-
tion and the histone-modifying machinery was observed. 
Specifically, methyl-CpG-binding domain (MBD) pro-
teins, which are necessary to recognize methylated CpGs, 
recruit HDACs and HMTs (e.g., PRC2) to methylated 
DNA regions [95, 96].

Gene regulation by noncoding RNA
The expression of genetic information may be affected 
by a specific group of regulatory molecules, so-called 
regulatory noncoding RNAs (rncRNAs) (Fig. 3) [97]. As 
the name indicates, rncRNAs do not encode proteins; 
however, often control gene transcription and can also 
directly influence the structural properties of chromatin 
via alterations in DNA methylation and histone modifica-
tion [98]. Importantly, their functional roles are signified 
by the fact that their expression is strictly controlled and 
depends on the developmental stage as well as the dif-
ferentiation level of the cell [99, 100]. The classification 
of rncRNA molecules is based on their size, and thus, a 
distinction can be made between small noncoding RNAs 
(sncRNAs; < 200 nt) and long noncoding RNAs (lncR-
NAs; > 200 nt). sncRNAs include microRNAs (miRNAs), 
piwiRNAs (piRNAs), or short interfering (siRNAs) [101, 

102]. In particular, miRNAs (18–25 nt long) are highly 
conserved molecules across species that act as negative 
regulators of about 60% of mRNAs through their degra-
dation (Fig. 3a) [103–106].

miRNAs can be viewed as a part of a larger genome 
expression feedback loop as they target the expression 
of key epigenetic enzymes such as DNMTs, HDACs, or 
EZHs [107, 108] and, on the contrary, the expression of 
miRNAs is regulated by the epigenetic machinery, such 
as DNA methylation, RNA, and histone modifications 
[109]. In contrast to miRNAs, piRNAs are involved in 
de novo DNA methylation [110], while siRNAs are nec-
essary for the RNA-induced transcriptional silencing 
(RITS) ribonucleoprotein complex to be located in a spe-
cific region of chromatin, which leads to the formation 
of heterochromatin by cytosine and H3K9 methylation 
[111].

The most accepted categories of lncRNAs are sense and 
antisense, transcribed on the same or opposite strand 
of a gene; intronic; intragenic arising from an intron of 
a protein-coding gene or a region located between two 
protein-coding genes, and circular RNAs (circRNAs) 
[112]. Based on their location, lncRNAs can be also 
distinguished as nuclear or cytoplasmic [113]. In the 
nucleus, lncRNAs play a crucial role as modifiers of chro-
matin where they are involved in the spatial localization 
of DNA-associated proteins to genomic loci, positioning 
of nucleosomes, and formation of chromatin loops [114]. 
For instance, direct physical associations between lncR-
NAs and DNMTs have been attributed to gene expres-
sion inhibition [115, 116] or transcription enhancement 
(Fig.  3b) [117]. Furthermore, lncRNAs can also affect 
the chromatin structure through the interaction with 
chromatin-modifying complexes catalyzing repressive 
H3K27me3 or permissive H3K4me3 marks (Fig. 3c).

Myogenesis and epigenetic regulation of muscle 
gene expression
Myogenesis is the formation of muscle tissue, either dur-
ing embryonic development or in response to myofiber 
damage that is observed in DMD patients (Fig. 1b) [118]. 
In the latter case,  the  myogenic process can be distin-
guished into three different stages: (1) an inflammatory 
process involving macrophages, (2) activation and divi-
sion of SCs, and (3) formation and development of new 
muscle fibers [119]. In the first stage, leukocytes, neu-
trophils, and then macrophages, which play the most 
important role in the initial phase of regeneration, start 
to accumulate at the site of the damage. There are two 
subpopulations of macrophages, M1 (pro-inflammatory) 
and M2 (anti-inflammatory) [120]. In the M1 group, the 
cells show expression of neural cell adhesion molecule 1 
(CD65) protein, secrete pro-inflammatory cytokines such 



Page 10 of 25Rugowska et al. Clin Epigenet           (2021) 13:13 

as tumor necrosis factor alfa (TNF-α) and interleukin 1 
beta (IL-1β), and are responsible for the removal of dam-
aged fiber fragments during phagocytosis. Macrophages 
of the M2 group show expression of CD163 protein and 
secrete anti-inflammatory cytokines, interleukin 10 (IL-
10), among others, which inhibits further development 
of the inflammatory process [121]. Additionally, mac-
rophages from this group stimulate the activation, prolif-
eration, and division of SCs, which initiates the next stage 
of muscle fiber regeneration [122]. Generally, on the sec-
ond day after damage, QSCs defined by the expression 
of transcription factor paired box 7 (PAX7) become acti-
vated, start to multiply, and then divide and differentiate 
to create new skeletal muscle fibers. Interestingly, SCs 
proliferation and migration to the regeneration site have 
been observed along the entire fibers of injured muscle 
[123].

It is noteworthy that in the regenerating muscle, the 
largest pool of SCs consists of cells that express PAX7 and 
myogenic factor 5 (MYF5) (PAX7+/MYF5+). These cells 
divide, differentiate into myocytes, and either generate 
new fibers de novo or fuse and repair the damaged fiber 
(Fig. 1b). However, there is also a population of SCs that 
expresses PAX7 but is MYF5 negative (PAX7+/MYF5−). 
This type of cell undergoes symmetric and, upon activa-
tion, asymmetric division (Fig. 1b). In the latter case, the 
division results in two daughter cells expressing either 
PAX7+/MYF5+ (progenitor cells capable of the dif-
ferentiation process; Fig.  4b) and cells expressing PAX7 
without MYF5 (PAX7+/MYF5−; Fig. 4a). PAX7+/MYF5- 
cells retain undifferentiated stem cell properties and are 
responsible for renewing the population of QSCs [124].

Epigenetic regulation of the quiescent state of SCs
SCs maintain and regenerate the damaged skeletal mus-
cle tissue. Initially, it was thought that sustaining SCs at 
rest was the result of a lack of nutrients or extracellular 
signals that could induce cell proliferation. This dogma 
has changed radically as it was noted that quiescence is 
an active and reversible state, controlled by specific cel-
lular epigenetic mechanisms [125]. The chromatin per-
missive and repressive epigenetic processes acting in SCs 
have been defined in the context of the expression (or 
lack of it) of specific transcription factors, some of which 
include myogenic regulatory factors (MRFs). MRFs are 
not expressed in QSCs but occur in an orderly and coor-
dinated manner during the myogenesis process in ASCs, 
proliferating myoblasts and in mature muscle cells that 
fuse to form regenerated skeletal muscle fibers [126].

DNA methylation
DNA methylation has classically been postulated as one 
of the major repressive systems acting on the muscle gene 

loci. A recently published dataset of the whole transcrip-
tome from QSCs and proliferating SCs showed down-
regulation of Dnmt3a (de novo DNMT) during activation 
of SCs, while the expression of another methyltrans-
ferase, Dnmt1 (maintenance DNMT), was increased 
[127]. These observations suggest that specific DNMTs 
play some role in initiating the MRF transcriptional pro-
gram or in regulating the transition from SC quiescence 
and proliferation to differentiation. However, the precise 
mechanisms regulating methylation/demethylation are 
still elusive.

Histone modifications
In QSCs, the transcription factor PAX7 is expressed due 
to TrxG activity composed of MLL1/2, ASH2L, WDR5, 
and RBBP5 subunits [128], while modulators of cell cycle 
progression and other transcription factors responsi-
ble for myogenic differentiation, such as myogenic dif-
ferentiation 1 (MYOD) and myogenin (MYOG), remain 
silenced (Fig.  4a) [129]. However, it was concluded that 
QSCs are not in a dormant state but rather are primed 
for activation and thus differentiation in response to 
external stimuli [130], such as muscle damage observed 
in DMD patients. At the chromatin level, it was shown 
that in QSCs permissive H3K4me3 marks can be found 
not only in actively transcribed but also in inactive genes, 
to be transcribed at a later time [130]. Particularly, a large 
number of genes, including MYF5, MYOD, and serum 
response factor (SRF, a negative transcription regula-
tor of SC differentiation), were found to have opposing 
H3K4me3 and H3K27me3 marks at the transcription 
start sites due to the respective TrxG and Ying-Yang 
1 (YY1), which recruits the EZH2 subunit (putatively 
the entire PRC2 complex), activities (Fig. 4a) [130, 131]. 
It is important to note that not all factors are regulated 
in the same manner as, e.g., muscle-specific regulatory 
factor 4 (Mrf4) promoter is devoid of active H3K4me3 
or repressive H3K27me3 marks [132]. Moreover, some-
what undermining the role of epigenetic regulation, oth-
ers noted Myf5 transcripts already in QSCs; however, 
sequestered inside the cytoplasmic messenger ribonu-
cleoprotein granules as a result of miR-31 expression and 
phosphorylation of eIF2 [133, 134]. Following SC acti-
vation, the granules are disassembled, leading to Myf5 
protein synthesis [133]. Similarly, MyoD transcripts were 
shown to be blocked in QSCs by Staufen 1, a regulator of 
mRNA localization, stability, and translation [135]. Loss 
of this repression enables MyoD translation and its accu-
mulation that triggers the myogenic program [135].
MYOG expression in QSCs is halted by the PRC2 and 

YY1 complex and HDACs (Fig. 4a), which interact with 
chromatin through association with transcription factors 
and methyl MBD proteins [131, 136–139]. In contrast, 
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MYF5 repression and MYOD repression occur not only 
through the PRC2 complex and removal of acetylation 
marks carried by HDACs, but it is also induced by the 
SUV39H1-driven addition of H3K9me2/3. The expres-
sion of MYOD is furthermore negatively regulated by 
a complex array of proteins that contains: an inhibi-
tor of differentiation (ID), the NAD-dependent histone 
deacetylase activity of Sirtuin 2 (Sir2) [140], a histone 
acetyltransferase PCAF, as well as the myocyte enhancer 
factor-2 (MEF2), which also plays a role in recruiting 
HDACs, and Suv4-20h1/h2 (Fig.  4a) [141, 142]. Impor-
tantly, SCs deficient in Suv4-20h1/h2 and its associated 
H4K20me2/3, have a strong reduction of heterochro-
matin, which leads to the abnormal regulation of Myod 
expression, premature activation of SCs, and impaired 
long-term skeletal muscle regeneration [143].

Interestingly, the total levels of PRC2, EZH1, and EZH2 
subunits differ during myogenesis [137, 144]. Studies in 
mice have shown that inactivation of the Ezh2 subunit in 
SCs results in a lower number of these cells and dimin-
ished regenerative potential following muscle-induced 
injury, attributed to the failure of SCs to proliferate and 
self-renew [136, 145]. In contrast to the well-defined 
functions of EZH2, the role of EZH1 is still unclear in 
QSCs [137].

Noncoding RNAs
miRNAs also maintain the specific epigenetic state of 
chromatin, necessary to keep SCs in quiescence. Castel 
et al. [145] reported a massive downregulation of miRNA 
expression during activation of QSCs isolated from mice. 
Similarly, others indicated that miRNAs have higher 
expression in QSCs compared to ASCs. This indicates 
that the quiescent state of SCs is actively suppressed by 
miRNAs [145]. Specifically, miR-195/497 and miR-489 
as well as miR-27b, miR-489, miR-31, and miR-195/197 
were identified as key regulators of the SC transition in 
these two phases [146]. Interestingly, the above obser-
vations based on experiments in mice are contradictory 
to the conclusion of Koning et  al. [147], who observed 
that in human QSCs all miRNAs are downregulated and 
therefore have minimal regulatory activity. Other miR-
NAs that were indicated in regulating SC quiescence in 
adult resting muscles are miR-127 and miR-379. It was 
shown that their robust expression corresponds to an 
increase in Pax7 expression and reduced commitment 
towards differentiation [145].

A recent increase in interest in the field of lncRNA 
yielded  a few reports that indicate the involvement of 
these molecules in QSCs. Particularly, high expression 
of lncRNA H19 was noted, indicative of its involvement 
in the maintenance of the QSC pool [148]. Further-
more, lncRNA, named Uc.283+ A, might be another key 

regulator of quiescence, as it can block the formation of 
miR-195 [149], which, as mentioned above, is needed to 
maintain the undifferentiated state of SCs.

Epigenetic control of SC activation and myoblast 
proliferation
In response to damage, QSCs undergo activation and 
divide. Symmetric divisions lead to self-renewal of 
PAX7+/MYF5-/MYOD-/MYOG- QSCs (Fig.  1b) [150]. 
In contrast, the asymmetric division results in one cell 
that returns to the quiescent state (PAX7+/MYF5-/
MYOD-/MYOG-), while the other (PAX7+/MYF5+/
MYOD+/MYOG-; myoblast) proliferates, differenti-
ates, and fuses to form multinuclear myotubes [150]. 
In this context, myoblasts produce regulatory proteins, 
including MRFs, such as MYF5, MYOD (required for 
myoblast specification) (Fig.  4b), as well as MYOG and 
MRF4 expressed in the early and subsequent stages of 
differentiation, respectively (Fig.  5a, b). It is worth not-
ing that the proper expression of MYOD and MYOG 
depends on the phosphorylation state of MEF2 (Figs.  4 
and 5a) [151]. Ultimately, during terminal differentiation, 
proteins characteristic for mature skeletal muscle such 
as myosin heavy chain (MYHC), creatine kinase M-type 
(CKM), and α-actinin 1 (ACTN1) are generated (Fig. 5c) 
[152–154].

During symmetric and asymmetric divisions of QSCs, 
the PAX7 promoter is active, holding transcription per-
missive chromatin marks by the action of the TrxG 
complex (Fig.  4a) [155]. The study by von Maltzahn 
et al. [156] has revealed that PAX7 is a crucial player in 
the transcriptional regulation of SCs, as in the Pax7-
deficient mice the population of SCs was completely 
absent, leading to muscle atrophy and premature death. 
This phenotype might partially stem from the fact that 
PAX7 is involved in the repressive regulation of MYOD 
by increasing expression of Id in cells undergoing self-
renewal following asymmetric division [157]. Interest-
ingly, PAX7 also triggers the synthesis of MYF5 in cells 
committed to myogenesis. Specifically, upon CARM1-
mediated methylation of multiple arginine residues in the 
N terminus, PAX7 recruits TrxG to regulatory enhancers 
and the proximal promoter of MYF5 through direct inter-
action with MLL1/2 HMT (Fig. 4b) [158–160]. This acti-
vation occurs via PAX7 binding to different sites in the 
MYF5 promoter in a two-step manner. First, PAX7 binds 
to a site located in the enhancer marked by H3K4me2 
[161], and then a strong H3K4me3 is induced, estab-
lishing a transcriptionally active domain. In addition to 
PAX7 and MYF5, proliferating myoblasts express MYOD, 
which inhibits the cell cycle and induces myoblast differ-
entiation. In this context, MYOD expression starts with 
the detachment of HDACs and the PRC2 complex, and 
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through the involvement of TrxG (H3K4me3), which is 
recruited by phosphorylated MEF2, as well as SRF, which 
binds to the serum response element (SRE) [162, 163]. As 
a consequence, the PCAF-p300/CBP and SWI/SNF chro-
matin remodeling complexes bind to the MYOD pro-
moter and initiate transcription (Fig.  4b). Additionally, 
noncoding miRNAs are also involved in myoblast prolif-
eration. For instance, miR133a enhances the proliferation 
of SCs by repressing the SRF (Fig. 7a) [164].

Epigenetic control of myoblast differentiation
The ability of myoblasts to differentiate into functional 
multinucleated myofibrils requires coordinated changes 
in the expression of muscle-specific genes [165]. The 
MYOD levels are highest at the end of myoblast prolif-
eration (Fig. 4b) and in the initial stage of differentiation 
(Fig.  5a) as a result of PAX7 repression via H3K27me3 
catalyzed by PRC2 (YY1-EZH2 complex) (Fig.  5a) [157, 
166, 167]. Simultaneously, the high content of MYOD 
contributes to an increase in the production of MYOG 
(Fig.  5a), which in return inhibits MYF5 expression by 
repressive H3K27me3 marks (YY1-EZH2 complex and 
other unknown factors) (Fig.  5a) [168]. Furthermore, 
the combined action of MYOD and MYOG leads to the 
expression of genes characteristic for late differentiation, 
such as MRF4 (Fig.  5b), which allows for the formation 
of muscle fibers [169], and then, the MYOD and MYOG 
levels decline (Fig.  5b) [170]. In mature myofibers, the 
level of MRF4 remains high [171], and proteins charac-
teristic for mature skeletal muscle such as MYHC, CKM, 
and ACNT1 are generated (Fig. 5c) [152–154].

Removal of repressive epigenetic marks
During differentiation, HDACs leave the promoters of 
muscle-specific genes, e.g., Myog, to enable the recruit-
ment of transcription factors such as phosphorylated 
Mef2 and Myod, which in turn recruit the SWI/SNF chro-
matin remodeling complex and HATs leading to active 
transcription (Fig.  5a) [172]. Several mechanisms are 
known that allow HDACs to leave the gene promoters, 
including the reduction of their expression [172]. More 
specifically, upon myoblast differentiation, the disrup-
tion of the MYOD-HDAC I complex is observed [173] 
and the nuclear-to-cytoplasmic translocation of HDAC 
II occurs, thereby releasing the inhibitory constraints of 
MEF2, which activates the expression of muscle-specific 
genes [141, 174]. Additionally, upon reception of the dif-
ferentiation-promoting signals, the NAD+/NADH ratio 
decreases, and as a consequence, inhibition of HDAC 
III (SIRT) and an increase in PCAF-p300/CBP complex 
activity occurs, which induces acetylation of histones in 
genes, such as MYOD (Figs. 4b, 5a) and MEF2 [175].

Activation of MYOG is also dependent on decreases in 
the PRC2 HKMT activity [176]. The total levels of PRC2 
decrease significantly as myogenesis progresses, and 
correspondingly, the H3K27me3 mark is lifted from the 
MYOG promoter [176]. Additionally, it was also noted 
that PRC2-EZH1 replaces PRC2-EZH2 on the MYOG 
promoter (Fig.  5a), a process that is necessary to guar-
antee its activation in post-mitotic myotubes signified 
by the fact that the depletion of EZH1 negatively affects 
muscle differentiation and the ability of MYOD to regu-
late MYOG [177]. The Ezh2 to Ezh1 switch has been 
attributed to the mitogen- and stress-activated protein 
kinase 1 (MSK1)-mediated phosphorylation of histone 
H3 at serine 28 (H3S28ph) on, among others, the Myog 
regulatory region promoter [177].

Moreover, the loss of repressive histone marks from 
MYOG is also due to the removal of trimethylation of 
H3K27 by ubiquitously transcribed X chromosome 
tetratricopeptide repeat protein (UTX) activity (Fig. 5a), 
which belongs to the family of JmjC HDMs [178]. 
UTX acts in complex with several proteins, including 
mixed-lineage leukemia 4 (MLL4), the HMT subunit of 
TrxG [179, 180]. In turn, the removal of the repressive 
H3K9me2/3 marks from the Myog promoter [181] is cat-
alyzed by HDM—JHDM2A (KDM4A) that also belongs 
to the JmjC family (Fig.  5a) [182] as underlined by the 
study revealing that knockdown of this enzyme leads 
to the significantly decreased levels of Myog expression 
[181]. Summarizing, the coordinated PRC2-EZH2 and 
PRC2-EZH1 switches as well as the activity of specific 
enzymes work together to remove inhibitory marks from 
the promoters of muscle differentiation-specific genes.

Addition of permissive epigenetic marks
MYOG activation is initiated upon MEF2 phosphoryla-
tion and its association with the ASH2L and MLL2 sub-
units of TrxG. This complex then binds to the MYOG 
promoter, catalyzing the H3K4me3 mark (Fig.  5a). Tri-
methylation of H3K4 is also catalyzed by another HMT, 
SET7 (Fig.  5a), as underlined by siRNA knock-down 
experiments [183]. Apart from the acquisition of permis-
sive histone marks, transcription initiation also requires 
the concerted recruitment of the chromatin remodeling 
complex SWI/SNF (Fig.  5a). The complex facilitates the 
binding and formation of the RNA polymerase II preini-
tiation complex and transcriptional elongation [184, 185] 
through recognition of acetylated lysines on histone tails 
by ATPase subunits BRG1 or BRM [186]. Interestingly, 
MYOD physically associates with the SWI/SNF complex 
on regulatory elements of MYOD-target genes, including 
MYOG, ensuring their active transcription (Fig. 5a) [187].

The combined action of MYOD and MYOG leads to the 
expression of genes characteristic for late differentiation, 
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such as MRF4 (Fig.  5b), which allows for the formation 
of muscle fibers [169]. In this context, the permissive 
MRF4 marks are catalyzed by TrxG (H3K4me3) and by 
the PCAF-p300/CBP complex (acetylation). In the late 
differentiation, the levels of MYOD and MYOG decrease 
in response to the G9a HKMT-mediated H3K9me2 mark 
[188], the H3K27me3 addition by PRC2 (YY1-EZH2 
complex) and probably due to other undiscovered factors 
(Fig. 5b). Conversely, the level of MRF4 is maintained at 
a high level [189] and proteins characteristic for mature 
skeletal muscle such as MYHC, CKM, and ACTN1 
are generated (Fig. 5c) [152–154].

Noncoding RNA
miRNAs, including muscle-specific miRNAs (myomiRs), 
are one of the most important players orchestrating the 
processes of myoblast proliferation and myogenic differ-
entiation [190]. In particular, myomiRs miR-1 and miR-
206 target a subunit of DNA polymerase alpha complex, 
thus promoting differentiation by DNA synthesis inhi-
bition. Other miRNAs involved in myogenesis involve, 
e.g., miR-29, a negative regulator of YY1 [191], or miR-
214 [192] and miR-26a [193] that play crucial roles in the 
repression of PRC2 by targeting the Ezh2 mRNA. More-
over, miR-206 and miR-29 negatively regulate HDAC4 
expression [194] and, hence, reduce the total levels of 
HDACs and in turn MYF5 as well as MYOG [195]. On 
the contrary, some of the described miRNAs are regu-
lated by myogenic transcription factors that play pivotal 
functions in myogenesis. Specifically, MYOD overexpres-
sion translates into an increased concentration of miR-
206 and enhanced myoblast differentiation capacity due 
to the MYOD direct binding to the miR-206 promoter 
[196]. Also, increasing amounts of MYOG and MYOD 
were found in regions upstream of miR-133, miR-1, 
and miR-206 [197], which suggests the involvement of 
MYOG and MYOD in the regulation of these miRNAs.

LncRNAs have been also shown to regulate myogenic 
differentiation. For instance, lncRNAs myogenic differ-
entiation 1 (lncMyoD) is activated by MyoD [198]. Upon 
myoblast differentiation, lncMyoD accumulates and 
interacts with Igf2 mRNA-binding proteins (IMPs) to 
inhibit genes promoting myoblast proliferation, such as 
cyclin G1 (Ccng1) or c-Myc. As a result, myoblasts can 
exit the cell cycle and differentiate [198]. Another exam-
ple is the long intergenic noncoding RNA activator of 
myogenesis (lincRAM), whose expression is also regu-
lated by MYOD [198]. However, in this case, lincRAM 
directly interacts with MYOD and enhances its activity 
by promoting the assembly of the MYOD-BAF60c-BRG1, 
SWI/SNF complex which, in turn, remodels the chroma-
tin of MYOD-target genes (e.g. MYOG), enabling their 
subsequent transcription [198]. Furthermore, recent 

data indicate that lncRNA Myoparr is an essential posi-
tive regulator of the myogenic process. It was shown that 
this MYOG promoter-associated lncRNA interacts with 
the transcriptional coactivator of MyoD, DEAD-Box 
Helicase 17 (Ddx17), and regulates binding of the latter 
to PCAF, activating MYOG transcription [199]. Addi-
tionally, lncRNA Irm is upregulated during myogenesis, 
promoting myogenic differentiation, while its inhibition 
has the opposite effect. Interestingly, lncRNA Irm blocks 
regeneration following cardiotoxin-induced muscle dam-
age in mice and regulates the expression of myogenic 
genes through direct binding to MEF2, which in turn 
mediates MYOD/MEF2 interaction with target genes 
[200]. Another lncRNA implicated in myogenic differ-
entiation involves a long intergenic non-protein coding 
RNA, muscle differentiation 1 (lncRNA lincMD1), which 
is localized in the cytoplasm and acts as a natural decoy 
for miR-133 and miR-135 [192]. Likewise, metastasis-
associated lung adenocarcinoma transcript 1 (Malat1) 
lncRNA also acts as a sponge for miR-133. Particularly, 
its presence has been associated with the inhibition of 
SRF expression that allows for myoblast terminal differ-
entiation [164].

Cell signaling control of epigenetic changes during muscle 
differentiation
The dynamic changes in the genome expression land-
scape of SCs during their activation and division as well 
as myoblast proliferation and differentiation are coordi-
nated by extracellular signals that manage multicellular 
processes in response to microenvironmental require-
ments. These signals not only regulate genome expression 
through modulating the levels of transcription factors 
but also by influencing DNA structural alterations, e.g., 
by recruiting chromatin modifier enzymes (Fig.  6) [28, 
201]. The following signaling pathways have been identi-
fied as epigenome regulators in the context of muscle dif-
ferentiation: p38 MAPK, IGF1/Pi3K/AKT, Wnt,   Ca2+/
calmodulin-dependent protein kinase (CaMK), TNFα, 
and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NFκB). Nevertheless, it is important to 
note that despite the growing number of studies, our 
knowledge is still limited and requires further explora-
tion. Furthermore, while cell signaling influences epige-
netic modifications, it can itself be tightly controlled by 
epigenetic events. As an example, the Notch pathway is 
implicated in the quiescence of SCs, the proliferation of 
myoblasts, and the transient inhibition of terminal dif-
ferentiation of myoblasts into mature myofibers. Such a 
wide range of controlled processes the Notch pathway 
owes to a variety of Notch receptors and ligands required 
to activate downstream signaling [202]. Expression of 
Notch receptors and ligands has to be precisely regulated 
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in a time- and space-restricted manner. Gene expression 
profiling and epigenetics studies performed by the Ter-
ragni et  al. [202] revealed significant hypomethylation 
and very high enrichment of 5-hydroxymethylcytosine 
in myoblasts, myotubes, and skeletal muscle at intragenic 
or intergenic regions of some Notch receptors and ligand 
genes. Their results suggest that hypomethylation and/
or hydroxymethylation of the Notch pathway genes is the 
mechanism of epigenetic regulation of Notch signaling 
activity.

Exercise or muscle injury activates SCs via Wnt sign-
aling. Wnt/β-catenin pathway modifies chromatin at the 
promoter regions of Myod and Myf5, activating their 
expression and, as a consequence, enhancing SC prolifer-
ation. In fact, Wnt signaling, which is further involved in 
the regulation of different myogenesis stages (expansion, 
proliferation-to-differentiation transition, cell motil-
ity), is under the epigenetic control of p38α MAPK [203, 
204], the most studied signaling pathway in the context of 
muscle formation. In mammals, the family of p38 MAPK 

Fig. 6 Cell signaling pathways in the epigenetic regulation of myogenesis. p38α/β MAPK, p38γ MAPK, IGF1/Pi3K/AKT, CaMK, Wnt/β-catenin, and 
nNOS signaling either inactivates (marked red) or activates (marked green) downstream targets, dependent on the stage of the muscle formation. 
The consequences following particular signaling events and the final impact on myogenesis (in italics) are listed below the name of each signaling 
pathway
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consists of four kinases, p38α, p38β, p38γ, and p38δ, all 
phosphorylated and activated by MAPK kinases (MKK). 
p38α is the most abundant isoform that was found to 
take part in the epigenetic regulation at various stages 
of muscle development and via different downstream 
mechanisms [204]. Upon SC activation, p38α/β MAPK 
signaling promotes asymmetric divisions and myogenic 
commitment via promoting the accumulation of MyoD. 
This occurs in the following manner: p38α/β MAPK 
phosphorylates MAPKAP2, which in turn inactivates, 
via phosphorylation, tristetraprolin (TTP). TTP is the 
mRNA decay factor, which in the active state promotes 
MyoD mRNA decay, leading to the maintenance of SCs 
quiescence [205].

The quiescence of SCs and their self-renewal via sym-
metric divisions is also controlled by p38γ MAPK, 
which phosphorylates Carm1, a process that prevents 
its nuclear localization and methylation of Pax7. Oth-
erwise, methylated Pax7 recruits TrxG MLL1/2 HMT 
complex to regulatory enhancers and promoter regions 
of Myf5, leading to an “open mark” H3K4 methylation 
and Myf5 expression that favors asymmetric cell division 
(Fig.  4b) [159]. In the later stage of myogenesis, Carm1 
additionally recruits SWI/SNF complex to promoters of 
muscle-specific genes like desmin (DES) or CKM [206]. 
p38γ MAPK signaling was found to contribute to the 
maintenance of SCs quiescence also via phosphorylation 
of MyoD and establishing MyoD and Suv39h1 HKMT 
on MYOG promoter, followed by methylation of H3K9, 
which induces transcriptionally repressive chromatin 
and prevents premature myoblast differentiation (Fig. 4b) 
[207]. Furthermore, p38γ MAPK activity was noticed at 
the proliferation and differentiation stages of myogenesis. 
However, its exact mechanistic involvement in the tem-
poral patterning of gene expression remains unknown in 
these processes [207].

p38α MAPK phosphorylates EZH2, which plays a 
crucial role at the stage of transition from myoblast 
proliferation to its differentiation. TNF-activated p38α 
MAPK promotes PRC2 and YY1 interaction via phos-
phorylation of PRC2 EZH2 enzymatic subunit, which 
effects in repressive chromatin in the Pax7 promoter 
region (Fig.  5a) [208]. At the onset of differentiation, 
p38 MAPK phosphorylates P18hamlet, a subunit of 
SNF2-related CBP activator protein (SRCAP). As a con-
sequence, SWI/SNF transcription-activating complex 
localizes to the MYOG promoter, which is accompa-
nied by H2A.Z histone accumulation and expression of 
muscle-specific genes [209]. However, the mechanisms 
of epigenetic control via the p38α MAPK pathway are 
much more complex. p38α MAPK influences the epi-
genetics of muscle cells via interaction with various 
transcription factors, especially MyoD and the binding 

partner for MRFs (E47) [210]. Phosphorylation of E47 
initiates the dimerization of E47 with MyoD and fur-
ther localization of this heterodimer at myogenic loci 
[211]. Additionally, MyoD binding to target genes is 
facilitated by p38α MAPK-dependent phosphorylation 
of Baf60c, which results in MyoD-Baf60c incorpora-
tion into SWI/SNF chromatin remodeling complex and 
expression of MyoD-controlled genes [187]. In differen-
tiating myoblasts, p38α/β activates Msk1, which in turn 
phosphorylates histone H4S28, implicated in Ezh2-
containing PRC2 complex displacement of MYOG 
and CKM genes. Meanwhile, PRC2-Ezh2 is replaced 
by the PRC2-Ezh1 complex, precisely activating their 
expression [177, 203]. The p38α signaling pathway also 
regulates the EZH2 levels at the early stages of mus-
cle differentiation, leading to its degradation through 
the proteasome, more specifically, by the E3 ubiquitin 
ligase Praja1 (PJA1) [212]. Transcription of MYOG or 
CKM in proliferating myoblasts is also activated via 
recruitment of Ash2L/MLL2-containing TrxG HMT 
complex by phosphorylated Mef2, a downstream target 
of the p38α/β MAPK pathway [213, 214]. This complex 
catalyzes tri-methylation of H3K4, a permissive epi-
genetic mark. Such a variety of actions allows for the 
speculation that p38α/β plays a bidirectional role in the 
proliferation-to-differentiation transition, both silenc-
ing genes responsible for proliferation and promoting 
the expression of prodifferentiation genes [204].

p38 MAPK signaling control of epigenetics is con-
vergently accompanied by IGF1/Pi3K/AKT pathway. 
IGF1-activated AKT1 and AKT2 phosphorylates the 
acetyltransferase p300, which promotes its connection 
with MyoD and PCAF acetyltransferase. This results in 
hyperacetylation of muscle gene promoters and chroma-
tin remodeling by the p38 MAPK-recruited SWI/SNF 
complex [215]. This is consistent with studies showing 
that a combination of both p300 and PCAF acetyltrans-
ferases acts as a strong activator of transcription, unlike 
PCAF alone that without the presence of p300 is just a 
moderate inducer [216]. Recruitment of HATs to mus-
cle-specific gene promoters is also induced by CaMK 
signaling. At the onset of differentiation, CaMK directly 
phosphorylates members of the class II HDACs, HDAC4 
and HDAC5, and forces them to move from the nucleus 
and release MEF2 from repressing interactions. In turn, 
MEF2 is potent to associate with HATs and promote the 
expression of muscle-specific genes [215, 217]. Another 
histone deacetylase, HDAC2 that belongs to the class I 
HDACs, loses affinity to chromatin and is released from 
specific miRNA promoters that enables their expression 
after NO-induced S-nitrosylation [218, 219]. Moreover, 
miR-133 enhances proliferation (via interaction with 
Akt pathway) [220], while miR-29 (downregulating Akt 
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signaling) together with miR-1 and miR-30 promotes dif-
ferentiation of myoblasts [220–223].

Epigenetic regulation of gene expression 
in Duchenne muscular dystrophy
Besides the well-established function as a mechani-
cal anchor between the cytoskeleton and the ECM of 
myofibers, the DGC is now considered as a scaffold for 
signaling molecules in various cell types, including mus-
cle fibers and SCs. Particularly, the absence of dystrophin 
in SCs of DMD patients has been associated with the sig-
nal transmission loss between the plasma membrane and 
the nucleus, leading to the SC aberrant epigenetic tran-
scriptional activation and impaired regenerative ability 
[224–226].

Dystrophin deficiency in muscle regeneration
Dystrophin deficiency in ASCs, primed to divide asym-
metrically, reduces the levels of the DGC and induces 
aberrant polarization of structural and signaling pro-
teins. This leads to impaired signal transduction and 
transcriptional activity in the newly generated cells [227]. 
The defects in polarization, centrosome amplification, 
and prolonged cell divisions of dystrophic ASCs have 
been attributed to the loss of dystrophin interaction with 
MARK2 [228–231] as well as downregulation and mis-
localization of another DGC component, β-syntrophin. 
Generally, β-syntrophin interacts with p38γ, modulat-
ing CARM1-mediated activation of MYF5 in the oppo-
site cell that undergoes myogenic differentiation [232], 
while dystrophin deficiency leads to impaired polariza-
tion of p38γ, enhanced phosphorylation of CARM1, and 
reduced ability of MYF5 to be activated by PAX7 [233]. 
Furthermore, in DMD, elevated levels of TNFα and NFκB 
were found to diminish the regenerative potential of SCs 
and this is connected to epigenetic silencing of Notch-1 
via hypermethylation of its promoter region [234]. What 
is more, the lack of dystrophin causes loss of nNOS 
binding sites and, as a consequence, reduces nNOS sar-
colemmal localization [235]. This results in diminished 
NO signaling and, in turn, a decrease in NO-dependent 
S-nitrosylation of HDAC2. Importantly, restoration of 
NO-signaling-dependent inhibition of HDAC2 shows 
beneficial effects in dystrophic mice [236].

A recent study uncovered a crosstalk between fibro-
adipogenic progenitors (FAPs) and the myogenic lineage, 
which sheds more light on adipocyte and myofibroblast 
accumulation in dystrophic skeletal muscle. The data 
indicate that soluble molecules released by myogenic 
progenitors activate the PI3K/Akt pathway in FAPs, 
stimulating their proliferation, while myotubes induce 
their differentiation through the secretion of pro-fibro-
genic and anti-adipogenic factors [237]. As in DMD 

patients proliferation and differentiation of myogenic 
cells are disrupted, this results in excessive FAP prolifera-
tion [237] and their transformation into fibroadipocytes. 
Altogether, these processes mediate fat deposition and 
fibrosis in skeletal muscle [238]. A few signaling path-
ways associated with these pathological alterations have 
been described. Namely, Notch-mediated modulation of 
FAP adipogenesis was found compromised in FAPs from 
the mdx mouse, an animal model of DMD, supporting 
a model whereby the synergistic cooperation of Notch 
with other anti-adipogenic signals plays essential roles in 
the regulation of FAP adipogenesis in both healthy and 
dystrophic muscle [239]. Additionally, a recent report by 
Mázala et al. [240] indicated that muscle damage in mdx 
mice contributes to an increase in TGF-β activity accom-
panied by increased accumulation of FAPs, which leads to 
muscle fibrosis. Nevertheless, it is important to mention 
that although inhibition of TGF-β signaling blocked the 
accumulation of FAPs, it did not induce muscle regenera-
tion [240, 241]. Communication between myogenic cells 
and FAPs expresses through appropriate epigenetic mod-
ifications, and FAPs are an important intervention target 
aimed at restoring the balance between skeletal muscle 
regeneration and degeneration in DMD. Specifically, 
histone deacetylase inhibitors (HDACi) are used to pro-
mote muscle gene expression and skeletal myogenesis. 
In this context, HDACi appears to selectively upregulate 
genes that are enriched in permissive H3K4me3 marks 
or marked by bivalent domains (H3K4me3/H3K27me3) 
[242].

At the epigenetic level, HDACi induce upregulation of 
MYOD and BAF60C (a subunit of SWI/SNF complex) 
and lead to the upregulation of miR-1, miR-133, and miR-
206. These in turn target the alternative BAF60 variants, 
BAF60A and BAF60B, ultimately leading to promyo-
genic differentiation and simultaneous suppression of the 
fibro-adipogenic phenotype [243]. Interestingly, Saccone 
et al. [243] demonstrated that HDACi delivery by intra-
peritoneal injection into young mdx mice promotes myo-
genic differentiation of FAPs, while such an effect was 
not observed in wild-type or old mdx mice. This indi-
cates that FAPs may support the activity of SCs or pro-
mote fibro-adipogenic degeneration and that the latent 
FAP myogenic phenotype may be induced in response to 
regenerative signals.

Concomitantly, fibrosis can be stimulated not only 
by FAPs but also by miRNAs, e.g., miR-21 and miR-29 
that play opposing roles in DMD muscle fibrosis [244]. 
MiR-21 is involved in the pro-fibrotic effects induced by 
TGF-β treatment [245], and conversely, miR-29 down-
regulates the expression of ECM components such as 
collagen and elastin [246]. In particular, miR-29 is down-
regulated in mdx mice, a process that has been linked to 
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fibrosis and impaired muscle regeneration [246]. At the 
epigenetic level, miR-29 promotes myogenesis by direct 
inhibition of a negative regulator of muscle genes, YY1 
[191], as also shown by Zanotti et al. [244] (Fig. 7). The 
other miRNA involved in the pathogenesis of DMD is 
miR-206, which targets utrophin mRNA (a paralog of 
dystrophin) and whose appropriate concentration in skel-
etal muscle could inhibit the development of DMD [247, 
248].

Epigenetic therapies in Duchenne muscular 
dystrophy
Myogenesis is coordinated by a complex set of epige-
netic mechanisms that include DNA methylation, his-
tone modifications, and rncRNA expression, and as such, 
targeting epigenetic modifiers is a promising pharma-
cological approach, opening new therapeutic avenues in 
muscle diseases. Particularly in DMD, one could envision 

changing the epigenetic status of SCs or myocytes to 
increase their regenerative potential.

Altered cell signaling poses a wide range of potential 
therapeutic strategies for DMD. Some pharmacologi-
cal therapies are based on modulation of cell signaling, 
e.g., NO administration, stimulation of IGF-1, inhibi-
tion of TGFβ, or modulation of NFκB and TNFα path-
ways. However, changes in signaling pathways entail a 
risk of undesired side effects as distinct signaling path-
ways are differently activated depending on the mus-
cle type [249] and differentiation stage. For this reason, 
epigenetic drugs aiming to modulate targets of signal-
ing pathways seem to be a safer therapeutic approach 
[250]. Pharmacological inhibition of HDACs by HDACi 
enhances histone acetylation in the promoters of mus-
cle-specific genes leading to their increased expression 
(Fig. 7b) [251]. However, it should be noted that HDACi 
acts systemically, affecting acetylation, and thus increases 

Fig. 7 Dystrophin-nNOS signaling in epigenetic control of muscle differentiation. a The dystrophin-nNOS signaling regulates the epigenetic profile 
of myogenesis via S-nitrosylation of HDAC2 (class I HDAC), which affects gene expression through changes in histone acetylation. miR-221/222 
are involved in the inhibition of cell cycle proteins and miR-222 targets β-syntrophin, while miR-31 temporarily targets dystrophin. Transcription 
of miR-1 and miR-133 is controlled by the HDAC2 S-nitrosylation state, regulated by nNOS activity. Also, miR-133 targets SRF during proliferation, 
which in a self-regulating manner promotes miR-133 expression, and miR-29 is coregulated by the HDAC2 S-nitrosylation state and YY1, while 
miR-206 is regulated by MRFs and the HDAC1 activity, and supports cell cycle inhibition by targeting PAX7. b In DMD, the epigenetic differentiation 
network is disturbed due to the absence of dystrophin-α/β-syntrophin-nNOS signaling and interrupted HDAC2 S-nitrosylation. As a consequence, 
a decrease in the levels of miR-133/1 and miR-29, followed by inhibition of muscle differentiating genes and ROS generation is observed. Also, 
diminished amounts of miR-29 levels correlate with an increase in collagen and fibrotic tissue. The miR-206 level is higher, resulting in an imbalance 
between proliferative and differentiated states. Additionally, miR-144 and miR-223 are also observed following an increase in inflammation 
and muscle degeneration. miRNA and protein names marked in bold and grey indicate their upregulation and downregulation, respectively; 
black arrows mark activation while red and grey blunt lines inhibition and reduction in inhibition, respectively. HDACi targeting HDACs and the 
corresponding processes are marked in yellow boxes
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the expression of many genes. Indeed, HDACi has been 
associated with side effects such as nausea, neutropenia, 
thrombocytopenia, or ventricular arrhythmia [252].

Iezzi et  al. [253] reported enhanced histone acetyla-
tion in the regulatory elements of Myod in wild-type 
myoblasts following HDACi treatment [253]. Moreover, 
HDACi delivery to myoblasts before the onset of differ-
entiation upregulated Myf6 and Myog [254]. Interestingly, 
HDACi also increased follistatin expression [255], which 
downregulates myostatin, a major inhibitor of skeletal 
muscle regeneration [256, 257], and increased myoblast 
fusion [258]. In all, the results obtained in wild-type myo-
blasts highlight the potential of HDACi as a treatment 
having a positive effect on muscle regeneration in DMD.

HDACi ITF2357 (Givinostat) is the first epigenetic 
drug tested in preclinical studies in mdx mice [255, 259] 
and clinical trials [260]. Preclinical studies revealed that 
after 3.5  months of Givinostat treatment, mdx mice 
exhibited increased myofiber mass and size as well as 
restored muscle force to the levels observed in wild-type 
mice. At the same time, a decrease in the cellular inflam-
matory infiltrate, reduction in the formation of fibrosis, 
and accumulation of fat tissue were observed [259]. In 
another preclinical study, Givinostat alleviated the mor-
phological and functional phenotypic consequences of 
dystrophin deficiency in mdx mice [255]. The success of 
these studies paved the way for I/II clinical trials with 
children affected by DMD (ClinicalTrials.gov Identi-
fier: NCT01761292) [260]. Phase I and phase II clinical 
trials were conducted on 20 boys aged 7 to < 11  years. 
The current results indicate that long-term (over 1 year) 
treatment of Givinostat results in an increased fraction 
of muscle tissue as well as a decreased amount of fibrotic 
tissue and also reduced necrosis and fatty replacement 
[260] compared to untreated boys aged 7 to 10  years 
[261, 262]. Summarizing, Givnostat is the first pharmaco-
logical treatment shown to produce beneficial histologi-
cal effects in muscle samples from DMD patients [260]. 
Based on these promising results, the clinical trial has 
been extended to the III phase (ClinicalTrials.gov Iden-
tifier: NCT03373968). Besides, one more clinical trial is 
currently underway to evaluate the efficacy and safety 
of Givinostat in ambulant DMD patients (6 to 17 years) 
(ClinicalTrials.gov Identifier: NCT02851797).

Trichostatin A (TSA) is another promising HDACi 
used to enhance myogenic regeneration. For example, 
in wild-type myoblasts (murine and human origin), TSA 
increased their fusion and favored myogenic differentia-
tion but without leading to hypertrophy (fibrosis caused 
by an increased amount of fat components) of preformed 
myotubes [253, 254]. Besides, intraperitoneal TSA deliv-
ery to mdx mice increased utrophin expression and 
improved the structure and function of skeletal muscles 

[263]. TSA also ameliorated pathological alterations in 
a zebrafish model [264], which is an outstanding model 
for screening and evaluating novel drug therapies, e.g., 
in DMD [265]. In a recently published study, the authors 
performed a pilot screen of the commercially available 
Cayman Chemical Epigenetics Screening Library to iden-
tify epigenetic molecules that could improve muscle phe-
notype in the DMD zebrafish model. Interestingly, they 
proved that a novel combination of HDACi drugs, oxam-
flatin, and salermide significantly rescued muscle degen-
eration [266]. In particular, oxamflatin is an HDACi that 
inhibits HDACs classes I and II and is chemically similar 
to TSA. On the contrary, salermide belongs to a class III 
HDACi, which inhibits the NAD+-dependent deacety-
lases SIRT1 and SIRT2 [267] and represents a new class 
of HDACi in DMD treatment.

Conclusion
DMD is a quickly progressing and devastating genetic 
disorder. A medication that would alleviate the primary 
symptoms of the disease, i.e., the proper functioning of 
skeletal muscles and their regeneration, is of utmost 
need. In this review, we discussed the interplay of vari-
ous factors that define the specific state of epigenetic 
homeostasis and contribute to the progression of DMD 
in skeletal muscles. The described studies show that myo-
genesis is strictly controlled by interdependent epige-
netic pathways; however, it is also characterized by high 
cellular plasticity, amenable for therapeutic approaches 
altering the epigenetic status of chromatin. Particularly, 
HDACi delivery has proven to be an exceptionally effec-
tive strategy for restoring the regenerative ability of dys-
trophic muscles. Although further research is needed 
in this field, the outcome of the most recent therapeutic 
advances gives patients hope for a treatment that would 
significantly alleviate their condition.
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