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Abstract: Protoplasts, which lack cell walls, are ideal research materials for genetic engineering. They
are commonly employed in fusion (they can be used for more distant somatic cell fusion to obtain
somatic hybrids), genetic transformation, plant regeneration, and other applications. Cotton is grown
throughout the world and is the most economically important crop globally. It is therefore critical
to study successful extraction and transformation efficiency of cotton protoplasts. In the present
study, a cotton callus protoplast extraction method was tested to optimize the ratio of enzymes
(cellulase, pectinase, macerozyme R-10, and hemicellulase) used in the procedure. The optimized
ratio significantly increased the quantity and activity of protoplasts extracted. We showed that when
enzyme concentrations of 1.5% cellulase and 1.5% pectinase, and either 1.5% or 0.5% macerozyme
and 0.5% hemicellulase were used, one can obtain increasingly stable protoplasts. We successfully
obtained fluorescent protoplasts by transiently expressing fluorescent proteins in the isolated proto-
plasts. The protoplasts were determined to be suitable for use in further experimental studies. We also
studied the influence of plasmid concentration and transformation time on protoplast transformation
efficiency. When the plasmid concentration reaches 16 µg and the transformation time is controlled
within 12–16 h, the best transformation efficiency can be obtained. In summary, this study presents
efficient extraction and transformation techniques for cotton protoplasts.

Keywords: protoplasts; cotton; transformation efficiency; enzyme

1. Introduction

Methods for functional genomics research have developed rapidly in recent years, and
researchers can now clone and functionally analyze new genes using various molecular
biology techniques. Researchers commonly determine the biological function of a gene by
overexpressing or knocking out the gene. However, stable genetic transformation in com-
mon crops requires a great deal of time and effort, usually requiring at least three months
in Oryza sativa [1], eight–ten months in maize [2], and more than a year in cotton [3]. Tran-
sient expression platforms have the potential to break through this bottleneck [4]. As the
name indicates, transient expression platforms rely on short-term expression of transgenes
in a species of interest without integration of transgenic cassettes into the host genome.
An ideal transient expression platform should be technologically simple, quick, low-cost,
robust, high-throughput, and have high transformation efficiency. It should also provide
a means of assessing the efficiency of expression. Many transient expression platforms
for crop species currently rely on the soil bacterium Agrobacterium tumefaciens to deliver
expression cassettes into plant nuclei via transfer (T)-DNA [5–7]. Although these methods
can provide suitable levels of transgene expression in planta, they are low-throughput and
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often require mature plant tissue, increasing the time and growth space required to acquire
data. Moreover, infection by A. tumefaciens can induce widespread changes in gene expres-
sion in the host, which may influence the dynamics of transgene expression [8]. Another
approach is the bombardment of plant tissue with DNA-carrying microprojectiles [9,10],
but such procedures require sophisticated equipment, are low-throughput, and can be
expensive due to the high cost of DNA microcarriers. Plant protoplast transformation has
also been widely used, and this method offers many advantages over other techniques. It
does not require sophisticated equipment, allows for high-throughput screening, and is
relatively inexpensive, quick, and robust. In addition, protoplasts are routinely isolated
from young tissues (7–10-day-old seedlings), reducing the required growth space and time.
In vivo transient protoplast transfection is an effective tool for studying gene expression,
metabolic pathways, and molecular biology. Although protoplasts can be isolated from
cell suspension culture or germinating seedlings, preparation of those donor tissues can
be less efficient, and the process is usually time-consuming and laborious. Protoplasts
have been critical for studying many aspects of plant biology, including hybridization,
chloroplasts, and plant defense mechanisms [11]. Protoplast-based transient expression
assays are convenient because they allow for rapid and high-throughput analysis of gene
expression, subcellular localization, protein activity, and protein–protein interactions [12].
Transient expression systems have been used in rice, Panicum virgatum L. [13], barley [14],
grapevine [11], wheat [15], ryegrass [16], and Arabidopsis [17,18].

Cotton is one of the most economically important crops worldwide, providing natural
fibers to textile industries around the globe [19]. Although cotton fiber is the most important
raw material in the world for textiles, its complex genome and specialized metabolites
have presented challenges in molecular biology research [20]. At present, the pollen
tube pathway and Agrobacterium-mediated transformation are the most commonly used
methods for cotton genetic transformation, but the transformation efficiency of both is very
low [3]. Protoplast isolation is more challenging in cotton than in other species due to the
high levels of polysaccharide and polyphenol characteristics. In the majority of molecular
biology experiments involving cotton, Arabidopsis thaliana protoplasts are substituted for
cotton protoplasts despite their vastly different genetic origins.

Due to the high research value of cotton and the low transformation efficiency, an easy
and efficient transient transformation method is urgently needed to overcome research lim-
itations and to facilitate the functional characterization of cotton genes. In this experiment,
an extraction protocol was developed in cotton with an optimal ratio of enzyme solutions
(cellulase, pectinase, macerozyme, and hemicellulase) to extract cotton callus protoplasts.
The principle of single-variable research was used to separately test the concentration of
each enzyme while the concentrations of the other three were kept constant. A gradient test
was performed, and the number and activity of extracted protoplasts were measured. One
combination of enzyme solutions performed significantly better than the others, yielding a
suspension of 3.0 × 106 protoplasts per mL with activity above 97%.

2. Results
2.1. Effects of Different Enzyme Concentrations on Protoplast Extraction

In this study, the principle of single-variable experimentation was adopted, keeping
the concentration of three enzymes constant and testing a gradient (0%, 0.5%, 1%, and
1.5%) of the fourth (variable) enzyme (Table 1). The experimental protocol is shown in
Figure 1. Extracted protoplast number and viability were used to determine the optimal
concentration of each enzyme.

The number of protoplasts increased with the increase in cellulase concentration; at
1% cellulase, the number of protoplasts nearly doubled compared to the samples extracted
with 0% or 0.5% cellulase. The yield and activity were both highest when the cellulase
concentration was 1.5% (Figures 2a and 3a). The optimal protoplast extraction was therefore
achieved with 1.5% cellulase.
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Table 1. The concentration of four enzymes used in different groups.

Group Cellulase Pectase Macerozym Hemicellulase

Group 1 0 1 1 1
Group 2 0.5 1 1 1
Group 3 1 1 1 1
Group 4 1.5 1 1 1
Group 5 1 0 1 1
Group 6 1 0.5 1 1
Group 7 1 1 1 1
Group 8 1 1.5 1 1
Group 9 1 1 0 1
Group 10 1 1 0.5 1
Group 11 1 1 1 1
Group 12 1 1 1.5 1
Group 13 1 1 1 0
Group 14 1 1 1 0.5
Group 15 1 1 1 1
Group 16 1 1 1 1.5
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Figure 1. Schematic illustration of protoplast isolation protocol.

Very few protoplasts were extracted with 0% pectinase, clearly indicating the im-
portance of pectinase in this extraction. The number of protoplasts increased with the
increase in pectinase concentration. There was not a significant difference in the number
of protoplasts extracted with 0.5% vs. 1% pectinase, but a concentration of 1.5% pectinase
greatly improved the number of protoplasts extracted (Figure 2b). Protoplast activity was
comparable at 0.5%, 1%, and 1.5% pectinase (Figure 3b). Therefore, the extraction was best
with 1.5% pectinase.
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tions of enzymes. Comparisons of protoplasts extracted with solutions containing different concentrations
of (a) cellulase, (b) pectinase, (c) macerozyme, and (d) hemicellulase. Scale bars = 100 µm.
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Figure 3. The number and activity of protoplasts extracted with solutions containing different
concentrations of enzymes. Graphs show the number and activity of protoplasts isolated with
solutions containing different concentrations of (a) cellulase, (b) pectinase, (c) macerozyme, and
(d) hemicellulase.

The number of extracted protoplasts was highest when the macerozyme concentration
was 0.5%, with nearly three times as many protoplasts extracted compared to the samples
extracted with other concentrations of macerozyme (Figure 2c). Protoplast activity was also
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highest at 0.5% and decreased with increased macerozyme concentration (Figure 3c). Thus,
the optimal extraction was achieved with 0.5% macerozyme.

The number of protoplasts extracted was not significantly different among the four con-
centrations of hemicellulase, but the number of protoplasts was slightly higher at 0.5%, 1%,
and 1.5% (Figure 2d). Protoplast activity reached a peak at 0.5% hemicellulase, and the number
of living protoplasts decreased with the increase in enzyme concentration (Figure 3d). The
extraction effect was therefore optimal when the concentration of hemicellulase was 0.5%.

2.2. Effects of Combined Varied Enzyme Concentrations on Protoplasts

Based on the above experiments, we determined that under a constant concentration
of the other three enzyme solutions, the optimal concentrations of each enzyme in terms of
yield and activity were 1.5% cellulase, 1.5% pectinase, 0.5% macerozyme, and 0.5% hemicel-
lulase. However, it was worth exploring whether extractions could obtain more protoplasts
with better activity when enzymes were combined at their optimum concentrations. We
therefore designed solutions with different combinations of enzyme concentrations for
further experimentation: solution 1 (1.5% cellulase, 1.5% pectinase, 0.5% macerozyme, and
0.5% hemicellulase); solution 2 (2.1% cellulase, 2.1% pectinase, 0.7% macerozyme, and
0.7% hemicellulase); and solution 3 (0.9% cellulase, 0.9% pectinase, 0.3% macerozyme,
and 0.3% hemicellulase). The results revealed that the combinatorial effect of the optimal
concentration of each individual enzyme was excellent, and the quantity and activity of
extracted protoplasts remained high (Figure 4a–c). When the percentage of the total enzyme
solution was increased, it was accompanied by impurities, which may have been caused
by the high concentration of enzymes (Figure 4b). When the amount of total enzyme
was reduced (maintaining the same ratio of each enzyme), impurities were significantly
reduced, but the number of protoplasts was also reduced (Figure 4c). Similarly, trypan
blue staining showed that there was no significant difference in the concentration of living
protoplasts among samples extracted with any of the three solutions (Figure 4d). The lower
enzyme concentrations may not have been enough for complete enzymatic hydrolysis. The
final enzyme concentrations used were 1.5% cellulase and 1.5% pectinase, and the best
results were obtained with either 1.5% or 0.5% macerozyme, and 0.5% hemicellulase.
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Figure 4. Microscopic examination of protoplasts treated with different concentrations of enzyme
solutions. Microscopic examination of protoplasts extracted with (a) solution 1: 1.5% cellulase, 1.5%
pectinase, 0.5% macerozyme, and 0.5% hemicellulase; (b) solution 2: 2.1% cellulase, 2.1% pectinase,
0.7% macerozyme, and 0.7% hemicellulase; and (c) solution 3: 0.9% cellulase, 0.9% pectinase, 0.3%
macerozyme, and 0.3% hemicellulase. (d) Number and activity of protoplasts extracted with different
concentrations of enzyme solutions.
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2.3. Protoplast Transformations for Subcellular Localization

Protoplasts are often used to study subcellular localization [21]. To verify whether
protoplasts extracted with this method could be used for plasmid transformations, we
selected the conventional transient expression vector pCambia1302-CaMV35S::eGFP and
expressed a nuclear localization signal fused with the mCherry gene as a marker. Pro-
toplasts could constitutively express eGFP green fluorescence and nuclear-localized red
fluorescence signals, and the two signals were successfully co-expressed (Figure 5a–d).
We also selected a membrane-localized gene, GhPIN1, for co-expression with eGFP. After
co-transforming protoplasts, we observed that the membrane-specific expression of eGFP
and membrane-localized mCherry were successfully co-localized (Figure 5e–h). To test the
transformation efficiency of other vectors, we selected the yellow fluorescent protein (YFP)
gene vector fused with the CPS4 gene (pCaMV35S::CPS4-YFP) and an ER-localized marker.
After co-transformation, we observed the YFP signal; although YFP and mCherry were
not co-localized, both were successfully transferred into protoplasts and expressed well
(Figure 5i–l). The results showed that the protoplasts extracted using our protocol were
active, could be transformed with common vectors, and could transiently express common
fluorescent signals. All of these results indicated that the obtained protoplasts can be used
for downstream genetic transformation.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 5. Subcellular localization of marker proteins. Cotton protoplasts transformed with (a–d) 

pCaMV35S::eGFP, containing mCherry as a nucleus marker; (e–h) pCaMV35S::GhPIN1-eGFP, con-

taining mCherry as a plasma membrane marker; and (i–l) pCaMV35S::CSP2-YFP, containing 

mCherry as a chloroplast marker. Scale bars = 5 μm. 

2.4. Relationship between Plasmid Concentration and Transformation Efficiency 

Many studies have posited that the number of protoplasts and the concentration and 

conformation of exogenous plasmids affect transformation efficiency. The optimal plas-

mid concentration is known to differ among plant species and transformation systems. 

We therefore tested several plasmid concentrations: 8, 12, 16, and 20 µg. Successfully and 

unsuccessfully transformed protoplasts were measured via microscopy. Notably, the 

highest number of fluorescent protoplasts was obtained when 16 μg plasmid was used 

(Figure 6a–d), as quantified by the number of protoplasts obtained (Figure 6i) and the 

transformation efficiency (Figure 6j). The results of this experiment show that the trans-

formation efficiency increased with higher plasmid concentrations and that the transfor-

mation efficiency was highest at 16 µg (35–45%). 

Figure 5. Subcellular localization of marker proteins. Cotton protoplasts transformed with
(a–d) pCaMV35S::eGFP, containing mCherry as a nucleus marker; (e–h) pCaMV35S::GhPIN1-eGFP,
containing mCherry as a plasma membrane marker; and (i–l) pCaMV35S::CSP2-YFP, containing
mCherry as a chloroplast marker. Scale bars = 5 µm.

2.4. Relationship between Plasmid Concentration and Transformation Efficiency

Many studies have posited that the number of protoplasts and the concentration
and conformation of exogenous plasmids affect transformation efficiency. The optimal
plasmid concentration is known to differ among plant species and transformation systems.
We therefore tested several plasmid concentrations: 8, 12, 16, and 20 µg. Successfully
and unsuccessfully transformed protoplasts were measured via microscopy. Notably, the



Int. J. Mol. Sci. 2022, 23, 8368 7 of 11

highest number of fluorescent protoplasts was obtained when 16 µg plasmid was used
(Figure 6a–d), as quantified by the number of protoplasts obtained (Figure 6i) and the
transformation efficiency (Figure 6j). The results of this experiment show that the transfor-
mation efficiency increased with higher plasmid concentrations and that the transformation
efficiency was highest at 16 µg (35–45%).
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Figure 6. Effects of plasmid concentration and transformation time on protoplast transformation
efficiency. Fluorescence microscope images of protoplasts transformed using different (a–d) plasmid
concentrations and (e–h) transformation times. Scale bars = 100 µm. (i) The number of fluorescent
protoplasts per unit area after transformations were performed with different plasmid concentrations
(p = 0.001). (j) Protoplast transformation efficiency per unit area after transformations were performed
with different plasmid concentrations (p = 0.001). (k) The number of fluorescent protoplasts per
unit area after transformations were performed with different transformation times (p = 0.331).
(l) Protoplast transformation efficiency per unit area after transformations were performed with
different transformation times (p = 0.123). * p < 0.05, ** p < 0.01, *** p < 0.001 (Dunn’s test).

2.5. Relationship between Transformation Time and Efficiency

We next studied the optimal transformation time for isolated cotton protoplasts. The
enzyme solution contained 1.5% cellulase, 1.5% pectinase, 0.5% macerozyme, and 0.5%
hemicellulase; 16 µg of plasmid was used as the standard concentration. The transforma-
tion times tested were 8, 12, 16, and 20 h. Successfully and unsuccessfully transformed
protoplasts were studied via microscopy. The highest number of fluorescent protoplasts
was obtained at a transformation time of 16 h (Figure 6e–i,k). There were some differences
in the number of fluorescent protoplasts and transformation efficiency among groups, but
the differences were not statistically significant. The transformation time had less influence
on transformation efficiency than plasmid concentration did. A maximum transformation
time of 12–18 h should be used to prevent protoplast rupturing.
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3. Discussion

Enzymatic hydrolysis is the primary method used for isolating plant protoplasts, and
the enzyme types and concentrations are key factors affecting the successful extraction of
protoplasts [22]. Enzymes are used in such protocols to degrade cell wall components, such
as cellulose, hemicellulose, and pectin, thereby releasing protoplasts. Therefore, different
plants require different combinations and concentrations of enzymes depending on the cell
wall composition. Cotton is an economically important crop throughout the world. With
the release of cotton genome sequence information, functional genomics methods have
developed rapidly in cotton, and many functional genes have been discovered. However,
the biological characteristics of a number of important cotton genes remain to be determined.
To date, there have been few reports involving functional verification of target genes
using transformed cotton protoplasts. Because cotton contains a high concentration of
polysaccharides and polyphenols, it is relatively difficult to perform nucleic acid, protein,
and organelle extractions. Therefore, the components and working concentrations of the
enzymatic hydrolysis solution are particularly important.

The type and concentration of enzymes should be selected according to the source
of plant material and physiological state, and the appropriate combination of enzyme
solution should be selected for different explant materials [23]. The separation of cotton
protoplasts basically adopts the method of enzymatic hydrolysis; in one study, a combina-
tion of 4.0% cellulase and 0.4% pectinase was used to separate cotton cotyledon mesophyll
protoplasts [24]. Another used 3.0% cellulase, 0.5% hemicellulase, 1.5% pectinase, and
enzymatic hydrolysis for 20 h to isolate protoplasts from six different explants [25]. Another
work used cotton cotyledons as explants, using a combination of 1.5% cellulase and 0.4%
macerozyme, and enzymatic hydrolysis for 3–12 h; they successfully isolated cotton proto-
plasts and performed gene transient expression analysis [26]. Other researchers obtained
cotton protoplasts with a yield of 1.0 × 106 mL−1 and an activity of 90% by extracting
the protoplasts of cotton cotyledons; they used a combination of 1.5% cellulase and 0.4%
macerozyme solution, but did not discuss transformation efficiency [27]. Although the
isolation of protoplasts from different cotton explants has been successful [28], the obtained
protoplasts are very easily damaged during the transformation process, resulting in the
failure of transformation. At present, there are no relevant reports on the transformation
efficiency of cotton protoplasts. In this work, we used four enzyme solutions to deal with
the properties of cotton polysaccharide and polyphenols. Through the transformation
process, the key factors were explored to greatly improve the success rate of conversion. We
systematically carried out gradient experiments one by one from callus culture, protoplast
isolation, to transformation, and optimized the entire process.

In this study, we showed that when enzyme concentrations of 1.5% cellulase and 1.5%
pectinase, and either 1.5% or 0.5% macerozyme and 0.5% hemicellulase were used, one can
obtain increasingly stable protoplasts. When the plasmid concentration reaches 16 µg and
the transformation time is controlled within 12–16 h, the best transformation efficiency can
be obtained, and 35–45% of the protoplasts can be transformed.

Through the gradient exploration of the conditions for each step of isolating and
transforming protoplasts, a highly efficient cotton callus protoplast isolation and transfor-
mation system was developed that can easily be used for protein subcellular localization
studies. This was verified by transformation with GFP, YFP, and mCherry vectors, which
demonstrated that the protoplasts isolated with this method can be used for downstream
experimental research. The establishment of a transient gene expression system in cotton
protoplasts will accelerate cotton functional genomics research and allow researchers to
rapidly identify candidate functions for target genes. By optimizing the genetic transforma-
tion of cotton protoplasts, this research lays the foundation for high-throughput analysis of
cotton genes.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Seeds were cleaned by shaking in a tube with 70% ethanol for ~10 s, then discarding
the alcohol. Hydrogen peroxide (H2O2, 30%) was then added and seeds were soaked for
2.5–3 h. Seeds were next washed by shaking in sterile water three times for ~30 s each.
After sterilization and washing, seeds were incubated in 60 mL of sterile water for ~24 h,
then placed in the culture room overnight until the seed coat burst. On a clean bench, seeds
were then placed in Erlenmeyer flasks (four seeds per flask) containing seedling medium
(MS medium with 3.3 g/L CaCl2). Seeds were incubated in the dark for 3 d, then incubated
under a 16/8 h light/dark cycle for another 3 d. After seedlings grew, cotyledons and
roots were removed and the remaining stems were placed into a Petri dish. A blade was
used to cut both ends of each stem, then stems were cut into sections ~5–8 mm in length.
Hypocotyl stem sections were then placed in the induction medium (MS medium with
3.3 g/L CaCl2, Fe3+ (2.78 g/L Fe2SO4), 30 g/L glucose, and trace vitamins (0.5 g/L VB1;
0.05 g/L VB6)) and sub-cultured until a callus was obtained.

4.2. Protoplast Isolation

For each sample, 1 g of callus tissue was weighed out and transferred with sterile
tweezers to a 50 mL Erlenmeyer flask containing 7 mL of filtered sterilized enzyme solution.
Flasks were sealed with parafilm and wrapped in aluminum foil, then shaken at 100 rpm
for 3 h at room temperature (RT) in the dark. After enzymolysis, 5 mL W5 solution
(2 mM Murashige and Skoog Medium with MES (MES) at pH 5.7 with 154 mM NaCl,
125 mM CaCl2, and 5 mM KCl) was added and the solution was gently shaken by hand to
release the protoplasts. The solution was filtered with a 40 µm cell strainer and protoplasts
were collected into a 50 mL centrifuge tube. The paper strips included on the nylon
mesh surface of the cell strainer were then washed with W5 solution 3–5 times. Samples
were centrifuged horizontally at 250× g and 4 ◦C for 5 min (with minimal acceleration
and deceleration), and the supernatant was discarded. Protoplasts were resuspended
in 2 mL of W5 solution. Samples were centrifuged at 200× g for 3 min at 4 ◦C (with
minimum acceleration and deceleration), the supernatant was discarded, and protoplasts
were resuspended in 80 µL mineral-modified glutamate (MMG) solution (4 mM MES at
pH 5.7 containing 0.4 M mannitol and 15 mM MgCl2). Resuspended protoplasts were
transferred to 1.5 mL centrifuge tubes.

4.3. Vector Construction and Plasmid Isolation

To verify whether the protoplasts isolated using this method could be used for plasmid
transformation, we fused the conventional transient expression vector pCAMBIA1302-
CaMV35S::eGFP to the membrane-localized GhPIN1 gene, the CPS4 gene (pCaMV35S::CPS4-
YFP), a nuclear localization marker, a membrane-localized marker, or an endoplasmic
reticulum (ER) localization marker. Plasmid extractions were performed with the Vazyme
FastPure Plasmid Mini Kit (#DC201–01).

4.4. Protoplast Transfection

Polyethylene glycol (PEG)-mediated transfection was performed as described by [27]
with some modifications. Briefly, PEG4000 (40% w/v) was freshly prepared in ddH2O con-
taining 0.2 M mannitol and 100 mM CaCl2 at least 1 h before transformation to completely
dissolve the PEG. Newly isolated protoplasts (100 µL) were mixed with 8–20 µg of plasmid
DNA. For subcellular localization, 8–20 µg of total plasmid DNA was added to 110 µL of
freshly prepared PEG4000. Tubes were inverted several times to mix the contents, then
the mixture was incubated for 15–20 min in the dark. W5 solution (880 µL) was added to
the tube and mixed well by inversion to stop the transformation process. Samples were
then centrifuged at 250× g for 3 min at RT and the supernatant was removed. Protoplasts
were gently resuspended in 2 mL of W5 solution. Plates were wrapped in aluminum foil
and incubated at 23 ◦C for at least 12–16 h. Protoplasts were viewed under a microscope to
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determine their condition, with healthy cells appearing full and round. Transformation
efficiency was determined by counting the number of GFP-fluorescing cells in the positive
control using a fluorescence microscope.

4.5. Microscopy

A hemocytometer was used to determine the condition of extracted protoplasts. A
cover glass was placed on the counting chamber, then protoplast suspension was dropped
on one edge of the cover glass. After the protoplast suspension penetrated the gap between
the cover glass and the counting plate and the counting chamber was filled, the number
of protoplasts in the 16 middle squares were counted. Protoplast production was then
calculated with the following formula:

protoplast # in 1 mL suspension = protoplast # in large squares × 10,000 × total
volume (V) of protoplast suspension.

Protoplast viability was measured by mixing 20 µL of protoplast suspension with 2 µL
0.4% (w/v) trypan blue (pipetting to mix evenly) and incubating at RT for 3–5 min. A drop
of the mixture was placed on a glass slide and covered with an 18 × 18 mm cover glass.
The samples were viewed under a 10x objective lens and statistics (the total number of
healthy and degraded protoplasts) were recorded for the four large squares in the corners
of the cytometer.

Protoplast activity (%) was calculated as follows:
(number of protoplasts in 1–16 middle squares/16 total number of protoplasts in

middle squares) × 100.
Average values were calculated from five fields of view; cells were excluded if they

were too small, part of an agglomerated cell mass in which the number of cells could not
be distinguished, or damaged by the transformation process.
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