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The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R0.
Here, we estimate R0 in a novel way for 121 African populations, and thereby increase the number of R0 estimates for
malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria
transmission and control in finite human populations, of size H. We show that classic formulas approximate the
expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z0(H),
but they overestimate the expected number of infected humans per infected human, R0(H). Heterogeneous biting
increases R0 and, as we show, Z0(H), but we also show that it sometimes reduces R0(H); those who are bitten most both
infect many vectors and absorb infectious bites. The large range of R0 estimates strongly supports the long-held notion
that malaria control presents variable challenges across its transmission spectrum. In populations where R0 is highest,
malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic
planning for malaria control should consider R0, the spatial scale of transmission, human population density, and
heterogeneous biting.
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Introduction

Each year, Plasmodium falciparum causes approximately 515
million clinical malaria cases [1] and over one million deaths
[2,3]. Most malaria-related mortality and a large fraction of
malaria cases occur in sub-Saharan Africa, where trans-
mission can be very intense [4]. Strategic planning for malaria
control should consider the transmission intensity of malaria,
which is described by several parasitological and entomo-
logical indices (Table 1). The intensity of malaria transmission
affects most aspects of malaria epidemiology and control,
including the age at first infection, the fraction of a
population that is infected (i.e., the parasite rate [PR]), the
frequency and type of disease syndromes, the incidence of
severe disease, the development and loss of functional
immunity (i.e., immunity that reduces the frequency and
severity of clinical symptoms), total malaria mortality, and the
expected outcome of malaria control [4–8]. Good estimates of
malaria transmission intensity are therefore necessary to
compare and interpret malaria interventions conducted in
different places and times and to objectively evaluate options
for malaria control.

The basic reproductive number, R0, has played a central
role in epidemiological theory for malaria and other
infectious diseases because it provides an index of trans-
mission intensity and establishes threshold criteria. R0 is
generally defined as the expected number of hosts who would
be infected after one generation of the parasite by a single
infectious person who had been introduced into an otherwise
naı̈ve population [9,10]. If R0 is greater than one, the number
of people infected by the parasite increases, and if R0 is less
than one, that number declines. Thus, if sustained disease

control reduces transmission intensity by a factor that
exceeds R0, the parasite will eventually be eliminated.
Alternatively, the fraction of a population that would need
to be protected to confer ‘‘herd immunity’’ and interrupt
transmission is 1 � 1/R0.
The classic formula for R0 is based on a quantitative

description of the P. falciparum life cycle [11,12] (Figure 1). It
assumes that human populations are effectively infinite and
that all humans are bitten at the same rate, but human
populations are finite and some people are bitten by vectors
more than others [13,14]. In infinite human populations,
heterogeneous biting increases R0 because those humans who
are bitten most are also most likely to become infected and
then, by infecting a large number of mosquitoes, to amplify
transmission [15,16]. Thus, in infinite human populations, the
classic formulas underestimate R0.
Classic and neoclassic (i.e., with heterogeneous biting)

formulas for R0 describe idealized populations, where each
infectious bite lands on a different host. In reality, some
infectious bites land on previously infected hosts because
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malaria transmission is local. The spatial scale of malaria
transmission is affected by vector ecology, especially the
distribution of larval habitat and host-seeking behavior,
human population density and distribution, and human
movement [17,18]. Therefore, we reconsider R0 in finite
human populations with heterogeneous biting, where some
bites reinfect humans or mosquitoes. When the number of
humans is not effectively infinite, what is the expected
number of infected hosts or vectors after one complete
generation of the parasite? How are these expectations
changed when biting is heterogeneous, and what do these
ideas imply about malaria control?

Because R0 is both an index of how well malaria spreads
and a measure of the effort required to eliminate malaria, it
would be the ideal index for strategic malaria control

planning, but it has not been routinely recorded. Previous
estimates of R0 were made with a variety of methods, and they
have a limited spatial coverage. Since each method introduces
different sources of potential error and bias, the estimates are
not directly comparable [10]. One method estimates each
parameter in the classic and neoclassic formulas [19,20]; this
is rarely done because it is technically and logistically
difficult. A second method is based on the rate of increase
in the number of human cases during an epidemic in an
uninfected and immunologically naı̈ve population [21,22].
Obviously, this method has limited application in most
African populations, where a substantial fraction of people
harbor malaria infections. Equilibrium methods, originally
suggested by Macdonald and colleagues [23] (see Dietz [10] for
a review), rely on mathematical models that describe the
relations between R0 and the population at the steady state.
The terms of R0 are rearranged into a set of indices that can
be measured in populations where malaria is endemic, so they
are most broadly applicable.
Here, we introduce new equilibrium methods for estimat-

ing R0 that consider heterogeneous biting and factors that
introduce a bias, such as sampling issues and immunity. We
have used these new ideas to estimate R0 for 121 African
populations. These estimates are based on a common
methodology and have a continental spatial coverage, so they
provide a more useful index of malaria transmission than
previous attempts, and one that is suitable for strategic
planning for malaria control.

Results

Estimating R0

Our estimates of R0 are based on two more commonly
measured indices called the entomological inoculation rate
(EIR) (E in equations), which is the average number of
infectious bites received by a person in a year, and the PR
(also called the parasite ratio) (X in equations), which is the
prevalence of malaria infection in humans. Like other
equilibrium methods, our method relies on mathematical
models that define the steady state relationships between

Table 1. Indices of Malaria Transmission

Index Description

X PR (or parasite ratio): the prevalence of infection in humans, i.e., the proportion of humans with parasites.

Y Sporozoite rate: the fraction of infectious mosquitoes, i.e., with sporozoites in their salivary glands.

ma Human biting rate: the expected number of bites by malaria vectors, per person, per day (or per year).

E ¼ maY EIR: the expected number of infectious bites per person, per day (or per year), i.e., the product of the human biting rate

and the sporozoite rate.

h ¼ bE Happenings rate: the force of infection, i.e., the per capita rate that uninfected people become infected with malaria [11].

S ¼ a/g Stability index: the expected number of human bites taken by a vector over its lifetime [25].

V ¼ ma2e�gn/g ¼ kS2e�gn Vectorial capacity: the number of infectious bites on humans that arise from all the mosquitoes that are infected by a sin-

gle person on a single day [24]. (Sometimes, cV is called the vectorial capacity.)

R0 ¼ bcV/r Basic reproductive number: under the classical assumptions.

a Biting disparity index: the squared coefficient of variation of the human biting rate [15,16].

R0 ¼ bc(1 þ a)V/r Basic reproductive number: under neoclassical assumptions (i.e., with heterogeneous biting, but infinite populations).

r Sampling bias index: the proportion of mosquitoes that become infected after biting a human divided by the proportion

of people with detected parasites.

BE Susceptibility bias index: the infectivity of mosquitoes in a naı̈ve population divided by the infectivity of mosquitoes in

an endemic population.

doi:10.1371/journal.pbio.0050042.t001

Author Summary

Each year malaria results in more than a million deaths. Controlling
this disease involves understanding its transmission. For all
infectious disease, the basic reproductive number, R0, describes
the most important aspects of transmission. This is the expected
number of hosts that can trace their infection directly back to a
single host after one disease generation. For vector-borne diseases,
such as malaria, R0 is given by a classic formula.

We made 121 estimates of R0 for Plasmodium falciparum malaria
in African populations. The estimates range from around one to over
3,000, providing much higher estimates than previously thought.
We also show that in small human populations, R0 approximates
transmission when counting infections from mosquito to mosquito,
but overestimates it from human to human.

Previous studies showed that transmission is amplified if some
humans are bitten more than others. We confirm that such
heterogeneous biting amplifies transmission counting from mos-
quito to mosquito, but it can also dampen transmission counting
from human to human. Humans who are bitten most both infect a
large number of mosquitoes and absorb many infectious bites.

What does this mean for control? When R0 is in the thousands,
eliminating malaria may seem impossible. If transmission from the
humans who are bitten the most can be targeted, however, local
elimination can still be within reach.
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indices and parameters; these are the EIR, the PR, the
vectorial capacity, V, which measures the number of
infectious bites that arise from all the mosquitoes that are
infected by a single infectious person on a single day [24], the
infectivity of humans to mosquitoes, c, and the stability index,
S, which measures the number of human bites taken by a
vector during its lifetime [25]. The classical parameters and
several malaria transmission indices are described in Tables 1
and 2. At the equilibrium, the relationship between these
indices is given by a simple formula (Methods):

V ¼ Eð1þ cSXÞ
cX

: ð1Þ

A simple relationship exists between R0 and vectorial
capacity. R0 sums vectorial capacity, discounted for imperfect
transmission efficiency, over the average infectious period
[26,27]. In a population with heterogeneous biting, where the
squared coefficient of variation in biting rates is a, R0 is
larger by the factor 1þ a, because the humans who are bitten
most amplify transmission [15,16]; we call a the index of
biting disparity. The relationship between R0, vectorial
capacity, and the other indices is given by the formula

R0 ¼
bc
r
Vð1þ aÞ ¼ E

b
r
ð1þ cSXÞ

X
ð1þ aÞ: ð2Þ

These formulas are based on the classic assumptions:
mosquito lifespan and the duration of human infections are
assumed to be exponentially distributed, and R0 is computed
for a single parasite type (for a longer discussion of the
assumptions, see the Methods).
Using equation 2, estimates of annual EIR and PR from

studies of 121 African populations [3], and parameter
estimates from other studies, we generated 121 estimates of
R0 (Figure 2). Parameter estimates for b/r and a were taken
from 91 of these studies that included only children less than
15 y old [14]. Published estimates of the stability index range
from less than one up to five [9,28]; we use the estimate S ’ 1,
at the low end of published studies. For the infectivity, we use
the value c ¼ 0.5, a number that agrees with estimates from
direct-feeding experiments [29].
The R0 estimates range from near one to more than 3,000.

The median was 115 and the interquartile range was 30�815.
These values are consistent with previous estimates, including
one estimate of 1,600 [20] in Mngeza, in northwest Tanzania,
and another of 2,000–5,000 [19] in Lira township, in central
Uganda. Had these studies considered heterogeneous biting,
they would have exceeded our highest estimates.
In an area around Madang, Papua New Guinea, where

entomological surveys have shown that annual EIR is
approximately 150 [30], and where our methods would
suggest that R0 is larger than 500, an estimate based on age
seroprevalence was R0 ’ 7. The biological basis for the large
discrepancy remains unresolved; one possibility is the strain
theory of transmission [31].

Immunity and Sampling Bias
Equilibrium methods for estimating R0 are based on the

simple assumptions of mathematical models; the difference
between these simple assumptions and variance in real
populations can introduce a large bias. When biting rates
are heterogeneous, for example, mosquitoes bite infected
humans at a different frequency than when humans are
sampled in a study. Thus, PR may be a biased measure of the
probability a mosquito becomes infected after biting a
human. In addition, the intensity of transmission at equili-
brium may be lower than it would be in that same population
without immunity; immunity would reduce the infectivity of

Table 2. The Parameters

a Human feeding rate: the number of bites on a human, per mosquito, per day. Let f denote the feeding rate, i.e., the

number of bites, per mosquito, per day, and Q the proportion of bites on humans. The human feeding rate is the pro-

duct a ¼ fQ.

b Infectivity of mosquitoes to humans: the probability that a human becomes infected from a bite by an infectious mosqui-

to. With pre-erythrocytic immunity, the infectivity of mosquitoes may depend on EIR, bE.

c Infectivity of humans to mosquitoes: the probability that a mosquito becomes infected from a bite on an infected hu-

man. Infected humans are not infectious all the time, and infectious bites transmit less than perfectly. With transmission-

blocking immunity, infectivity of humans may depend on EIR, cE.

g Death rate of mosquitoes. The probability a mosquito survives one day is p ¼ e�g, so g ¼ �ln p. The expected lifespan

of a mosquito is 1/g.

m Number of mosquitoes per human. Assuming adult mosquitoes emerge at a constant rate k, per human, then m ¼ k/g.

n Number of days required for a mosquito to complete sporogony.

1/r Expected waiting time to naturally clear a simple infection.

doi:10.1371/journal.pbio.0050042.t002

Figure 1. The Life Cycle Model and R0

The basic reproductive number, R0, is derived by computing the
expected number of vertebrate hosts or vectors that would be infected
through one complete generation of the parasite by a single infected
mosquito or a single infected human. The underlying mathematical
model, by Ross [11] and Macdonald [12] and with a slight modification
by Smith and McKenzie [27], is a quantitative description of the idealized
life cycle. This diagram follows one by Macdonald et al. [23]. The
parameters are described in Table 2.
doi:10.1371/journal.pbio.0050042.g001
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humans to mosquitoes (i.e., transmission-blocking immunity)
[29,32], or mosquitoes to humans (i.e., by clearing an infection
before the stages that infect red blood cells develop). We have
derived new formulas that consider these potential sources of
bias, and we use them to modify the previous estimates of R0.

When biting is heterogeneous and when there is some
transmission-blocking immunity, it is necessary to introduce
a new term called the sampling bias index, r, that estimates
the bias introduced by assuming that the fraction of
mosquitoes that would become infected after biting a human
is proportional to PR. r is the ratio of two proportions. The
numerator is the proportion of mosquitoes that become
infected after biting a human, in a population at equilibrium;
it is determined by EIR, by the index of biting disparity (Table
1), and by the level of transmission-blocking immunity. The
denominator is the estimated PR, the proportion of humans
that test positive in a study (Methods). Thus, the parameter r
encompasses several complex and poorly quantified pro-
cesses, including differences in the way that human popula-
tions are ‘‘sampled’’ by mosquitoes and scientists, sporadic
production of the infectious sexual stages during an infection
(PR is an estimate of the prevalence of the noninfectious
asexual stages), the reduced infectivity of humans to
mosquitoes following the development of transmission-
blocking immunity, and the sensitivity of the method used
to detect parasites in humans.

When infectivity is estimated in a population where
malaria is endemic and where there is some degree of
immunity, the average infectivity of mosquitoes and humans,
denoted bE and cE, respectively, may vary with EIR. The
relevant parameters in the formula for R0 are taken from
populations without immunity, so infectivity estimates would
be from naı̈ve populations, b0 and c0. The bias introduced by
transmission-blocking immunity is included in r. A correc-

tion for infections that are cleared before patency (i.e., before
the stages that infect red blood cells are detected) is found by
multiplying the formulas for R0 by the term BE¼ b0/bE, which
we call the susceptibility bias index.
Thus, we have a new formula for R0:

R0 ¼ E
c0b0
r
ð1þ Sr �XÞ

r �X
BEð1þ aÞ: ð3Þ

For the same 121 estimates of annual EIR and PR, we
generated new estimates of R0 based on different assump-
tions about r and BE (Figure 2). The original estimates
effectively assumed that PR is a constant and unbiased index
of infectivity (i.e., r ¼ 1) and that our estimates of
susceptibility were not biased (i.e., BE ¼ 1).
Our analysis suggests that r is a complicated function of EIR

(Figure 3; Methods). At low EIR (less than ten per year),
mosquitoes sample infected individuals more efficiently than
a stratified random sample of the population, so estimates of
PR are biased by a factor that equals the product of infectivity
and the amplification from heterogeneous biting, i.e., r ’ c0(1
þa). At moderate to high EIR (10–700 per year), transmission-
blocking immunity reduces the average infectivity of infec-
tious humans to mosquitoes, and since bites on those who have

Figure 3. The Index of Sampling Bias, r
(Top) The PR (grey line) rises monotonically with EIR. The fraction of
mosquitoes that become infected after biting a human, X̃, is initially
higher than the PR because of heterogeneous biting, but at high EIR, PR
continues to rise while X̃ remains flat without transmission-blocking
immunity (solid black line) or declines with it (dashed line).
(Bottom) Without transmission-blocking immunity, the index of sampling
bias, r, declines from near c0(1þa) to c0 (solid black line). At low EIR, the
estimates of PR from a well-designed study underestimate the
probability a mosquito becomes infected. At high EIR, without
transmission-blocking immunity, this bias becomes insignificant. At high
EIR, with transmission-blocking immunity, the PR in children substantially
overestimates infectivity (dashed line).
These graphs assume heterogeneous biting and model transmission-
blocking immunity as in equation 20, with c ¼ 0.001 (Methods).
doi:10.1371/journal.pbio.0050042.g003

Figure 2. R0 Estimates for 121 African Populations

Here, we show two different sets of estimates, plotted as a function of
the estimated EIR. The first set of estimates assumes that none of the
parameter estimates are biased by immunity or heterogeneous biting at
the equilibrium (solid circles). The second set of estimates assumes that
heterogeneous biting and transmission-blocking immunity bias param-
eters (open circles); r is as illustrated by Figure 3. Corrections for this
potential bias substantially increase the range of R0 estimates.
doi:10.1371/journal.pbio.0050042.g002
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the most immunity account for a large fraction of bites, PR
severely overestimates infectivity at high EIR.

When we assumed that transmission-blocking immunity
develops, as illustrated in Figure 3, estimates of R0 ranged
from below one to nearly 11,000, with a median of 86 and an
interquartile range of 15–1,000.

R0 in Finite Human Populations
The extremely high estimates of R0 raise the question of

this index’s interpretation in finite human populations; when
R0 exceeds the number of humans, what does R0 actually
describe? To interpret R0, we simulated transmission in small
well-mixed human populations of size H through one
complete parasite generation with heterogeneous and homo-
geneous biting (Figure 4; Methods). Let R0(H) denote the
expected number of humans who could trace an infection
back to one human, and Z0(H) the expected number of
mosquitoes who could trace an infection back to one
mosquito. (To clarify our notation, R0 is synonymous with
R0(‘), so when population sizes are effectively infinite, R0 ¼
R0(‘)¼ Z0(‘).) R0, R0(H), and Z0(H) can differ, depending on
the host population size. When these three indices don’t
differ, the assumption that populations are effectively infinite
is reasonably good. When they differ by more than 10%, we
call the populations ‘‘small.’’ Small populations are defined by
R0 and H, as well as the index of biting disparity, a, and the
stability index, S.

When the size of the human population was small and
malaria transmission was very intense, R0(H) was limited by
the number of humans; obviously, R0(H) � H. If every human
received exactly the same number of bites, some of them

would have remained uninfected, by chance. With stochastic
biting, there would be some variance in the number of bites
received by each individual, even if the expected biting rates
were uniformly distributed. Since humans received multiple
bites, this tended to increase the proportion of bites that
were absorbed by already infected humans, thereby reducing
R0(H).
When human population sizes were effectively infinite,

each infectious bite landed on a different human. In finite
populations, heterogeneous biting amplifies transmission, as
measured by Z0(H), just as it does for infinite populations,
because those who are bitten most infect a large number of
mosquitoes [15,16]. Surprisingly, heterogeneous biting re-
duced R0(H) below the expected number for homogeneous
biting, especially when R0 was large and H was low (Figure 5).
Heterogeneous biting reduced R0(H), i.e., the 20% of
individuals who were bitten most also absorbed 80% of the

Figure 4. R0, R0(H), and Z0(H) in Finite Populations

In finite populations, the number of different hosts infected through one
complete generation of the parasite differs when the counting starts
with humans, R0(H) (black circles, solid line), or with mosquitoes, Z0(H)
(grey circles, dashed line), because of the different proportion of
reinfected humans and mosquitoes (represented by boxes 1–4 with
asterisks). These expectations are computed with heterogeneous biting,
where individual biting rates differ from the average by the factor si,
called the biting weight (Methods). Box 1: for humans, a fraction of bites
come from mosquitoes that were already infected (’H/[Hþ cS]). Box 2:
when these bites arrive back on a finite human population, they are
distributed among the humans; some humans are bitten many times.
The incidence of repeat infection is higher when R0 exceeds H. Box 3:
starting with a single infectious mosquito, some fraction of humans
become infected (less than bS), possibly more than once. Box 4: this
affects the number of mosquitoes that are reinfected from biting the
humans infected by a single mosquito (less than H/[H þ bcS2]). Explicit
formulas are given in the Methods.
doi:10.1371/journal.pbio.0050042.g004

Figure 5. R0(H) and Z0(H) in Finite Populations with Heterogeneous and

Uniform Biting at Three Biting Intensities

The three biting intensities shown are for an R0 for homogenous biting
equal to 10 (top), 50 (middle), and 250 (bottom). R0(H) rises slowly to R0,
as a function of H, whether biting rates are heterogeneous (solid black
lines) or uniform (dashed lines). Surprisingly, R0(H) for heterogeneous
biting is lower than that for uniform biting, especially when H is low and
R0 is high. By contrast, Z0(H) rises rapidly to R0 as a function of human
population size, H, when biting rates are heterogeneous (dotted lines) or
completely uniform (grey lines). These effects occur at population sizes
well below those where the transmission-reducing effects of urban-
ization are evident [3].
doi:10.1371/journal.pbio.0050042.g005
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infectious bites. Thus, a larger fraction of infectious bites
were ‘‘reinfection’’ events; the transmission amplification
associated with heterogeneous biting was nullified by a
‘‘superabsorbing’’ effect when those same individuals re-
ceived most of the infectious bites.

The range of human population sizes that would be
considered ‘‘small’’ differed for Z0(H) and R0(H) (Figure 5).
Z0(H) rises to R0 much more rapidly than does R0(H), when
considered as a function of human population size, H. Some
mosquitoes become infected and return to bite the same
human again; reinfection of mosquitoes affects both R0(H)
and Z0(H). The fraction of mosquitoes that are reinfected
depends mainly on the stability index, S, the index of biting
disparity, a, and human population size. For reasonable
estimates of S and a, Z0(H) approaches R0 when the
neighborhood includes less than 100 humans (Methods).

‘‘Small’’ for R0(H) depends on the ratio of R0 to H and the
index of biting disparity. Some reinfection of mosquitoes
does reduce R0(H), but this is a relatively unimportant effect
for H . 25 (Methods). The much larger effect is reinfection of
humans. Obviously, when R0 and H are of comparable size,
repeat infection of humans substantially reduces R0(H), but
when the human population is several times larger than R0,
R0(H) ’ R0, because very few people receive multiple bites. As
a rule of thumb, R0(H) approaches R0 when H . 2R0. When
20% of people get 80% of the bites, the two measures are not
close to one another until human population sizes are much
larger: R0(H) ’ R0 when H . 100R0.

The asymmetry between R0(H) and Z0(H) as a function of R0

and H arises because of the large difference in the number of
humans infected by each mosquito and the number of
mosquitoes infected by each human. Mosquitoes have short
lives, typically 1–2 wk. The expected number of humans
infected per mosquito—cS by our assumptions—is typically
much less than three. The infectious period in humans, by
contrast, stretches out over several months. The number of
mosquitoes that bite a human during that time can range

upwards to several thousand, limited mainly by the ratio of
mosquitoes to humans. The number of mosquitoes infected
by a single human can be so large that it exceeds the number
of humans available to be bitten. When a large number of
bites are distributed back on a limited number of humans, a
substantial fraction result in reinfection.

Control in Finite Populations
The large range of R0 estimates suggests that malaria

control presents a variable challenge across Africa. At low
transmission intensities, local elimination of malaria might be
a practical goal. At the highest transmission intensities, classic
theory suggests that transmission would need to be reduced
by a factor of thousands, or that greater than 99% of hosts
would need to be protected from infection. The amplification
asymmetry that defines the relationship between R0, H, R0(H),
and Z0(H) suggests that malaria control measures set different
targets depending on the control method deployed. Here, we
consider the implications of the extreme variation in R0 for
control in finite populations with heterogeneous biting,
where a few humans might account for a very large fraction
of all infectious bites. In such populations, control measures
that target those who are bitten most will tend to dispro-
portionately reduce transmission. To explore these ideas, we
simulated malaria control.
Because of differences in the way that control measures

scale with human population size and alter transmission, we
considered three categories of malaria control: host-based,
vector-based, and mixed. Host-based methods, including
antimalarial drugs or vaccines, reduce or completely neu-
tralize transmission from hosts. Vector-based methods target
vector populations in a general way: they lower the intensity
of malaria transmission by reducing total vector density or
adult lifespan. Mixed methods include insecticide-treated
nets (ITNs) and indoor residual spraying (IRS). Like vector-
based methods, they achieve their greatest effects by killing
vectors, but like host-based methods, they are deployed
around hosts to whom vectors are attracted.
Host-based methods include chemotherapy, chemoprophy-

laxis, and vaccines. Chemotherapy to clear infections would
shorten the infectious period and reduce transmission.
Obviously, case management does reduce the number of
infectious individuals, but much larger reductions could be
achieved through active detection of asymptomatically
infected individuals followed by chemotherapy to clear
infection. Since a person can become reinfected immediately
after clearing an infection, more durable reductions would be
achieved through chemoprophylaxis that completely neutral-
izes a host’s ability to transmit. Similar effects would be also
achieved through a vaccine that prevented infection, but no
commercial vaccine for malaria is currently available or
registered for public health use.
For perfect targeting, we simulated neutralizing that

fraction of the individuals who were bitten most (Methods).
With perfect targeting, herd immunity was achieved by
neutralizing a relatively small fraction of hosts (Figure 6);
neutralizing transmission from those who are bitten most
makes the most of superabsorbing. The threshold population
coverage required to confer herd immunity increased
approximately linearly with the logarithm of R0, rising from
around 20% of the human population when R0 was 50, to
50% when R0 was 2,000, much lower than the 98% and

Figure 6. Achieving Herd Immunity with Random and Targeted

Intervention

This figure shows the relationship between R0 and the proportion of a
population that must be neutralized through chemoprophylaxis or a
vaccine if the intervention is perfectly targeted (solid lines) or random
(dashed lines), such that R0 , 1. As the population size increases (from 20
to 50 to 100), the proportion that must be vaccinated increases for
random intervention, but not for intervention targeted towards those
bitten most.
doi:10.1371/journal.pbio.0050042.g006
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99.95% coverage predicted to be necessary assuming homo-
geneous biting in infinite populations. When hosts were
randomly neutralized, much higher coverage was required to
achieve herd immunity; classic theory provided a useful
guide, although the coverage required to achieve herd
immunity was slightly lower in small populations (Figure 6).

Vector-based methods include mass spraying and other
methods that target adult mosquitoes or larvae with
pesticides or that reduce larval habitat. Our analysis suggests
that R0 provides a fairly good measure of the factor by which
transmission would have to be reduced by vector control to
eliminate malaria. In very small populations, there is some
repeat infection of mosquitoes regardless of R0, but as vector
control reduces R0, repeat infection of humans becomes
much less common.

Mixed methods merit a separate consideration from host-
or vector-based methods because their success is often

measured in terms of the proportion of hosts covered, and
the effects on vector populations are more complicated than
for purely vector-based control. Mixed methods reduce
transmission from some hosts, but some vectors successfully
feed despite ITNs or IRS, some mosquitoes are killed, and
some vectors are repelled and attempt to bite again. We
simulated targeted and random control with mixed methods
(Methods; Figure 7). Like host-based methods, ITNs and IRS
were very effective at reducing transmission when they were
targeted, but the benefits also saturated after those who
accounted for most of the bites were protected.
Despite the promise of enormous reductions in R0 through

reductions in the lifespan of vectors [27], the total reductions
in transmission from ITNs or IRS were limited. For the
parameters we considered here, ITNs or IRS did not confer
herd immunity, even with 100% coverage, for values of R0

well below our median estimate. The maximum reductions in
transmission depended on the fraction of mosquitoes that
were killed or deflected by ITNs or IRS, and there is
substantial uncertainty about these parameters under field
conditions. The maximum reductions were also affected by
the stability index, a measure of an individual vector’s
transmission efficiency. The same level of transmission can
be generated by a very large number of inefficient vectors, or
a lesser number of efficient ones. ITNs and IRS were most
effective at reducing transmission from very efficient vectors,
i.e., vector populations with a high stability index. The lower
the stability index, the lower the potential proportional
reductions in transmission.
Since it was possible to achieve most of the reductions in

transmission by targeting those who are bitten most, it might
be possible to reduce costs by targeting. A side effect of ITNs
or IRS was that the deflected bites were redistributed, so
biting increased on those members of the population who
were not protected (Figure 7). ITNs and IRS lower the risk of
infection to unprotected individuals in the surrounding
population by depleting vector populations, deflecting bites
onto nonhuman hosts, or shortening vector lifespan. Despite
the lower risk of infection overall, increased biting on
unprotected hosts could increase their risk. Our analysis
was focused on changes in R0(H) and Z0(H), so it did not
explicitly consider the risk of infection, as measured by either
EIR or PR. To evaluate these questions, a different sort of
analysis would be required.

Discussion

Estimates of the basic reproductive number (R0), the factor
by which malaria transmission must be reduced through
vector control in order to eliminate malaria, ranged from
near one to more than 3,000 in a sample of 121 African
populations. Revised estimates that considered other factors,
such as sampling biases and immunity, that are potentially
important but difficult to estimate suggest that the true range
of R0 is even larger.
To put these R0 estimates in a broader context, the highest

estimates of R0 are up to a thousand times higher than
estimates of R0 for acute, directly transmitted infectious
diseases [9]. However, R0 measures the number of new cases
through one complete generation of the parasite, not the rate
of increase in the number of cases per day. The time for
malaria to complete one generation is more than 200 d [14].

Figure 7. Changes in Transmission in Finite Populations with Heteroge-

neous Biting under Control by ITNs or IRS

(A) In a population with 20% coverage, total biting decreases, but some
bites are redistributed, so biting increases on those who are unprotected.
The baseline biting weights (solid black line) are plotted, along with the
comparable post-control biting weights after targeted (solid grey) and
random (dashed) ITN distribution or IRS application.
(B) ITNs or IRS reduce transmission more efficiently when they are
targeted. (Here, R0¼ 40, R0(H) ’ 34, and Z0(H) ’ 172.) For example, 10%
targeted coverage (blue lines) and 70% random coverage (black lines;
the solid line is the median and the dotted lines show the fifth and 95th
quantiles) reduce Z0(H) (the lines that originate at 172) by about the
same amount at the median. For these parameters, 100% coverage is
required to reduce R0(H) below one, so for higher R0 values, 100% ITN or
IRS coverage would be insufficient to eliminate malaria.
doi:10.1371/journal.pbio.0050042.g007
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During that time, diseases with an R0 of around two and a
generation time of about 10 d, such as flu, for example, would
have doubled 20 times in an effectively infinite host
population and generated a million cases. Malaria gener-
ations overlap, so the number of expected cases after one
disease generation would be higher than R0, but these
extremely high R0 values do not necessarily represent a faster
daily rate of increase for malaria compared to acute diseases
with a much smaller R0. The goals that R0 values set for
malaria control are high, but the longer generation times
imply that there is more time for control.

Strategic Planning
R0 is an important metric for strategic planning for malaria

control because it helps to set priorities and define realistic
expectations about the outcome of control. Despite the
importance of R0, it has not been commonly estimated; the new
estimates presented here increase the total number of published
R0 estimates formalaria by anorder ofmagnitude. The extremely
large range of these R0 estimates suggests that a globally defined
‘‘one-size-fits-all’’ malaria control strategy would be inefficient.
Where R0 is low, local elimination of malaria may be practical,
even optimal. Where R0 is in the thousands, malaria may resist
elimination even after heavy investments in multiple control
measures [33]. In such populations, focused research to identify
important aspects of local transmission would help to target
control and achieve larger reductions.

Mathematical modeling and R0 provide a quantitative
framework for strategic planning, one that can be modified to
suit the local micro-epidemiology [34]. Important factors for
control include the density and distribution of humans, the
distribution of larval habitat, the vector species and their
biting habits, and the seasonal patterns of transmission. Our
analysis here suggests that the size of the local human
population is also an important factor to consider, and that
different methods may be effective (or cost-effective),
depending on the distribution of humans and vectors.

Thus, an important factor in evaluating the success of
malaria control is the spatial scale of malaria transmission,
which is determined by several factors. Mosquito flight
distances may be shorter when human blood meals are close
to oviposition sites, so the spatial scale of transmission is
codetermined by human population density, the distribution
of humans and vector habitat, vector ecology, and vector
behavior [17,18]. The spatial scale is also affected by the
movement of humans. The formulas that link commonly
measured entomological and parasitological indices to trans-
mission intensity, and that correct these estimates for vector
ecology and human population density, provide obvious
opportunities for extensive mapping of malaria endemicity
to help guide and rationalize control. These opportunities are
explored in detail elsewhere [35].

Targeting Intervention
The large reductions in transmission from targeting control

are only possible if those who are bitten most can be
identified, as has been done for some vector-borne diseases
[36]. The feasibility of targeting depends strongly on the
underlying causes of heterogeneous biting. Potential causes
include mosquito aggregation around places where adult
mosquitoes emerge [17] or vectors oviposit [18]; also, some
components of breath and sweat [37] and dirty linen [38,39]

make some humans inherently more attractive to mosquitoes
[39,40]. Other causes of differential biting include the use of
bed nets, protective clothing, and repellants [41], housing
quality and design [42], pregnancy [43], alcohol consumption
[44], body size [45], and defensive behavior [46]. With research,
some of these may be exploited to identify and target those
who are bitten most, and thereby improve malaria control.
One practical idea is to target those with clinical malaria

and presumptively treat their families and nearest neighbors
with efficacious antimalarial drugs with antigametocidal
properties (i.e., that clear the infectious stages) [47] to clear
infection and reduce the local reservoir. In low transmission
areas, where a large fraction of new malaria infections result
in clinical malaria, such targeting has demonstrably reduced
transmission [48,49]. In high transmission areas, where a
lower fraction of new cases result in clinical malaria, clinical
malaria in young children may provide some indication of
where drug treatment would be most effectively targeted. In
such areas, the required reductions in transmission intensity
are unlikely to be achieved by any single control measure.
Where R0 exceeds a thousand, the additional widespread use
of ITNs and supplementary targeted IRS may be required to
achieve desired reductions in morbidity and mortality [33].
In small human populations, transmission may be effec-

tively controlled by identifying those individuals who are
most important for transmission and neutralizing their
potential to transmit malaria. For example, consider an
island that has only a few people, but many vectors. If one
additional person came ashore infected with malaria, an
epidemic would tend to ensue, if R0(H) . 1. It may not be
possible to control the epidemic with ITNs (i.e., because Z0(H)
� 1), but malaria could be rapidly eliminated by clearing the
infection from these individuals and preventing new infec-
tions with chemoprophylaxis. In large human populations,
malaria could be controlled by targeting the same fraction of
humans, but this might represent a very large number of
people, so the costs may differ dramatically relative to control
measures in small populations.
Our analysis suggests that R0 provides a reasonably good

estimate of the reductions in transmission intensity that
would be required to eliminate malaria through vector-based
control. Obviously, the decision to invest in vector-based
control depends on many considerations. Like heterogeneous
biting, the heterogeneous distribution of adult emergence
rates from larval habitats would affect the benefits of larval
control. If most of the adult mosquitoes could be eliminated
by removing a few larval breeding sites, targeting larval
habitats might produce a large gain for little effort. In the
extreme case, if all the mosquitoes emerged from a well, the
easiest solution might be to cover the well. Since the benefits
are related to the number of humans who would benefit,
vector-based control will be more cost-effective when there
are many humans. In large, urban populations, it might be
more cost-effective to target vector populations for control,
because of the simple fact that there is much less area to treat
and many more people who benefit [50].

Reiterating Basic Principles
The effectiveness of various malaria control methods

depends on the context of local transmission, but several
general principles derived from the classic modeling efforts
are germane. First, since the infectious period for malaria can
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be extremely long and a substantial fraction of the P.
falciparum reservoir resides in asymptomatic cases, the
infectious period can be shortened and the reservoir of
parasites reduced by the use of antimalarial drugs. Thus,
effective antimalarial drugs can be important tools for malaria
control as well as for treating clinical malaria, although this
does raise concerns about the spread of resistance. Second,
although the intensity of malaria transmission is exquisitely
sensitive to the mortality rate of adult mosquitoes [27],
potential reductions in transmission intensity via manipula-
tions of this parameter are limited by the fact that ITNs and
IRS are not completely efficient; the maximum benefits
depend on the fraction of mosquitoes that are killed or
repelled and on aspects of the vector populations, especially
the stability index. Because most of the reductions in
transmission come from protecting a few humans, it is far
more important to improve the killing effects of ITNs or IRS
around those who are bitten most than to improve coverage
on those who are bitten least; however, complete coverage and
improved killing effects may be necessary to reach control
goals. Finally, when host population sizes are small or
transmission is very localized, targeted neutralization may be
an extremely effective way to protect other people in the
community from getting malaria. In some places, vector
control may be an effective and cost-effective way to reduce
the burden of malaria [2], and it has had some historical
success [51], but it may not be cost-effective everywhere.

In some of the African populations described here, where
malaria transmission is very intense, no single control
measure will be sufficient. Nevertheless, if the suite of
interventions appropriate for the transmission regime could
be implemented at the appropriate targeted scale in many
malaria-endemic nations, the malaria-related millennium
development goals could be achieved well before an effective
vaccine is available. Clarifying the optimal mix of interven-
tions and how these can be mapped and optimally targeted at
scale thus remains an important direction for our collective
future research.

Materials and Methods

Estimate 1: The life-cycle model. Ross developed and Macdonald
modified a mathematical model for the transmission of a vector-
borne disease that is a simplified quantitative description of the
parasite life cycle [11,12]. The parameter names, following Macdon-
ald’s notation, are given in Table 2. The life-cycle model tracks the
fraction of infected humans, X, and the fraction of infectious
mosquitoes, Y, over time:

_X ¼ mabYð1� XÞ � rX
_Y ¼ acXðe�gn � YÞ � gY

: ð4Þ

In this system of equations, the parasite persists if R0 . 1, where

R0 ¼
ma2bc e�gn

g
¼ ma2bc pn

�ln p : ð5Þ

If R0 . 1, the equilibria are given by the expressions

�X ¼ R0 � 1
R0 þ cS

�Y ¼ ac �X
g þ ac �X

e�gn ¼ cS �X
1þ cS �X

e�gn
: ð6Þ

Since the average mosquito lifespan is short (i.e., 1/g ’ 10–20 d), but
the malaria infections in humans last months (i.e., b/r ’ 170 d [14]),
the proportion of infectious mosquitoes adjusts rapidly to the
proportion of infectious humans, i.e., the sporozoite rate tracks PR
when mosquito populations are constant (but see the discussions by
Aron and May [52] and by Smith et al. [17]).

Thus, EIR is given by the formula

E ¼ ma �Y ¼ ma2c �X
gð1þ Sc �XÞ e

�gn ¼ Vc �X
1þ Sc �X

; ð7Þ

where V denotes vectorial capacity, following the original definition
(see Table 2) [24]. Solving for V, we get

V ¼ Eð1þ cS �XÞ
c �X

: ð8Þ

By our notation R0 ¼ bcV/r, so we can compute R0 by solving for
vectorial capacity:

R0 ¼ E
b
r
ð1þ Sc �XÞ

�X
: ð9Þ

Dietz [15] and Dye and Hasibeder [16] have demonstrated that R0 is
higher because of heterogeneous biting:

R0 ¼
ma2bc e�gn

g
ð1þ aÞ ¼ E

b
r
ð1þ Sc �XÞ

�X
ð1þ aÞ; ð10Þ

where a is the squared coefficient of variation of the human biting
rate.

In these equations, mortality during sporogony is counted, but the
delay for sporogony is not [17]. These equations give expressions for
R0 and equilibria, �X and �Y, that are consistent with the simple
assumptions of the classic model. These equations differ slightly from
those given by Anderson and May, who write _Y ¼ ac9Xð1� Y Þ � gY
[9], but the equilibrium �Y ¼ ac9X=ðg þ ac9XÞ would not be consistent
with the standard assumptions when mortality during sporogony is
incorporated by setting c9¼ ce�gn [27]. Closely related delay equations
are given by Aron and May [52]. An alternative approach incorporat-
ing a realistic incubation period was modeled by Smith et al. [17]. All
these models assume constant per capita mortality for mosquitoes,
and so they ignore important factors such as temperature-dependent
mortality and senescence.

Macdonald et al.’s equilibrium method estimates R0 from the force
of infection [23]; usually, these estimates of h are based on the change
in PR with age in cross-sectional surveys:

h ¼ bE ¼ bcV �X
1þ Sc �X

; ð11Þ

so

R0 ¼ h
1þ Sc �X

r �X
: ð12Þ

Superinfection. The estimates of b/r and a come from a nonlinear
regression analysis using a model with superinfection (i.e., multiple
infections) [14]. Here, the connection between that model and the
life-cycle model is explained.

A generalized form of the life-cycle model tracks the fraction of
the human population with some number of parasite ‘‘broods’’ [53–
55], denoted i. New broods are introduced by new infections at the
happenings rate, which might depend on the number of broods
present, hi, and these broods are cleared naturally, also depending on
the number of broods present, qi. The change in the fraction of
uninfected humans is described by an equation:

_X0 ¼ �h0X0 þ q1X1: ð13Þ

The change in the fraction of humans that are infected with i broods
is given by

_Xi ¼ �hiXi þ hi�1Xi�1 þ qiþ1Xiþ1 � qiXi: ð14Þ

This is an extremely general formulation of a model for infection,
although the idea of a ‘‘brood’’ remains poorly defined. For different
assumptions about hi and qi, and for explicit assumptions about
transmission of different broods by mosquitoes, it is possible to
generate a very large number of models for infection in humans;
some of these have been worked out by Dietz [56].

With a single brood, the dynamics reduce to the classical
formulation. If there are a very large (effectively infinite) number
of broods, then the force of infection is constant, hi ¼ bE. For an
infinite number of broods that clear independently, i.e., qi ¼ ir, the
distribution of brood number at equilibrium is Poisson with mean bE/
r [55], and the fraction infected is given by

bE=ðebE=r þ 1Þ: ð15Þ

These estimates of R0 are based on Smith et al.’s estimate of b/r, which
is based on the infinite brood and independent clearance model [14].
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In turn, the formulas for R0 consider the invasion of a population by
a single brood.

Estimate 2: Immunity and heterogeneous biting. The probability
that a mosquito becomes infected, per bite, in the life-cycle model is
denoted cX. In reality, transmission-blocking immunity and hetero-
geneous biting skew the probability that a mosquito becomes
infected, per bite. Let ~X denote the probability that a mosquito
becomes infected after biting a human (i.e., in the life-cycle model
~X ¼ cX); then, infection in mosquitoes follows the equation

_Y ¼ a ~Xðe�gn � YÞ � gY : ð16Þ

Following similar arguments as before, we get that vectorial capacity
is given by the formula

V ¼ E
1þ S �X

�X
: ð17Þ

Because of transmission-blocking immunity, infectivity of humans
declines as a function of EIR, denoted cE. Similarly, immunity at the
liver stage affects the average infectivity of mosquitoes, denoted bE.
Since R0 is defined for naı̈ve populations, the formulas are based on
infectivity in naı̈ve hosts, c0 and b0. Following similar arguments as
before:

R0 ¼ E
c0b0
r
ð1þ S ~XÞ

X̃
ð1þ aÞ: ð18Þ

Since our estimate of b/r may actually be an estimate of bE/r, we need
to correct the estimate by the ratio BE ¼ b0/bE.

The bias introduced by transmission-blocking immunity depends
implicitly on heterogeneous biting. With heterogeneous biting,
mosquitoes bite individuals with index s at the rate sE; s is called a
biting weight. Let X(s) denote the fraction of individuals with biting
weight s that are infected, and let C(s,a) be the fraction of the
population that has index s [14]. Finally, let c(sE) denote the average
infectivity of humans who have a personal expected biting rate, sE. It
follows that the probability a mosquito becomes infected after biting
a human is

~X ¼
Z ‘

0
scðsEÞCðs;aÞXðsÞds: ð19Þ

We let c(sE) ¼ c0e
�csE, so that, because of the development of

transmission-blocking immunity, infectivity declines in those who
are bitten most. Using the C distribution and the equations for
superinfection, as in [14], equation 19 can be solved:

~X ¼ c0 ð1þ cEaÞ�1�1=a � ð1þ ðcþ b=rÞEaÞ�1�1=a
� �

: ð20Þ

Similarly, prevalence, �X, is given by [14]:

�X ¼ 1� 1þ bEa
r

� ��1=a
: ð21Þ

We assume that a well-designed study would estimate �X, while a
mosquito sees ~X.

The sampling bias index is r ¼ ~X= �X. Using this formula, we can
estimate R0 as a function of EIR and PR:

R0 ¼ E
c0b0
r
ð1þ Sr �XÞ

r �X
BEð1þ aÞ: ð22Þ

We note that when EIR is low, r ’ c0(1þa), so this formula simplifies
to the following:

R0 ¼ E
b0
r
BE 1þ c0Sð1þ aÞ þ 1

�X

� �
: ð23Þ

Human to human in finite populations. Here, we explore the
interpretation of R0 in finite populations, of size H. This approach is
motivated by the extremely high estimates of R0 (or R0(‘)), which in
some cases may even exceed the local human population size. Here,
R0(H) is defined as the expected number of different individual
humans that can trace an infection back to a single human after one
complete generation of the parasite, and Z0(H) is the number of
mosquitoes that can trace an infection back to a single mosquito.

Mathematical approaches to R0 have evolved since Macdonald [12],
and so have the definitions. We maintain the connection to
Macdonald’s original definition, in part, for historical continuity.
Nowadays, R0 is computed using next-generation approaches [10,57].
By those definitions, the quantity that we compute is called R2

0. Next-
generation approaches are linearized approximations, and R0 is an
eigenvalue associated with asymptotic growth rates. Our reevaluation

of R0 is motivated by a different case—when R0 and H are of
comparable size—so asymptotic growth rates are not our primary
interest. Since R0(H) and Z0(H) differ, it is possible that R0(H) , 1, but
Z0(H) . 1. In finite populations where R0(H) and Z0(H) are both near
one, malaria would be likely to random walk to extinction, in any case.

To compute R0(H) or Z0(H) in heterogeneous populations, let i ¼
1...H index humans in a population, and let masi denote their
individual biting rates, where the distribution of biting weights, fsg, is
constrained to have a mean of 1;

P
i si=H ¼ 1. The proportion of

bites that land on the ith individual is therefore si/H.
First, we compute the number of infected humans, per human.

While infectious, the ith human receives masi / r bites. Each mosquito
biting the individual becomes infected with probability c, but some
fraction of these mosquitoes return to bite the ith human again, so we
need to discount multiple infection of mosquitoes. The fraction of
bites on the ith human is si /H, so a short time after the ith human has
become infected, the fraction of mosquitoes that were already
infected by that human is

acsi=H
g þ acsi=H

: ð24Þ

The proportion of those bites that infect a different mosquito is
H

H þ Scsi
: ð25Þ

Note that more than 90% of bites are new infections when H . 9cS,
so reinfection of mosquitoes is a relatively small effect when H . 25.
Thereafter, the mosquito survives to become infectious with
probability ce�gn, and then is expected to give a/g infectious bites.

Thus, the total number of infectious bites that arise from the ith
human is

Zi ¼
ma2ce�gn

gr
H

H þ Scsi

� �
si: ð26Þ

The jth human in that population is expected to be bitten at the rate
Zisj /H, and each bite causes an infection with probability b. Thus, the
probability that the jth individual remains uninfected is

e�bZisj=H : ð27Þ

If the ith person is the index case, the expected number of infected
humans is X

j 6¼i
1� e�bZisj=H : ð28Þ

There are two reasonable expectations to be computed. First is the
unweighted expectation:

1=H
X
i

X
j 6¼i

1� e�bZisj=H : ð29Þ

The second is the weighted expectation:

1=H
X
i

si
X
j 6¼i

1� e�bZisj=H ð30Þ

We prefer this second, weighted expectation because it reflects
heterogeneous biting, because those who are bitten most are most
likely to be the index case, and because in the infinite human
population limit, it converges to the formula for R0 derived by Dietz
[15] and Dye and Hasibeder [16]. Note that a is the squared CV of fsg
and that

P
i s

2
i =H ¼ 1þ a.

Mosquito to mosquito in finite populations. From a single
infectious mosquito, the expected number of bites that produce an
infection is bS. The probability that the ith person becomes infected is

1� e�bSsi=H : ð31Þ

Thereafter, that person gets masi/r bites before clearing an infection.
The number of infected humans is

T ¼
X
i

1� e�bSsi=H : ð32Þ

A fraction c of all bites infect uninfected mosquitoes. As before, some
fraction of mosquitoes are already infected. We consider only those
infected mosquitoes that can trace their infection back to the index
mosquito, so following the previous argument, the fraction of
mosquito infections that are not reinfections is H=ðH þ cSTÞ:

Thereafter, e�gn infected mosquitoes survive to become infectious.
Therefore, the total number of infectious mosquitoes per

infectious mosquito is given by the formula
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Z0ðHÞ ¼
X
i

ð1� e�bSsi=HÞ masice�gn

r

� �
H

H þ cST

� �
: ð33Þ

The fraction of newly infected mosquitoes increases rapidly as a
function of H. In a very large population, T is less than bS; more than
90% of bites are new infections when H . 9cST . 9bcS2.

Simulated control in finite populations: Human-based methods.
When transmission from humans is neutralized by a perfect vaccine
or by chemoprophylaxis, infected humans continue to absorb bites,
but don’t infect any mosquitoes. We construct a vector of length H
where Vj¼ 0 if an individual is protected, and Vj¼ 1 otherwise. With
targeted protection,

Ei ¼
X
j 6¼i

1� e�bZiVj sj=H : ð34Þ

Note that Vj appears in the exponent to account for bites on
neutralized individuals. To compute R0(H) with neutralization, we
compute the weighted expectation:

R0 ¼
P

siViEiP
siVi

: ð35Þ

Here, Vi removes protected individuals from the computation—if a
person is protected, then it is not possible for him to be the index
case, by assumption.

Simulated control in finite populations: Pure mosquito-based
methods. After controlling vector populations, estimates of R0(H)
and Z0(H) would be computed as before, but with different estimates
of m or g. It is also possible that vector control would change the
distribution of biting weights, but this is not a question that we have
addressed here.

Simulated control in finite populations: Mixed methods. When
humans are protected from infection by ITNs or by IRS, some
fraction of the mosquitoes that attempt to bite a protected human
are killed, and some fraction are diverted onto other hosts. To model
both effects, we assume that the biting weights describe the
probability of finding a host during each attempt, that a fraction of
biting attempts on protected humans kill the mosquito each visit
(denoted d), that a fraction of mosquitoes successfully feed (w), and
that those mosquitoes that neither die nor successfully feed fly off to
begin a new search. Of these, a fraction Q finds a human, again. Let N
denote the set of people who are protected, then the fraction of visits
that find a protected human is P ¼

P
i2N si=H .

We ignore the delay required to find another host, and assume that
the vectors instantaneously reassort themselves onto hosts until they
have either died or successfully fed. The fraction of mosquitoes that

die is dP at the first attempt, plus dP times all those who failed to feed
the first time and again find a protected human, and so on:

/ ¼ dP½1þ PQð1� d� wÞ þ ðPQð1� d� wÞÞ2 þ :::�

¼ dP
1� PQð1� d� wÞ : ð36Þ

Thus, / is the fraction of human feeding attempts by vectors that
result in mosquito death. With ITN use, the mosquito death rate
increases to g9¼ gþ/a. By a similar argument, the feeding rate on the
ith protected host is

wsi
Hð1� PQð1� d� wÞÞ : ð37Þ

And the proportion of bites on the jth unprotected hosts increases to
sj

Hð1� PQð1� d� wÞÞ : ð38Þ

In a finite population, we compute R0(H) and Z0(H) as before, with
new parameters describing human feeding, mosquito mortality, and
biting weights (which may not sum to one). Obviously, the success of
ITNs depends on the baseline parameters, Q , d, and w. Here, we
simulate control for Q¼ 0.9, d ¼ 0.3, and w¼ 0.2.
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