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Neuroinflammation is increasingly recognized as an important pathophysiological feature of neurodegenerative diseases
such as Parkinson’s disease (PD). Recent evidence suggests that neuroinflammation in PD might originate in the intestine
and the bidirectional communication between the central and enteric nervous system, the so-called “gut-brain axis,” has
received growing attention due to its contribution to the pathogenesis of neurological disorders. Diet targets mediators of
inflammation with various mechanisms and combined with dopaminergic treatment can exert various beneficial effects in
PD. Food-based therapies may favorably modulate gut microbiota composition and enhance the intestinal epithelial
integrity or decrease the proinflammatory response by direct effects on immune cells. Diets rich in pre- and probiotics,
polyunsaturated fatty acids, phenols including flavonoids, and vitamins, such as the Mediterranean diet or a plant-based
diet, may attenuate chronic inflammation and positively influence PD symptoms and even progression of the disease.
Dietary strategies should be encouraged in the context of a healthy lifestyle with physical activity, which also has
neuroimmune-modifying properties. (us, diet adaptation appears to be an effective additive, nonpharmacological
therapeutic strategy that can attenuate the chronic inflammation implicated in PD, potentially slow down degeneration,
and thereby modify the course of the disease. PD patients should be highly encouraged to adopt corresponding lifestyle
modifications, in order to improve not only PD symptoms, but also general quality of life. Future research should focus on
planning larger clinical trials with dietary interventions in PD in order to obtain hard evidence for the hypothesized
beneficial effects.

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by a loss of dopaminergic neurons in the
substantia nigra (SN) as well as nondopaminergic neurons,
including cholinergic neurons, norepinephrinergic neurons,
serotoninergic neurons, and neurons of the enteric nervous
system [1, 2]. (e disease is also characterized by in-
tracellular inclusions (so-called Lewy bodies) composed of
fibrillar alpha-synuclein (a-Syn) and ubiquitinated proteins
within neurons in various brain regions [3]. Despite the
controversies with regard to the general validity of Braak’s
hypothesis and reasonable criticism to some aspects of his

model, the gastrointestinal tract is widely considered as one
possible ignition source of PD pathology [2, 4].

(e assumed mechanisms of neurodegeneration in PD
comprise oxidative stress, mitochondrial dysfunction, ab-
normal a-Syn oligomerization, and rise in iron content [5].
Furthermore, there is growing evidence suggesting that
neuroinflammation is involved in the pathological process of
PD [6–9]. Neuroinflammation plays a role in a variety of
neurological disorders and has been implicated in other
neurodegenerative disorders including Alzheimer’s disease,
Huntington’s disease, amyotrophic lateral sclerosis, and
progressive supranuclear palsy [10, 11]. Neuroinflammation
involves microglial activation with production of cytokines
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and reactive oxygen species (ROS), astrogliosis, and lym-
phocytic infiltration [10]. Moreover, recent evidence sug-
gests that chronic intestinal inflammation may contribute to
the development of PD [12].

Dopamine replacement therapy, which remains the
main pharmacological treatment in PD, alleviates the motor
symptoms of the disease such as rigidity, resting tremor, and
bradykinesia, while it influences to a lesser extent the
nonmotor symptoms such as autonomic dysfunction, sen-
sory, and neuropsychiatric disorders [13], has side effects,
and has no proven effect on slowing down disease pro-
gression. For this reason, there is an urgent need to develop
new additive therapeutic strategies targeting PD patho-
genesis. (ere is growing evidence that diet [14, 15] can
attenuate the neuroinflammation implicated in the patho-
physiology of PD, rendering it an attractive non-
pharmacological modulator of chronic inflammation in PD.

2. Chronic Inflammation in
Parkinson’s Disease

2.1. Neuroinflammation. Clinical and experimental evi-
dence suggests that neuroinflammation may contribute to
the progressive loss of dopaminergic neurons in PD. Data
from postmortem studies showed the presence of activated
microglial cells [16, 17], as well as a significant increase of
glial cells expressing tumor necrosis factor-α (TNF-α), in-
terleukin-1β (IL-1β), and interferon-gamma (IFN-c) [18]
within the SN of PD patients. Furthermore, the concen-
trations of TNF-α, IL-1β, IL-2, IL-4, IL-6, epidermal growth
factor (EGF), transforming growth factor-a (TGF-a), TGF-
β1, and β2-microglobulin were found to be increased in the
striatum of PD patients [8]. CD4+ and CD8+ Tcells were also
found postmortem near dopaminergic neurons in the SN of
both PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) mouse models of PD [6]. Concen-
trations of several proinflammatory cytokines such as IL-1β,
IL-2, IL-6, IL-10, and TNF-αwere found to be elevated in the
serum of PD patients [19, 20]. Furthermore, IL-1β, IL-6,
TNF-α, and osteopontin were found to be elevated in the
cerebrospinal fluid (CSF) of PD patients [8]. Associations
have also been found between gene polymorphisms for
TNF-α [9], IL-1β [21], as well as the histocompatibility
human leucocyte antigen HLA-DRB5 gene [22], and in-
creased risk of PD. While the exact effects induced by these
polymorphisms are not clear, theymight affect the basal level
of the inflammatory status or the response to inflammatory
stimuli [10]. In vivo imaging studies of microglia activation
showed increased inflammation levels in the pons, striatum,
and frontal, temporal, and occipital cortical regions in PD
patients compared to age-matched healthy controls [7, 23].
Moreover, PET imaging studies showed that increased
microglia activation correlated with reduced glucose
metabolism and worse performance in general cognitive
testing (Mini-Mental State Examination) in patients with
Parkinson’s disease dementia (PDD) [23, 24]. Epidemio-
logical studies showed inconsistent data regarding the use of
anti-inflammatory drugs (NSAID) and the risk of PD [25].
Nevertheless, ibuprofen users showed a significantly lower

risk (RR 0.62) of developing PD compared to nonusers in a
dose-dependent manner [26]. In MPTP animal models of
PD, microglial activation is a common feature [27–29] and
this seems to precede the degeneration of neurons [6, 28].
Furthermore, intranigral [30] or systemic injection of li-
popolysaccharide (LPS) [31], which are part of the mem-
brane of Gram-negative bacteria and can induce toxic and
inflammatory effects by activating microglia, was found to
cause death of dopaminergic neurons in animal models of
PD. An astroglial [28] as well as lymphocytic infiltration of
CD4+ and CD8+ Tcells [6, 32] was also found in the SN and
striatum of MPTP model animals.

(e mechanisms of inflammation involve activation of
microglia, accumulation of cytokines, nuclear factor kappa B
(NF-κB) pathway activation, and oxidative damage to
proteins in the CSF and brain of PD patients [10]. Astroglial
reaction, on the other hand, seems to play a role in neu-
roinflammation in PD, but it is unlikely to induce cell death
as it takes place rather late in the degeneration process [10].
(e immune cells of the systemic circulation may also be
involved in the neuroinflammatory response in PD [11].
(e lymphocyte infiltration could then be a result of the
dysfunctional blood-brain barrier (BBB) found in PD pa-
tients [33].

2.1.1. Is *ere an External Trigger for Neuroinflammation in
PD? (e neuroinflammatory response and microglia acti-
vation in PD could be triggered by an environmental ini-
tiation factor (e.g., toxins, neurotropic viral or bacterial
infections, and pesticides) or by aggregated a-Syn proteins in
Lewy bodies [34, 35], eliciting a self-perpetuating cycle of
chronic inflammation. Apart from these triggering factors,
the aged brain is characterized by increased sensitivity to
glial cell stimulation, the so-called glial priming [36]. Primed
microglia cells have upregulated expression of receptors that
respond to deleterious stimuli (such as CD14, CD45, major
histocompatibility complex (MCH) II, or Toll-like receptor
TLR4) and mediate immune responses [36]. Nevertheless,
the inflammatory response in PD could be a secondary effect
of cellular damage and neuronal loss, as the injured dopa-
minergic neurons can release chemoattractants intensifying
the pathological process [10]. (ere is no escaping the fact
that while neuroinflammation may have some beneficial
effects by removing byproducts of degeneration, un-
controlled inflammatory reactions may contribute to a self-
perpetuating cycle that eventually leads to degeneration and
death of dopaminergic neurons [37].

2.2. Intestinal Inflammation. Intestinal dysfunction, with
constipation being the most prominent complaint, is a
common nonmotor symptom in PD and may precede the
onset of motor symptoms by decades [13]. (e bidirectional
communication between the central and enteric nervous
system, the so-called “gut-brain axis,” has received growing
attention due to its contribution to the pathogenesis of
neurological disorders including PD [2, 38]. In fact, chronic
intestinal inflammation may contribute to the pathogenesis
of neurodegenerative disorders such as PD [12, 39]. Indeed,
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biopsies of colonic tissue retrieved from PD patients revealed
an increased expression of proinflammatory cytokines, such
as TNF-α, IL-1β, IL-6, and IFN-c, as well as an increased
activation of enteric glial cells [40]. Markers of intestinal
inflammation (calprotectin) and permeability (alpha-1-
antitrypsin and zonulin) [41] as well as IL-1α, IL-1β, CXCL8
(interleukin 8), and C-reactive protein (CRP) [42] were
found to be elevated in stool samples of PD patients
compared to healthy controls. Moreover, genetic studies
support the connection between intestinal inflammation and
PD. Genetic variants such as the leucine-rich repeat kinase 2
gene (LRRK2), which regulates inflammatory responses, are
common in Crohn’s disease, a chronic inflammatory in-
testinal disease, and familial as well as sporadic PD [43, 44].
Studies assessing genetic variants in the region of the nu-
cleotide-binding oligomerization domain containing 2
(NOD2) gene, which are assumed to play a role in the
pathogenesis of inflammatory bowel disease by modulating
mucosal immunity [45], showed inconsistent results in PD
[46, 47].

(e intestine can modulate CNS activity via the vagus
nerve or through the effects of the intestinal microbial
community (microbiota), which releases signalingmolecules
into the systemic circulation and modulates the activity of
immune cells [12, 48]. (ere is growing evidence that
microbiota composition is altered in PD patients, and more
specifically, it appears to be deficient in microbes with anti-
inflammatory activities and enriched in microbes that have
the potential to stimulate inflammation [12]. A lower
abundance of bacteria with anti-inflammatory properties
like short-chain fatty acid- (SCFA-) producing bacteria (i.e.,
Prevotella) is found in PD fecal samples [49, 50], which
might contribute to increased gut permeability, probably
through reduced production of mucin [51]. A small in-
testinal bacterial overgrowth (SIBO), a disorder with ex-
cessive bacterial growth in the small intestine, has also been
reported in PD patients with a prevalence varying from 25%
to 67% [52–55]. SIBO has been associated with gastroin-
testinal symptoms and worse motor scores (UPDRS III)
[54, 55] while there is inconsistency regarding its effects on
motor fluctuations [52, 54, 55]. SIBOmight cause changes in
intestinal permeability and contribute to an increase in
bacterial translocation and consequently induction of an
inflammatory response in the host [56].

Other inflammatory triggers such as a toxic substance
(pesticides or pollutants) or a gastrointestinal infection
could also possibly start the pathological process in the
enteric nervous system, probably against a background of
genetic vulnerability, causing mucosal inflammation and
oxidative stress [57]. (e following immune response could
lead to changes in intestinal permeability, which is found to
be increased in PD (leaky gut) [51], allowing microbial
products such as endotoxins (LPS) and inflammatory me-
diators from the intestine to enter the systemic circulation
[58]. (e inflammatory response might then affect sys-
temically the brain through a dysfunctional blood-brain
barrier (BBB), which is found in PD patients [33]. Another
possible mechanism is that inflammation in the gastroin-
testinal tract may initiate a-Syn accumulation in the enteric

nervous system of PD patients [51, 59]. Aggregated and
phosphorylated a-Syn, a hallmark of PD pathology, has been
found at increased levels in the intestines of PD patients
[60, 61], even in the early stages of PD [62, 63]. Yet, data
concerning a-Syn in the enteric nervous system are con-
troversial, as even phosphorylated forms (hypothesized to be
a pathological form) are found in an age-dependent manner
in otherwise healthy subjects [64, 65]. A-Syn deposition in
neurons might begin in the enteric nervous system and then
spread via the vagus nerve to the SN and other brain areas
[2, 4]. (us, synucleinopathy as well as inflammation would
then spread throughout the brain affecting the dopaminergic
neurons [12, 66]. (is inflammatory cascade in PD could be
further exacerbated by the aging-associated inflammation,
which is also referred to as “inflammaging” [67].

3. Nonpharmacological Modulation of
Inflammation in PD

3.1. Diet. (e increasing evidence suggesting that the
pathological process of PD may originate in the gut opens a
potential new therapeutic window for the use of dietary
strategies, which may influence the risk of developing PD or
even modify the disease course [15]. Dietary interventions
could influence the gut-brain axis by altering microbiota
composition and modifying the production of biologically
active microbial products or by direct interaction with
immune cells or both [68]. Dietary components might also
modulate the chronic inflammatory response that is asso-
ciated with aging [69], the strongest risk factor for PD.
Moreover, dietary interventions could potentially reduce
gastrointestinal symptoms (constipation) and ameliorate
levodopa uptake. (us, the concept of nutraceuticals, which
are compounds derived from natural food sources with
scientific evidence for certain disease preventive and ther-
apeutic effects when consumed as part of a varied diet on a
regular basis and at optimal levels, is introduced in PD
[70, 71].

Probiotics are specific microorganisms, which when
administered in sufficient amounts can exert various health
benefits. (e most common are lactobacilli, enterococci,
bifidobacteria, yeasts, and various mixtures of beneficial
bacteria [72]. Probiotics are thought to suppress pathogenic
bacterial growth, enhance the intestinal epithelial integrity
by regulating intestinal tight junction protein expression,
and contribute to the maintenance of the mucosal immune
homeostasis [14, 73]. Probiotic strains can regulate defensin
and antimicrobial protein secretion [74] and promote mucin
production [75], thus enhancing the protective barrier
mechanism in the intestine. Certain probiotic lipid antigens
may also directly activate natural killer T cells [76]. More-
over, probiotics stimulate intestinal motility and reduce
gastrointestinal dysfunction in elderly patients [77]. In PD, a
study showed that a five-week intake of probiotics (fer-
mented milk containing Lactobacillus casei Shirota) sig-
nificantly improved stool consistency and bowel habits in
PD patients [78]. (us, probiotics could rebalance the PD-
associated change in microbiota composition and thereby
reduce gut leakiness, bacterial translocation, and the
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subsequent neuroinflammation. Prebiotics such as gal-
actooligosaccharides (GOS) and fructooligosaccharides
(FOS), which are nondigestible but fermentable oligosac-
charides, stimulate the growth of beneficial gut microor-
ganisms such as bifidobacteria and lactobacilli [79]. GOS
and FOS are metabolized in the colon by bifidobacteria and
create metabolic products such as SCFA, lactose, hydrogen,
methane, and carbon dioxide, causing an acidic environ-
ment in the colon, which antagonizes the survival and
proliferation of pathogenic bacteria [80]. SCFAs (acetate,
lactate, propionate, and butyrate) contribute to the main-
tenance of intestinal epithelial integrity and regulate mu-
cosal immune responses [81] by modulating the production
of antimicrobial peptides and the secretion of proin-
flammatory mediators [82]. SCFA butyrate and propionate
can also facilitate anti-inflammatory T regulatory cells
generation [83, 84]. Moreover, prebiotic fibers have bene-
ficial effects on intestine motility, as shown in a randomized
controlled trial in PD [85]. (e fecal concentrations of
SCFA-producing bacteria are reduced in PD patients
[49, 50], which could be rebalanced by the intake of prebiotic
fibers. Indeed, a recent study showed that the intake of a
digestion-resistant starch composition stimulates an in-
creased abundance of beneficial bacteria (bifidobacteria) and
results in an increase of SCFA butyrate in the stool of older
adults [86]. (e intake of this prebiotic could easily be
applied in PD.

Dietary fats can influence intestinal inflammation and
regulate mucosal immunity [87]. Polyunsaturated fatty acids
(PUFAs), like the omega-3 fatty acid docosahexaenoic acid
(DHA) found in fish oil, have anti-inflammatory effects [88].
Dietary n-3 PUFA inhibits the formation of proin-
flammatory prostaglandins and leukotrienes through the
arachidonic acid pathway [89]. (ey also inhibit vascular
adhesion and migration, angiogenesis, as well as adaptive
immune responses by inhibiting T-cell proliferation and
antigen presentation and by binding to nuclear receptors
[89, 90]. Furthermore, long-chain n-3 PUFA affects cell
membrane structure and inhibits activation of Toll-like
receptor (TLR-4), which is important in mediating intestinal
inflammation [91]. Indeed, two large prospective cohort
studies showed that PUFA intake was associated with a
reduced PD risk [92, 93]. (e same was observed in ul-
cerative colitis, an inflammatory bowel disease [87]. Perez-
Pardo et al. [94] showed that a diet containing fish oil
(providing DHA) and uridine ameliorated intestinal barrier
integrity and reduced gastrointestinal colonic inflammation
as well as colonic a-Syn levels in mice PD models. It also
protected from dopaminergic cell loss in the SN and im-
proved motor deficits.

Phytochemicals are compounds found in plant-based
foods with anti-inflammatory and antioxidant properties
that are currently receiving attention in the prevention and
treatment of different diseases. Caffeine, a nonselective
antagonist of adenosine-2A receptors, has known anti-in-
flammatory properties. Caffeine is not only associated with a
significantly lower risk of PD [95] (with the strongest
protection at approximately 3 cups/day) [96] but also seems
to have neuroprotective effects even after the onset of the

neurodegenerative process, as shown in animal studies
[97, 98]. Coffee results in an in vivo increase of anti-in-
flammatory bifidobacteria and a decrease ofClostridium spp.
and Escherichia coli [99, 100], which may reduce intestinal
inflammation. Caffeine also seems to attenuate neuro-
inflammation in animal models with LPS-induced and age-
related inflammation by reducing microglia activation or via
its ability to regulate glutamate release [101]. Caffeine may
also increase the bioavailability of levodopa [102], while its
effects on PD motor symptoms are inconsistent [103, 104].
Flavonoids (found in high concentrations in tea, cocoa,
berry fruits, apples, red wine, and orange juice), a group of
plant secondary metabolites known to have diverse bi-
ological activity in vivo [105], were associated with a 40%
lower PD risk, although this finding was restricted to men
[106]. Apart from their antioxidant properties, flavonoids
have the potential to inhibit neuroinflammation through
attenuation of microglial activation and associated cytokine
release, as well as by suppressing the expression of oxidation-
related enzymes (such as nitric oxide synthase (INOS), nitric
oxide production, and NADPH oxidase activity) [105]. (e
regulation of these immune events appears to be mediated
via intracellular signaling pathways, including the NF-κB
cascade and the mitogen-activated protein kinase (MAPK)
pathway [105]. In fact, pure flavonoids (e.g., epi-
gallocatechin-3-gallate) or enriched extracts can reduce the
expression of proinflammatory cytokines (IL-6, TNF-α, IL-
1β, and COX-2), downregulate inflammatory markers, and
prevent neural damage [107]. Epigallocatechin-3-gallate
(EGCG) is a compound (catechin) present in green tea,
which crosses the BBB and has been shown to have neu-
roprotective properties in animal PD models [108, 109].
However, there was no association found between green tea
consumption and PD risk [110]. Epigallocatechin-3-gallate
is related to regulation of neuroinflammation and modu-
lation of genes involved in cell survival by decreasing in-
tracellular calcium levels and controlling nitric oxide
production [111]. Experimental studies showed that ad-
ministration of flavonoids protected dopamine neurons
from oxidative damage and apoptosis [112, 113] and
inhibited the formation of a-Syn fibrils [114].

Resveratrol, a type of natural phenol and a phytoalexin
found in grapes, peanuts, berries, and pines, can inhibit the
activation of microglia and the subsequent release of
proinflammatory factors [115]. (e anti-inflammatory ac-
tion of resveratrol is attributed to the attenuation of the
activation of MAPK and NF-κB signaling pathways in
microglia and the inhibition of NADPH oxidase with
subsequent reduction of ROS generation [116]. Indeed,
resveratrol reduced the inflammation-mediated apoptotic
death of neuronal cells evoked by LPS-activated microglia in
a microglia-neuronal coculture system [117]. Resveratrol
was also shown to attenuate neurotoxicity in toxin-induced
(MPTP-, 6-OHDA-, and LPS-) PD animal models
[116, 118, 119]. Other phytochemicals with anti-in-
flammatory and antiapoptotic properties, which seem to be
neuroprotective in animal models of PD, are sodium ben-
zoate, the anti-inflammatory metabolite of cinnamon [120],
curcumoinoids that constitute approximately 4% of
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turmeric [121], sulforaphane found in cruciferous vegetables
such as broccoli and cabbage [122], ginkgo-biloba extract
EGb 761, and the phytoestrogen genistein found in dietary
soy and peanut products [71]. Clinical trials of the effects of
these compounds on PD patients have not been conducted
yet.

Micronutrients such as vitamins can also exert antiox-
idant and anti-inflammatory activities. Higher intake of
vitamin B6 [123] and vitamin D [124] or moderate intake of
vitamin E [125] might be associated with a lower PD risk.
Vitamin B6 is reported to possess antioxidant [126, 127] and
anti-inflammatory activities that seem to be independent of
its homocysteine-lowering activity [128]. (e protective
effect of vitamin E on PD risk is plausible through reducing
oxidative damage by neutralizing the effect of oxygen free
radicals, as shown in in vivo studies [129]. 1,25-(OH)2D, the
active form of vitamin D, inhibits the synthesis of iNOS
[130] and its administration was shown to attenuate neu-
rotoxicity in PD animal models [131].

Importantly, dietary strategies might also modulate the
inflammatorymechanisms associated with cognitive decline,
which is a common nonmotor symptom in PD [13]. In
particular, increased consumption of total flavonoids was
associated with a reduced rate of cognitive decline in adults
aged 70 and over [132]. In animal studies, diets supple-
mented with berries (rich in flavonoids) improved the
performance of aged rats in spatial working memory tasks
[133]. Rabassa et al. [134] found that patients having a diet
rich in polyphenols (>600mg/d) had a lower risk of global
cognitive decline but not of executive dysfunction. More-
over, there seems to be a potential correlation of moderate
consumption of caffeine with a reduction in cognitive de-
cline, as reviewed recently [135]. Nutritional interventions
with n-3 PUFA might be beneficial in the earlier stages of
cognitive impairment in older adults [136, 137]. Animal
studies showed that probiotics such as Lactobacillus atten-
uated the LPS neuroinflammation-induced decline in per-
formance in spatial learning tasks and this effect was
accompanied by an increase of antioxidant enzymes and
reduction of proinflammatory cytokines [138]. (e effects of
dietary interventions with prebiotics on cognitive outcomes
in not yet demented adults have been quite inconsistent
[139, 140]. (us, it could be hypothesized that nutritional
strategies might be of benefit in patients with PD-associated
mild cognitive impairment or dementia, but such trials have
not been conducted yet.(emechanisms, through which the
different nutrients might affect age- and PD-related cog-
nitive changes, need to be further elucidated, but it seems
that their anti-inflammatory properties play a certain role
[69].

(e various published studies concerning diet and PD
mainly focused on single nutrients rather than dietary
patterns. However, the synergic and cumulative effects of
different nutrients are important in a dietary pattern. (e
Mediterranean diet, characterized by high intake of fruits,
vegetables, cereals, and olive oil, moderate intake of fish,
dairy products, and wine, and lower consumption of meat,
poultry, and saturated (animal) fats [141], is associated with
a lower risk of PD or even prodromal PD [142–144]. (e

mechanisms, by which Mediterranean diet may attenuate
inflammation and exert its positive effects on PD, may in-
volve the antioxidant and anti-inflammatory activity of its
components such as complex phenols, PUFA, vitamins C
and E and carotenoid. Adherence to Mediterranean diet is
associated with higher levels of adiponectin (an adipokine
mostly secreted from adipose tissue with antidiabetic, an-
tiobesity, and anti-inflammatory effects) and lower levels of
TNF-α, high-sensitivity CRP, and IL-6 [145–147]. Fur-
thermore, Mediterranean diet as a whole as well as its
components have been associated with beneficial gut
microbiota patterns [148, 149]. (us, Mediterranean diet
may exert a positive effect on intestinal inflammation and
the gut-brain axis. Moreover, Peterrson et al. in a recent
review [150] reported that adherence to Mediterranean diet
is associated with improved cognitive function and de-
creased risk of cognitive impairment or dementia. (is
finding could have implications for patients with PD as well,
particularly those at high risk of developing PDD.

3.2. Physical Activity and Exercise. Diet interventions in PD
should be complemented by physical activity (PA) or regular
and structured exercise, which are crucial for the mainte-
nance of body and brain health. (eir benefits in attenuating
neuroinflammation have been reviewed previously
[151, 152]; here, the main aspects will be reported briefly.
Epidemiological studies show that a physically active lifestyle
reduces the risk of PD by 33% to approximately 50%
[153, 154]. PA may improve the absorption of levodopa,
through increased mesenteric blood flow or accelerated
gastric emptying [155]. Apart from its known beneficial
effects on motor [156] and mental symptoms [157], it is
proposed that PAmayminimize brain diseases bymodifying
glia-mediated neuroinflammation [151]. Both acute and
chronic exercises have immune-modifying properties, which
lead to a whole-body anti-inflammatory effect [158].

Indeed, PA has anti-inflammatory effects in both the
periphery and the central nervous system. PA may exert its
anti-inflammatory properties in the periphery through
several mechanisms: reduction of chronic oxidative stress
[159, 160], reduction of LPS-stimulated secretion of
proinflammatory cytokines and hsCRP [161, 162], and in-
duction of the release of IL-6 into circulation from con-
tracting muscle fibers [163]. Moreover, exercise reduces the
expression of Toll-like receptors (TLR2 and TLR4) on
monocytes [161, 164]. Furthermore, exercise can induce a
release of (CD4+CD25+) T regulatory cells with an anti-
inflammatory phenotype [165]. (e anti-inflammatory ef-
fects of regular exercise may also be mediated by a reduction
in visceral fat mass with a subsequent decreased release of
adipokines from adipose tissue [158] and decreased number
of proinflammatory monocytes (CD14+CD16+) [166] and
macrophages infiltrating adipose tissue. In the CNS, the anti-
inflammatory properties of PA may be due to direct effects
on microglia by influencing their activity and proliferation
[167]. Indeed, wheel running reduced the proportion of new
microglia in the brains of adult mice [168, 169] and increased
the proportion of microglia expressing insulin-like growth
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factor (IGF-1), a phenotype promoting neuroprotection,
growth, and brain plasticity [167]. Cultured microglia from
aged physically active rats had lower expression of IL-1β and
TNF-α compared to microglia from sedentary aged rats
[170]. Jang et al. [171] reported that endurance exercise
suppressed a-Syn levels and reversed MPTP-induced neu-
roinflammation by hindering TLR2 downstream signaling
cascades in the brain of MPTP-intoxicated mice. Lastly, PA
could exert further beneficial effects by interfering with
neuroinflammation through modulation of the kynurenine
pathway [151].

PA has also beneficial effects with regard to mood and
mental health through an increase of the neuronal release of
serotonin and dopamine [152, 172]. Furthermore, it is as-
sociated with higher expression of brain-derived growth and
neurotrophic factor (BDNF), vascular endothelial growth
factor (VEGF), and glial cell line-derived neurotrophic
factor (GDNF) in animal studies [173, 174], which enhance
the survival and growth of neurons [162], delaying the
neurodegenerative process. (e synthesis of dopamine and
trophic factors stimulated by PA inhibits neuro-
inflammation and apoptosis and promotes neuroplasticity
[152]. Exercise-induced neurogenesis, synaptic strength, and
angiogenesis may significantly contribute to the re-
generation of neurons and thus restore normal motor
functions [175, 176].

4. Conclusion

Neuroinflammation is increasingly recognized as an im-
portant pathophysiological feature of neurodegenerative
diseases such as PD. (erefore, there is growing interest in
developing therapeutic strategies targeting neuro-
inflammation in PD. Drugs to treat inflammation, such as
NSAIDs, that have been shown to reduce the risk of PD in
large epidemiological studies, have adverse effects, cross
poorly the BBB, and rather halt the proinflammatory re-
sponse than induce an “anti-inflammatory” response [11].
(us, nonpharmacological interventions have received at-
tention, in order to deal with neuroinflammation and po-
tentially modify the course of the disease.

(e data suggesting that neuroinflammation might start
in the intestine open doors to food-based therapies, which
may favorably modulate gut microbiota composition, en-
hance the intestinal epithelial integrity, and decrease the
proinflammatory response [14]. Pre- and probiotics, diets
rich in polyunsaturated fatty acids, phenols including fla-
vonoids, and vitamins, such as the Mediterranean diet or a
plant-based diet, may attenuate chronic inflammation and
exert beneficial effects on PD symptoms [177] and even
progression of the disease [178]. Of course, a better un-
derstanding of the gut-brain interactions and more specif-
ically of the link between an altered gut microbiota
composition, intestinal permeability, systemic and brain
inflammation, and, eventually, neurodegeneration is re-
quired. Human studies should complement the in vitro and
animal studies of dietary components and valuate the ho-
listic effects of diet, taking into account the synergies and
interactions of the different nutritional elements. However,

the dosages of nutrients administered in animal studies vary
largely or are even much higher compared to doses typically
ingested by humans.(us, these dosages can only be a rough
estimate when designing human studies taking into account
the metabolic alterations and bioavailability of nutrients in
humans. Research in this field is challenging as there are
difficulties in reliably assessing the dietary intake of in-
dividuals and even more the availability at the tissue level.
Furthermore, it cannot be excluded that previous long-term
exposure, i.e., previous dietary habits at a younger age, may
be more relevant than the current diet [179]. (is aspect
might be particularly relevant considering the very long
preclinical phase of PD. Furthermore, future studies should
be of adequate duration (preferably longer than 1.5 years
[180]) and possibly target patients with specific nutritional
insufficiency. Further research is also required in the field of
nutritional genomics, focusing on genetic variations that
could eventually allow personalized nutrition [15].

In the context of a holistic multidimensional approach,
physical activity has also emerged as a potent non-
pharmacological intervention in the management of PD,
which, combined with dietary interventions, might also
interfere with PD pathophysiology. Nevertheless, further
research is required in order to elucidate the exact neuro-
immune mechanisms of exercise and define the favorable
exercise intensity, as the amount of exercise in animal
studies cannot be directly applied in patients with motor
deficits such as PD patients. Both diet and physical activity
target mediators of inflammation with various mechanisms
and combined together as well as with dopaminergic
treatment can increase their therapeutic benefits.

Indeed, engaging in physical activity and adhering to a
healthy diet such as the Mediterranean diet can promote
integrity and health of the aging brain [181]. Attention
should also be drawn to the ways of educating and en-
couraging PD patients to adopt corresponding lifestyle
modifications, in order to improve not only PD symptoms,
but also general quality of life.(e existing data, mostly from
animal models of PD, provide strong scientific evidence to
plan larger clinical trials with nonpharmacological and
specifically dietary interventions in PD.
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