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Immunologic tolerance refers to a state of immune nonreactivity specific to particular
antigens as an important issue in the field of transplantation and the management of
autoimmune diseases. Tolerance conceptually originated from Owen’s observation of
blood cell sharing in twin calves. Owen’s conceptual framework subsequently constituted
the backbone of Medawar’s “actively acquired tolerance” as the major tenet of modern
immunology. Based upon this knowledge, the delivery of genetically distinct
hematopoietic stem cells into pre-immune fetuses represented a novel and unique
approach to their engraftment without the requirement of myeloablation or
immunosuppression. It might also make fetal recipients commit donor alloantigens to
memory of their patterns as “self” so as to create a state of donor-specific tolerance. Over
the years, the effort made experimentally or clinically toward in utero marrow
transplantation could not reliably yield sufficient hematopoietic chimerism for curing
candidate diseases as anticipated, nor did allogeneic graft tolerance universally develop
as envisaged by Medawar following in utero exposure to various forms of alloantigens
from exosomes, lymphocytes or marrow cells. Enduring graft tolerance was only
conditional on a state of significant hematopoietic chimerism conferred by marrow
inocula. Notably, fetal exposure to ovalbumin, oncoprotein and microbial antigens did
not elicit immune tolerance, but instead triggered an event of sensitization to the antigens
inoculated. These fetal immunogenic events might be clinically relevant to prenatal
imprinting of atopy, immune surveillance against developmental tumorigenesis, and
prenatal immunization against infectious diseases. Briefly, the immunological
consequences of fetal exposure to foreign antigens could be tolerogenic or
immunogenic, relying upon the type or nature of antigens introduced. Thus, the
classical school of “actively acquired tolerance” might oversimplify the interactions
between developing fetal immune system and antigens. Such interactions might rely
upon fetal macrophages, which showed up earlier than lymphocytes and were competent
to phagocytose foreign antigens so as to bridge toward antigen-specific adaptive
immunity later on in life. Thus, innate fetal macrophages may be the potential basis for
exploring how the immunological outcome of fetal exposure to foreign antigens is
determined to improve the likelihood and reliability of manipulating fetal immune system
toward tolerization or immunization to antigens.
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INTRODUCTION

Immunological tolerance refers to a state of immune nonreactivity
specific to particular antigens as the holy grail in the field of
transplantation and autoimmune diseases. The concept of
tolerance germinated in 1945 when Ray Owen discovered blood
cell chimerism in dizygotic twin calves with confluent fetal
circulations via unique placental vascular anastomoses (1).
Owen’s observation guided the researchers to experimentally
demonstrate reciprocal tolerance toward skin grafts of chimeric
dizygotic twins (2, 3) and paved the way to the formulation of
“actively acquired tolerance” in 1953 by Peter Medawar, who
preemptively inoculated murine fetuses with a mixture of donor
strain cells (4). Medawar’s work represented a conceptual advance
of immune tolerance. By extension, it was deemed to provide
experimental support for Burnet’s theory that self-nonself
discrimination by the immune system was not genetically
programmed but rather gradually learned in the embryonic
period or immediately post-embryonic stages (5). In other words,
antigen exposure before full immune development might elicit
tolerance to this specific antigen, making the intrauterine life
favorable for the implementation of medical interventions that
will be later hampered by immune responses. Based upon
Medawar’s knowledge and approach, prenatally-induced immune
tolerance has been experimentally replicable, but never been a
universal event in all or even most subjects of analogous
experiments by many researchers and our team. Paradoxically,
the event of in utero immunization to foreign antigens might be
sometimes experienced. Thus, a thorough review of the
experimental work involving fetal exposure to foreign antigens
might highlight the inconsistent and even conflicting outcomes,
and help to clarify the debates on this topic.
FETAL TOLERANCE TO MATERNAL
ANTIGENS AT THE MATERNAL-FETAL
INTERFACE

During pregnancy, placentation allows an intimate contact
between maternal and fetal cells at the maternal-fetal interface,
where bidirectional exchange of both mature and progenitor cells
occurs (6, 7). This two-way cell traffic contributes to fetal cells in
mothers (fetal microchimerism) and maternal cells in offspring
(maternal microchimerism), which play a pivotal role in averting
maternal-fetal immunological conflict during pregnancy (8).
Although such microchimerism was reportedly associated with
the pathogenesis of autoimmune diseases (9), a large body of
studies showed that developmental exposure to non-inherited
maternal antigen (NIMA) in the form of maternal
microchimerism would be of benefit to the outcome of NIMA-
matched transplants (7, 10, 11). This tolerizing effects of
maternal microchimerism on fetal immune system, termed as
Abbreviations: NIMA, non-inherited maternal antigen; GVHD, graft-versus-host
disease; MHC, major histocompatibility complex; HSC, hematopoietic stem cell;
BMC, bone marrow cell.

Frontiers in Immunology | www.frontiersin.org 2
the “NIMA effect” (7), are essentially compatible with the
principle of Medawar’s “actively acquired tolerance”, whereas
possible mechanisms might involve not only the central deletion
of NIMA-reactive T cells but also the induction of peripheral
regulatory T-cells (7, 11). Of note, the NIMA effect was highly
relevant to the degree of maternal microchimerism (12–14).
HISTORICAL REVIEW OF TOLERANCE
INDUCTION AFTER IN UTERO EXPOSURE
TO FOREIGN ANTIGENS

The concept of “actively acquired tolerance” has fascinated
immunological community for more than half a century and
attracted a number of laboratory work to replicate this
immunological phenomenon (15). In the 1950s, neonatal
exposure to soluble proteins such as ovalbumin, bovine serum
albumin, or human albumin and gamma globulin was claimed to
cause immunological unresponsiveness to these peptide antigens
(16–18). Although these animal studies at first glance seemed to
mirror Medawar’s work, an in-depth review for their approaches
to immune tolerance revealed that they might not be always
conducted or analyzed in a scientifically sound and sophisticated
way. For example, tolerance to soluble peptide antigens was
defined simply by either delayed clearance of antigens injected
(17, 18), or decreased percentage of fatal anaphylaxis to antigen
re-challenge without considering the underlying mechanism
behind the shock in individual animals (16).

During the 1960s, cells of different tissue origins were examined
for their tolerance-conferring capacity (19). Nodal or splenic
lymphocytes were found to have the excellent tolerogenic ability
to render the immunologically immature neonates tolerant of skin
allografts (19, 20). In A (H-2Kk, Dd, Ld, I-Ak, I-Ek) strain murine
recipients, not only did CBA (H-2Kk, Dk, Lnull, I-Ak, I-Ek)
lymphocytes compare favorably in CBA skin tolerance induction
with CBA×A F1 hybrid lymphocytes, but also made A strain
recipients susceptible to graft-versus-host disease (GVHD) (19).
Thus, graft-versus-host effects of CBA lymphocytes due to disparate
H-2D and L loci between CBA and A mice should have been
considered immunologically relevant to the suppression of host
immunity against donor skin grafts. Subsequently, CBA
lymphocytes were reported to induce CBA skin tolerance without
the occurrence of GVHD in C3H (H-2Kk, Dk, Lnull, I-Ak, I-Ek)
recipients (20). Immunologically, CBA skin tolerance in the absence
of adverse GVHD might result from the sharing of all the H-2 loci
between CBA donors and C3H recipients rather than tolerance-
conferring capacity of CBA lymphocytes. In fact, the relatively weak
or absent major histocompatibility complex (MHC) barriers of the
two stain combinations could not reflect the reality in clinical arena
with almost fully MHC-mismatched transplants. Reappraisal of the
tolerogenic properties of fullyMHC-mismatched naive lymphocytes
revealed that fetal recipients usually succumbed to GVHD before
skin tolerance could be examined (21). Therefore, the claimed
superiority of allogeneic lymphocytes for tolerance induction
apparently overlooked their detrimental graft-versus-host effects
that might lessen donor graft rejection.
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From the viewpoint of modern immunology, these 1950s-60s
studies of immune tolerance indeed left something to be desired.
Their experimental approaches and analyses reflected the
scarcity of immunological knowledge about graft rejection, and
limited laboratory tools at that time to investigate such a complex
phenomenon of immune tolerance. In 1970s-80s, a series of
studies demystified the crucial role of MHC in mediating cellular
immunity (22) and enabling transplantation rejection (23, 24).
Following the discovery of T-cell receptors (25) and a clear
understanding of T-cell ontogeny in respect of T-cell receptor
development (26, 27), immunology had already advanced
considerably to an extent that could not be envisaged in 1950s-
60s. In 1995, Carrier et al. (28) reassessed in utero tolerance
induction in a fully MHC-disparate nondefective murine model
(Table 1). Gestational days 11-13 fetuses were subjected to the
injection of fetal liver hematopoietic stem cells (HSCs) early
before the emergence of T-cells with T-cell receptor expression
(on around gestational day 17) (26). Postnatally, enduring donor
skin tolerance only developed in 3 (14%) of 22 fetal recipients.
Carrier’s result was discouraging because most of fetal recipients
failed to accept donor skin persistently within the terms of the
experiment. In 1996, Hajdu et al. achieved prenatally-induced
tolerance as donor skin acceptance only in 5 (5.1%) of 99
recipients surviving in utero injection of allogeneic fetal liver
HSCs (30). In Kim’s series (31), 6 (20%) out of 30 prenatally-
injected mice with skin transplant were tolerant to donor skin.
Likewise, our team suffered from frustration at a low success rate
of persistent donor skin tolerance (Figure 1), accounting for
Frontiers in Immunology | www.frontiersin.org 3
25.9% (38 cases) of 147 murine recipients surviving fetal
injection (32). Therefore, it was hard to reconcile a far less
than 50% success rate of donor graft tolerance induction with the
concept of “actively acquired tolerance”.

In 2018, Medawar’s work was illuminated from a distinctive
perspective by Hyung Wook Park (29). It was found that
Medawar did not publish the whole story of his experimental
tolerance induction in murine fetuses. A review of Medawar’s
laboratory notes revealed that tolerance recorded as their donor
skin survivals of over 1 month merely happened to 6 of 77 fetal
recipients in 15 sets of experiments (a partially MHC-
mismatched model, Table 1), along with failure or breakdown
of skin grafts at median survival time of 11 days in 56, survival
for 12-14 days in 4, and for 15-30 days in 11 (29). The overall
success rate was estimated at 7.8% (6/77), far much lower than
formally reported in 1953 Nature manuscript (3 out of six
murine fetuses, Exp. 73) (4). The whole picture called into
question as to whether such a low success rate of Medawar’s
experiment sufficed to be the decisive and conclusive evidence
supporting Burnet’s theory of self-nonself discrimination (15),
and reflect the reality of fetal exposure to foreign antigens.
HEMATOPOIETIC ENGRAFTMENT AFTER
IN UTERO HSC TRANSPLANTATION

Taking advantage of the pre-immune windows as proposed by
Medawar, in utero HSC transplantation stands out as a
TABLE 1 | Immunological outcome of fetal exposure to foreign antigens in mice.

Antigen type Inocula Recipients Outcome Remarks

Alloantigen (4) Cells from testis, kidney and
spleen of A strain mice (H-
2Kk, Dd, Ld, I-Ak, I-Ek)

GD15-16 CBA fetuses
(H-2Kk, Dk, Lnull, I-Ak,
I-Ek)

Skin tolerance (77, 91 and
101 days) in 3 of 6 recipients
(one-set experiment)

Pioneer work of a partially MHC-mismatched model by
Medawar et al. Skin tolerance > 30 days in 6/77 (15 sets of
experiments) (29). No chimerism examined

Alloantigen (28) B6 (H-2b) fetal liver HSCs GD11-13 BALB/C (H-
2d) fetuses

Skin tolerance >20 weeks in
3/22 recipients

Blood or tissue microchimerism

Alloantigen (30) C3H (H-2k) fetal liver HSCs GD14-16 B6 fetuses Skin tolerance in 5/99
recipients

Blood microchimerism

Alloantigen (31) B6 adult BMCs GD13-16 BALB/C
fetuses

Skin tolerance >8 weeks in 6/
30 recipients

Blood microchimerism

Alloantigen (32) B6 adult BMCs GD14 FVB/N (H-2q)
fetuses

Skin tolerance >120 days in
38/147 recipients

The requirement of a threshold chimerism level to establish
rather than maintain postnatal skin tolerance

Alloantigen (33) BALB/C MHC exosome or
enriched B6 B cells

GD14 FVB/N fetuses Decreased alloreactivity of
recipient lymphocytes

Delayed skin rejection in a state of B cell microchimerism

Alloantigen (34) B6 adult c-kit+ cells GD12-13 BALB/C
fetuses

In utero sensitization Accelerated skin rejection with alloreactivity in MLR.
Microchimerism might lead to alloreactivity.

Alloantigen (35) B6 adult Sca+Lin- cells GD13 BALB/C
fetuses

In utero sensitization No chimerism detected by PCR, Anti-donor alloreactivity in
MLR

Alloantigen (36) B6 adult Sca+Lin- or c-
kit+Lin- cells

GD11-13 BALB/C
fetuses

In utero sensitization Accelerated skin rejection with enhanced cytotoxicity and
Th1 cytokine release in Sca group

Allergen (37) Ovalbumin, Derp II GD14 FVB/N and
BALB/C fetuses

In utero sensitization Allergen contact in pre-immune fetuses might initiate Th2-
skewed atopy to facilitate allergy development.

Oncoprotein (38) HPV E7 GD14 FVB/N and B6
fetuses

In utero sensitization Fetuses could mount Th1 tumoricidal immunity against
tumorigenesis following in utero exposure to tumor antigens.

Microbial antigen
(39)

Salmonella antigens GD14 FVB/N fetuses In utero sensitization Fetuses were competent to mount adaptive immunity to
microbial antigens and defend against the pathogens in
postnatal life.
GD, gestational day; MLR, mixed lymphocyte reaction; PCR, polymerase chain reaction; Derp II, Dermatophagoides pteronyssinus group II; HPV, human papillomavirus; HSC,
hematopoietic stem cell; BMC, bone marrow cell.
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promising approach to hematopoietic engraftment across
allogeneic barriers without the requirement of myeloablative or
immunosuppressive regimens (40). As a result, it was once
deemed as a substitute for postnatal bone marrow
transplantation to cure a variety of genetic disorders such as
immunodeficiencies, hemoglobinopathies and inborn errors of
metabolism before disease onset in postnatal life (41). However,
over the past few decades, the clinical progress on in utero
marrow transplantation has never been made in parallel
with the fast-moving advances in prenatal diagnosis,
fetal intervention, and stem cell technology. Its clinical
application was precluded by the difficulty in consistently
achieving sufficient levels of allogeneic hematopoietic
engraftment, as evidenced by limited success only in inherited
immunodeficiency diseases, but little or even no clinical benefit
to congenital hematological or metabolic disorders (40, 41).

It was reported that the therapeutic benefit to murine (42) or
human (40) beta-thalassemia by cellular therapies necessitated
donor cell chimerism of 10-20%. Animal studies of in utero HSC
transplantation, aimed to artificially replicate blood chimerism,
had been conducted in sheep (43), monkeys (44), swine (45),
canine (46–48) and mice (28, 32, 49, 50). However,
hematopoietic engraftment was usually unsatisfactory, far
below that expected of therapeutic significance at the levels of
10-20% except for fetal sheep and sporadic recipients in canine
Frontiers in Immunology | www.frontiersin.org 4
and murine models. The sheep model represented a rare but
remarkable success in fetal transplantation. Three of 4 normal
fetal lambs developed donor cell chimerism of 14-29% following
fetal peritoneal injection of HSCs (43). In canine fetuses,
therapeutically significant chimerism (>10%) could be achieved
by intravascular administration of HSCs (46), in sharp contrast
to low-level chimerism by intraperitoneal approach (47, 48).
However, HSC injection via portal vein of fetal swine only led to
microchimerism (45).

The mouse has been the most popular model for the studies of
in utero HSC transplantation, whereas hematopoietic
reconstitution that reached therapeutic significance before 2000
mainly succeeded in genetically anemic (51, 52) or
immunodeficient (53, 54) murine fetuses. In normal murine
fetuses, transplants with graded doses of light-density bone
marrow cells (BMCs) containing 1-2% CD3 T-cells showed a
dose response in the chimerism rate and level (49). High-level
chimerism (>10% donor cells) emerged with a threshold dose of
5×106 BMCs administered to gestational day 14 murine fetuses.
At the dose of 7.5-10×106, high-level chimeras accounted for
around 14% of fetal recipients surviving the injection and
exhibited multilineage hematopoietic reconstitution. However,
high-level chimerism achieved by T-cell containing marrows was
accompanied by an over 50% incidence of GVHD (49).
Depletion of marrow T-cells prevented GVHD but lessened
FIGURE 1 | Skin graft tolerance in a state of hematopoietic chimerism. Following in utero injection of C57BL/6 (H-2b) BMCs into gestational day 14 FVB/N (H-2q)
fetuses, skin transplantation was performed in a representative mixed chimera with 5.63% peripheral blood cell chimerism at 1 month old. The image taken at
5 months old showed that syngeneic FVB/N (arrow) and donor C57BL/6 (black hair) skin grafts were well accepted with good hair growth, but third-party C3H
(H-2k, arrowhead) skin had been rejected with a scar. It supported a state of donor-specific immune tolerance.
April 2021 | Volume 12 | Article 638435
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hematopoietic engraftment (49, 55–58). It was worth mentioning
that developing fetuses were even more vulnerable to allogeneic
T-cell attack, as evidenced by the observation that fully MHC-
mismatched lymphocytes rapidly elicited lethal GVHD in fetal
recipients (21). As a result, the benefit from allogeneic T-cells in
hematopoietic reconstitution must be weighed against the
potential risk of GVHD in pre-immune fetuses.

As for naturally-occurring hematopoietic engraftment in
dizygotic twins of cattle, sheep, goats (59), primates (60) and
even humans (61, 62), its levels were reported to range from
micro- to nearly full chimerism, similar to what had been
observed following artificial administration of allogeneic
marrows in utero (32, 49). The inconsistent engraftment even
happened to a litter of pups injected in utero with an identical
dose of marrow inocula from the same batch (49). The hidden
obstacles to allogeneic HSC engraftment during gestation
periods might comprise maternal T-cells (63), the competitive
milieu (64, 65) and potential immune barriers (66, 67) of fetal
recipients. However, it remained difficult to explain why high-
level donor cells could persist only in peritoneum where marrow
cells were inoculated prenatally (49, 68). Although in utero HSC
transplantation was not considered to be reliably therapeutic, it
might be alternatively employed to prenatally induce donor-
specific tolerance, thereby mitigating or even obviating the
allogeneic immunoreactivity to facilitate postnatal therapies (50).
ALLOGENEIC GRAFT TOLERANCE IN A
STATE OF HEMATOPOIETIC CHIMERISM

Skin allograft rejection was first described as a phenomenon of
immune reactions in a burn patient and the rabbit model in
1940s (69, 70). Subsequently, it was found that this immune
defense against allografts could be mitigated or even blocked in a
state of hematopoietic chimerism in twins with naturally-
occurring blood exchange (1-3) or through artificial
inoculation of mixed donor cells during pre-immune fetal
stage (4). Similar graft tolerance could be observed in a state of
peripheral leukocyte chimerism following donor marrow cell
infusion in an irradiated adult dog preparatory to renal
transplantation (71). However, among a number of successful
organ transplants in humans, some recipients might eventually
experience immunosuppressive-free graft acceptance without
preceding donor leukocyte/marrow infusion or overt donor
leukocyte chimerism in circulation (72). It caused the dismissal
of a link between organ engraftment and donor leukocyte
chimerism for almost three decades. It was not until 1992,
when Starzl et al. discovered a trace of donor leukocytes
(microchimerism) in the tissues or blood of long-surviving
human liver or kidney allograft recipients due to advancement
in phenotyping techniques, that the association between
chimerism and graft tolerance attracted attention (73, 74).

Although immunological tolerance achieved by solid organ or
bone marrow transplantation shared a common phenomenon of
hematopoietic chimerism, whether the chimerism had the nature in
common or two distinct states remained a matter of debate.
Frontiers in Immunology | www.frontiersin.org 5
Hematopoietic chimerism after organ transplantation resulted
from passenger leukocytes that previously harbored within the
donor grafts and migrated ubiquitously in the recipients through
circulation (73, 74). Chimeric donor cells were obviously sparse in
the recipients (75), but might exhibit striking biological effects far
exceeding its number (76). The tolerogenic capacity of an organ
basically reflected its comparative content of migratory leukocytes,
evidenced by the observation that passenger leukocyte-rich liver had
much more potent tolerogenicity for its own acceptance than the
leukocyte-poor kidney and heart (75).

Although Starzl’s discovery spotlighted chimerism in the
transplantation community, but a consensus on the role of
chimerism in graft tolerance was never reached (77). Recipients
with long-term renal graft survivals might experience a low
incidence (one-third) of microchimerism (78). Moreover, organ
recipients with persistent microchimerism might not be weaned
from immunosuppressives, or at times experienced graft rejection
(79, 80). Paradoxically, the intragraft passenger leukocytes were
once regarded as the major allo-immunogenic stimulus to elicit
rejection (81). The inconsistency or confliction made it difficult to
establish clinical benefit from microchimerism as a reliable marker
of graft tolerance for discontinuing immunosuppressives in organ
recipients (77, 82). It was worth mentioning that organ recipients
generally demanded sufficient immunosuppressive regimens to
prevent graft rejection, and as such to suppress clearance of
passenger leukocytes that egressed from organ transplants to
allow the occurrence of microchimerism and then the
development of drug-free tolerance in some cases (75). Under the
circumstances, the detection of microchimerism in the recipients
did not necessarily imply the cause of graft acceptance, but might
contrarily represent the result of graft acceptance or the effect of the
immunosuppression required for preventing rejection (77).

Graft tolerance could be induced through the creation of mixed
chimerism by bone marrow transplantation involving myeloablation
and immunosuppression to various degrees (83). Years of effort with
adult animal studies showed that chimerism levels achieved were
directly associated with the probability or degree of graft tolerance
(84–86). Recipients usually developed high-level chimerism (86–89),
which was a sure warrant of donor graft tolerance (85) unless there
was a lack of donor T-cell engraftment after transplantation (90, 91).
However, it was difficult to evaluate to what extent donor cell levels
(77) or test graft survivals (84) came from the confounding effects of
preconditioning or immunosuppressive programs. Moreover,
questions remained as to whether chimerism led to tolerance or an
induced state of tolerance permitted chimerism (84).

The conferment of skin tolerance in Medawar’s experiment of a
partially MHC-mismatched murine model was not an all-or-none
event but rather a graded phenomenon (29) with test graft survivals
varying from only a few days of grace beyond the median survival
time to 1 month or longer. The graded phenomenon of skin
tolerance was also observed following in utero transplantation of
fully MHC-mismatched HSCs in mice (28, 32, 49), as evidenced by
a wide variability of donor skin survivals, ranging from prolonged
for a few days or weeks over their counterpart controls to persistent
for more than 4 months, highly relevant to hematopoietic
chimerism actually obtained (32, 49, 92). In the fetuses with twin-
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twin transfusion, naturally-occurring chimerism caused a variable
degree of tolerance to reciprocal skin grafts in dizygotic twins (2, 3).
It might reflect a wide range of hematopoietic chimerism caused by
twin-twin transfusion (59–62), similar to what was illustrated by
artificial mixing of allogeneic HSCs through in utero transplantation
(32, 49). Thus, in utero HSC transplantation would be an ideal
model to interpret the influence of hematopoietic chimerism on
graft tolerance without the interference from myeloablation
and immunosuppression.
INDUCTION AND MAINTENANCE OF
GRAFT TOLERANCE FOLLOWING IN
UTERO HSC TRANSPLANTATION

In Hayashi’s study of fetal transplantation in mice, 1-2%
circulating donor cells at 3 weeks old sufficed to sustain donor
skin tolerance for 8 weeks (50). However, chimerism levels of <2%
at 1 month old were not considered as durable, and might fade
away by 6 months old (32). In these low-level mixed chimeras, the
timing of skin grafting influenced graft acceptance with the critical
parameter being the chimerism level at skin placement in
preference to a higher level earlier in life prior to skin grafting
(32). Thus, induction of complete skin tolerance appeared feasible
within a window of opportunity afforded by the presence of
sufficient circulating donor cells at skin transplantation. Donor
skin tolerance consistently developed for at least 4 months with
chimerism levels of >3% at skin transplantation, but appeared in a
gray-zone success of around 35% with chimerism levels of 0.2-3%
(32). The gray-zone chimerism levels linked to the ambiguity in
predicting graft tolerance might reflect the conflicting association
between tolerance induction and low-level chimerism in previous
studies (28). Regardless of skin tolerance status, prenatally-created
chimerism could attenuate or abolish donor-specific T-cell
alloreactivity in mixed chimeras (32). Therefore, complete skin
tolerance might develop through the tolerogenic effects of donor
skin under a state of chimerism-related immunosuppression
of host lymphocytes. Namely, hematopoietic chimerism
exerted immunomodulatory effects on the induction phase of
allograft tolerance. It was essentially in keeping with the
proposition that inhibition of initial graft rejection by sufficient
immunosuppression might allow the tolerogenic properties of
organ allografts to eventually prevail (93), and also reflected the
phenomenon that transfusion or adoptive transfer of donor
leukocytes with solid organ transplants induced prolonged
allograft survivals instead of long-term graft tolerance (94, 95).

Whether maintenance of graft tolerance relies upon chimerism
remains a matter of debate. In adult recipients with skin tolerance
after marrow transplantation, artificial elimination of engrafted
donor cells led to the rejection of existing donor skin grafts,
indicating the requirement of chimerism for tolerance
maintenance (96, 97). However, it was likely that the antibodies
used to deplete donor cells might jeopardize donor skin survivals. In
nonhuman primates or humans treated with simultaneous marrow
and renal transplants (98–100), graft tolerance persisted despite
spontaneous loss of peripheral chimerism. Thus, alloantigens
Frontiers in Immunology | www.frontiersin.org 6
present in the form of the surviving organ grafts might help to
maintain tolerance (83, 98, 100). In fetal recipients receivingmarrow
transplantation without any preconditioning, spontaneous
regression of peripheral and tissue chimerism did not cause the
rejection of donor skins engrafted previously under sufficient
peripheral chimerism, nor did the removal of engrafted donor
skin break the state of tolerance in tolerant mice that had lost
peripheral chimerism (32). It argued against the necessity of donor
cell chimerism or donor skin alloantigens for enduring allogeneic
tolerance. Thus, prenatally-created hematopoietic chimerism was a
simple and straightforward marker to predict the establishment
rather than maintenance of postnatal graft tolerance.
IN UTERO EXPOSURE TO ALLOANTIGENS
IN VARIOUS FORMS

HSCs in BMC inocula contributed to blood cell chimerism in fetal
transplantation, and stood out as being particularly pertinent to
donor skin tolerance in postnatal life. Lymphocytes, rich in
alloantigens but devoid of HSCs, were used as the substitute for
BMCs to scrutinize the immunological outcome of prenatal
alloantigen exposure independently of HSC engraftment (21).
They showed lethal graft-versus-host effects on the recipients early
in fetal or neonatal life, and lacked substantial capacity of conferring
significant hematopoietic chimerism and skin graft tolerance even at
acceptable doses. MHC exosomes and B-cells represented soluble
and cellular forms of alloantigens, respectively. Their tolerogenic
capacity in pre-immune fetuses was examined without the
interference from HSC engraftment or graft-versus-host effects
(33). Their injection in utero led to the suppression of host
lymphocyte alloreactivity specific to donor alloantigens rather
than donor skin tolerance (Table 1). Although highly enriched B-
cell inocula might generate low-level B-cell chimerism, they only
extended the survivals of donor skin grafts by a few days in
the recipients.

Apparently, BMCs were the unique alloantigen inocula for in
utero induction of allo-tolerance, which ensued conditionally on the
establishment of significant hematopoietic chimerism. Despite that
the dose of self-antigens determined the consequence of deletional
tolerance (101) and donor T-cell engraftment were critical for
tolerance induction in mixed chimeras (90, 91), neither an increase
in BMC doses nor donor T-cell contents benefited skin graft survivals
unless it had substantially improved peripheral chimerism following
in utero marrow transplantation (49). Altogether, it might dawn on
researchers in the field that hematopoietic chimerism had an
indispensable role in facilitating skin graft survivals, arguing against
the self-nonself concept that a simple contact with alloantigens early
in utero made them perceived as self by the fetus.
PERVERSE OUTCOME OF IN UTERO
EXPOSURE TO FOREIGN ANTIGENS

In the literature (Table 1), there was no shortage of animal studies
that failed to induce allo-tolerance or oppositely initiated an event of
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immunization in fetal (34–36) as well as neonatal recipients (102).
These inconsistent or even conflicting results seemingly clouded the
picture of fetal or neonatal tolerance induction (103, 104). Armed
with the knowledge of “actively acquired tolerance”, we had
conducted a study to evaluate the feasibility of allergen
desensitization through intraperitoneal exposure to soluble
ovalbumin allergens in pre-immune murine fetuses. It turned out
to be an unintended consequence of in utero sensitization (37),
characterized by heightened recall Th2-skewed immunity and fatal
anaphylaxis (Figure 2) in response to postnatal ovalbumin re-
encounter in postnatal life. Moreover, postnatal aerosolized
ovalbumin stress elicited allergic lungs, leading to functional and
structural alterations of airways. Thus, fetal immunogenic capacity
had the important implication for prenatal imprinting of atopy.
Recently, we further disclosed that in utero exposure to oncoprotein
triggered antigen-specific Th1 adaptive immunity to protect from
tumorigenesis (38). It suggested the capacity of fetal immune system
for immune surveillance against developmental tumorigenesis given
an encounter with tumor antigens egressing during embryogenesis.
Moreover, fetal exposure to microbial antigens could confer
antigen-specific adaptive immunity against lethal microbial
challenge (39), indicating the feasibility of fetal immunization
against infectious diseases. As a whole, it threw into sharp relief
the fact that fetal exposure to foreign antigens did not always induce
tolerance, but might lead to immunogenic events with
biological significance.
THE ROLE OF FETAL MACROPHAGES IN
SHAPING FETAL IMMUNE RESPONSES

In a state of prenatally-created hematopoietic chimerism, the
mechanisms underlying donor-specific T-cell nonreactivity were
mainly attributed to the central deletion of donor reactive
lymphocytes via direct or indirect pathways of antigen
presentation (105, 106) despite that peripheral mechanisms of
anergy and regulatory T-cells had been reported (105). Thymic
deletion highly related to peripheral chimerism (105), which
Frontiers in Immunology | www.frontiersin.org 7
showed a linear correlation with thymic chimerism (32). It
reflected not only the requirement of sufficient intrathymic
donor cells for effective clonal deletion (105), but also the
rationale for peripheral chimerism levels as a biomarker of
postnatal skin tolerance (32). Thus, antigen presenting cells,
either donor or recipient origin, might be critical for the
immunological outcome following in utero exposure to foreign
cells. Fetal macrophages were dendritic cell progenitors (37),
emerging early during embryogenesis as the first immune cells
capable of taking up nonself antigens, particles or dead cells in
fetal life (107, 108). The pre-immune stage, usually referring to
the period before full development of adaptive (T-cell)
immunity, may not be early enough for the fetus to be
“tricked” into ignoring nonself antigens as long as innate
phagocytes remain functioning well and competent. Fetal
macrophages were demonstrated to play a critical role in
dealing with antigens present in utero and effectively retaining
their memory after antigen internalization early before T-cell
maturation so as to regulate the immunological outcome of fetal
antigen exposure (37, 38). The role of fetal macrophages in clonal
deletion or tolerance induction to alloantigens awaits further
experimental elucidations.
CONCLUSION

The immunological consequences of fetal exposure to foreign
antigens were more intricate than first envisaged by Medawar.
Fetal exposure to alloantigens might lessen or abolish recipient
lymphocytes’ alloreactivity, but not necessarily confer donor graft
tolerance. The successful induction of long-lasting postnatal graft
tolerance was relatively a rarity, which constituted the course of
Medawar’s experiment from the outset (29) and a number of
analogous studies later as well (28, 30–32, 49, 50). More
specifically, complete graft tolerance was only conditional on the
achievement of significant hematopoietic chimerism following
in utero transplantation of marrow inocula (32). Thus, allo-
tolerance could not be induced simply by an early in utero
FIGURE 2 | Anaphylaxis in FVB/N mice prenatally exposed to ovalbumin. Gestational day 14 FVB/N fetuses were intraperitoneally exposed to free ovalbumin
peptides. Postnatally, they received intraperitoneal ovalbumin re-challenge. (A) Within 10-15 minutes, mice developed limb weakness and (B) cyanotic nose, ears,
(C) genitalia, feet and tail as compared with the normal control (right mouse). Subsequently, the mice presented with shallow breathing, and finally succumbed to
anaphylaxis. Postnatal anaphylaxis indicated a prior sensitization event in fetal life.
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contact with alloantigens. Contrary to “actively acquired tolerance”,
in utero exposure to soluble ovalbumin (37), oncoprotein (38), or
microbial antigens (39) triggered antigen-specific adaptive
immunity. The immunogenicity in fetal life has a noteworthy
relevance to human health such as prenatal initiation of allergy,
immune surveillance against developmental tumorigenesis and
prenatal immunization against infectious diseases. Taken as a
whole, the immunological consequences of fetal exposure to
foreign antigens could be tolerogenic or immunogenic, relying
upon the type or nature of antigens introduced.
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