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Abstract

Genome data are becoming increasingly important for modern medicine. As the rate of increase in DNA sequencing
outstrips the rate of increase in disk storage capacity, the storage and data transferring of large genome data are becoming
important concerns for biomedical researchers. We propose a two-pass lossless genome compression algorithm, which
highlights the synthesis of complementary contextual models, to improve the compression performance. The proposed
framework could handle genome compression with and without reference sequences, and demonstrated performance
advantages over best existing algorithms. The method for reference-free compression led to bit rates of 1.720 and 1.838 bits
per base for bacteria and yeast, which were approximately 3.7% and 2.6% better than the state-of-the-art algorithms.
Regarding performance with reference, we tested on the first Korean personal genome sequence data set, and our
proposed method demonstrated a 189-fold compression rate, reducing the raw file size from 2986.8 MB to 15.8 MB at a
comparable decompression cost with existing algorithms. DNAcompact is freely available at https://sourceforge.net/
projects/dnacompact/for research purpose.
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Introduction

Massively parallel sequencing (MPS) is leading revolutionary

advances in understanding of health and disease in humans. It

produces far more sequencing reads at a significantly lower cost

than conventional techniques such as Sanger-based capillary

sequencing, which contributed to the Human Genome Project

that released the first human DNA sequence in 2001 [1]. Each

human has two complementary copies of 3.2 Gigabases. The 1000

Genomes Project [2] has produced more than fifty TeraBytes (TB)

of data with 1,092 individuals from fourteen populations, toward

the goal of sequencing 2,500 individuals in total [3]. The data size

of the Sequence Read Archive, an international public archival

resource of sequence reads, is expecting to exceed 1000 Terabases

by the end of 2013 (http://www.ncbi.nlm.nih.gov/Traces/sra/

sra.cgi?view = announcement/). The sequencing output is dou-

bling every nine months, surpassing the performance improve-

ments of computation and storage [4]. Data compression methods

for reducing the storage space and saving the data transfer

bandwidth are becoming crucial for the efficient management of

large genome data.

Two previous studies [5,6] have classified genome compression

problem into three categories based on the data type: (1) unaligned

short reads in FASTQ format (e.g. Quip [7], G-SQZ [8],

SCALCE [9] and DSRC [10]); (2) aligned short reads in BAM

format (e.g. CRAM [11], SlimGene [5], SAMZIP [12], and NGC

[6]); and (3) assembly in FASTA format (e.g. XM [13], RLZ [14],

GRS [15], compression with the Burrows-Wheeler transform [16]

and GReEn [17]). In this paper, we focus on the third category

and study the compression issue in two scenarios, i.e., without and

with a reference sequence.

De novo sequencing, where the reference sequence is unavail-

able, is getting a lot of attention from the biomedical community.

One such example is in metagenomics [18], where combined

metagenome is enormous even though individual genome size

might be small. In the realm of reference-free genome data

compression, two categories of approaches, dictionary-based algo-

rithms and statistics-based algorithms, are used to tackle this problem.

Most dictionary-based methods search for repeating subsequences

(including forward and reverse complements) and encode them by

referring a previous subsequence with maximum matching length.

The most representative works include the first dedicated DNA

compression algorithm Biocompress [19] and CTW+LZ [20].

Alternatively, researchers also use low-order Markov models to

encode regions [21–24] when the substitutional methods perform

unfavorably. The statistical coding algorithms been evolving: the

rudimentary second-order arithmetic encoding [24], the normal-

ized maximum likelihood (NML) algorithm [25], the expert-model

(XM) algorithm [13] and the state-of-the-art FCM-C [26]

algorithm. NML aims at finding the best regressor block, i.e.,

approximate repetition or first-order dependencies that have not

been considered in the substitutional approaches. XM relies on a

mixture of experts to provide symbol-by-symbol probability

estimates that are used to drive an arithmetic encoder (AE).

FCM-C uses two competing finite-context models to capture

different aspects of statistical information along the sequence.
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Due to the fact that the nucleotide diversity within the same

species is relatively small (e.g., the difference in humans is around

0.1% [27], i.e., one difference per 1,000 base pairs), most recent

improvements in genome compression models are reference-

based, such as RLZ [14], GRS [15] and GReEn [17]. RLZ

indexes the reference sequence and applies the relative Lempel-Ziv

algorithm. GRS applies the Huffman algorithm after checking the

differential rate between the target and reference sequences.

GReEn is based on arithmetic coding that relies on the copy

model, where the pointers to the reference sequence position

(highly likely conserved ones) are encoded to generate the

probability distribution of the symbols. All these existing

reference-based DNA compression algorithms apply identical

schemes to the mapped regions that can find the repeats in the

reference sequence and unmapped regions, which lead to a source

of redundancy in the compressed file.

Essentially, all compression methods have to make compromise

on the trade-off between compression ratio and complexity. We

setup our target applications to a practical scenario, where disk

space is the limiting factor but compression time is relatively more

tolerable. We propose a novel two-pass lossless DNA compression

framework to take advantage of dictionary-based and statistics-

based algorithms to deal with the genome compression for

scenarios with and without reference sequences. A high level

overview is illustrated in Figure 1.

In the first pass of compression without references (COMPACT-

NOREF), we search exact repeats within the raw sequence as well as

complementary palindromes and represent them by a compact

quadruplet. This is slightly different in the first pass of compression

with references (COMPACT-REF), in which we study variations

between the target sequences and reference sequences from the same

species. Both COMPACT-NOREF and COMPACT-REF share

the same second pass. Our main contributions are two-fold. First, we

introduce non-sequential contextual models to capture non-sequen-

tial characteristics within DNA sequences, which are not considered

in the existing DNA compression methods. Second, contrary to

methods XM [13] and FCM-Mx [28] that combine contextual

models by Bayesian averaging and its modifications, our approach

for synthesizing contextual models is less likely to produce biased

results (As pointed out by Minka [29], Bayesian averaging tends to

favor only one model among many with MAP (i.e., Maximum A

Posteriori) estimation, while logistic regression assigns ‘’weights’’ as

the expression of the ‘’appropriateness’’ of all candidate hypotheses

to make full use of the information that is available).

Materials and Methods

Experimental Materials
We used a public dataset of DNA sequences in Table 1, which has

been used in many other DNA compression publications (ftp://ftp.

infotech.monash.edu.au/ftp/ftp/software/DNAcompress-XM/

XMCompress/dataSet/). The material (www.mfn.unipmn.it/

manzini/dnacorpus) showed in Table 2 is the same as the one

used by Manzini et al. in dnaX [30]. This corpus contains

sequences from four organisms: yeast (Saccharomyces cerevisiae,

chromosomes 1, 4, 14 and the mitochondrial DNA), mouse

(Mus musculus, chromosomes 7, 11, 19, X and Y), arabidopsis

(Arabidopsis thaliana, chromosomes 1, 3 and 4) and human (Homo

sapiens, chromosomes 2, 13, 22, X and Y). In our experiments,

we also used the bacteria DNA sequences (Table 3) collected

from the National Center for Biotechnology Information

(NCBI) directory (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/).

In addition, complete DNA sequences of eleven species of

various sizes were also used [31–41].

For compression with a reference sequence, we used the same

data as those listed in [17,15] to perform a fair comparison with

GRS [15] and GReEn [17]. These data include two versions of the

individual Korean genome sequences, KOREF_20090131 and

KOREF_20090224 [42]. Note that the genome of a Han Chinese

is referred to as YH [43]. The human genome reference assembly

hg18 was released from the UCSC Genome Browser.

Algorithm Description
The proposed two-pass framework for DNA compression is

depicted in Figure 2. In this section, we start with the description

of the proposed first pass, which focuses on substitution-based

exact matching coding (EMC). For the second pass, we introduce

our pattern-aware contextual modeling technique.

The first pass
The goal of this pass is to remove redundancy, such as

repetitions, reverse complements (a.k.a., complemented palin-

Figure 1. Overview for two versions of DNA COMpression based on Pattern-Aware Contextual modeling Technique (COMPACT). In
the first pass, the COMPACT-NOREF scheme aims to search self-similarity and complimentary palindromes within raw sequence, while the COMPACT-
REF scheme explores the sparse representation of the target sequences in terms of the reference sequence. Both schemes share the second pass to
discriminate statistical regularities.
doi:10.1371/journal.pone.0080377.g001
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dromes), etc. Because COMPACT was designed to handle

genome data compression with and without references, we will

discuss the first pass algorithms for each scenario, separately.

Without reference. Figure 3 illustrates how the first-pass

algorithm works in situations without a reference. Like the typical

compression algorithm Lempel-Ziv (i.e., LZ) ([44]), suppose the

initial portion S½1,Z{1� of the input sequence has been

compressed, and S½Z,N� is the remaining sequence to be

compressed, where Z indicates the Z-th symbol andNis the total

length of the input sequence. We denote the

Table 1. Comparison of DNA compression performance on a standard dataset.

Seq. DNA3 XM500 FCM
COMPACT
-seq COM-NOREF Default

(2004) (2007) (2009) dnaX LZ Lm

CHMPXX 1.6782 1.6598 1.6276 1.6491 1.6490 1.6470 50 1.6532

CHNTXX 1.6223 1.6088 1.6270 1.6046 1.6027 1.6008 18 1.6063

HEHCMVCG 1.8463 1.8426 1.8472 1.8386 1.8072 1.8185 18 1.8076

HUMDYSTROP 1.9533 1.9031 1.9258 1.9190 1.9202 1.9086 18 1.9295

HUMHBB 1.8807 1.7543 1.8650 1.8309 1.8291 1.8254 50 1.8359

MPOMTCG 1.9312 1.8826 1.9213 1.9021 1.9029 1.8944 30 1.9067

MTPACG 1.8735 1.8487 1.8641 1.8448 1.8439 1.8393 30 1.8491

VACCG 1.7645 1.7659 1.7697 1.7577 1.7553 1.7534 18 1.7591

Average. 1.8182 1.7832 1.8060 1.7933 1.7881 1.7859 - 1.7934

Note: Values in each column (except for Lm) refer to bit per base (bpb). Lm refers to the respective minimum match length in the first pass and ‘Default’ column
represents the compression results of COM-NONREF with default parameter Lm (i.e., 25). The ‘’XM500’’ refers to the XM algorithm using at most 500 experts.
‘’COMPACT-seq’’ indicates one mode of our proposed method that uses only traditional sequential models followed by logistic regression model. The value of the best
performance model is in bold font.
doi:10.1371/journal.pone.0080377.t001

Table 2. Compression of DNA compression performance on four organisms.

Sequence Size DNA3 XM500 FCM COMPACT Default

(bytes) (2004) (2007) (2009) -seq -NOREF Lm

y-1 230,203 1.871 1.8103 1.860 1.8478 1.8432 15 1.8552

y-4 1,531,929 1.881 1.8687 1.879 1.8719 1.8682 20 1.8710

y-14 784,328 1.926 1.9141 1.923 1.9154 1.9114 20 1.9136

y-mit 85,779 1.523 1.4714 1.484 1.4305 1.4309 40 1.4515

Average -- 1.882 1.8642 1.877 1.8684 1.8648 -- 1.8686

m-7 5,114,647 1.835 1.7259 1.811 1.7933 1.7842 80 1.8029

m-11 49,909,125 1.790 1.6759 1.758 1.7584 1.7528 40 1.7637

m-19 703,729 1.888 1.8126 1.870 1.8368 1.8355 50 1.8509

m-x 17,430,763 1.703 1.5235 1.656 1.6653 1.6463 100 1.6780

m-y 711,108 1.707 1.4904 1.670 1.6600 1.6570 100 1.6696

Average -- 1.772 1.6429 1.738 1.7386 1.7297 -- 1.7461

at-1 29,830,437 1.844 1.7495 1.831 1.8270 1.8239 60 1.8199

at-3 23,465,336 1.843 1.7297 1.826 1.8263 1.8220 50 1.8183

at-4 17,550,033 1.851 1.7527 1.838 1.8386 1.8313 100 1.8263

Average -- 1.845 1.7437 1.831 1.8296 1.8251 -- 1.8209

h-2 236,268,154 1.790 1.632* 1.755 1.7554 1.7359 100 1.7661

h-13 95,206,001 1.818 1.664* 1.723 1.7849 1.7677 100 1.8134

h-22 33,821,688 1.767 1.5943 1.696 1.6824 1.6705 60 1.7423

h-x 144,793,946 1.732 1.493* 1.686 1.6923 1.6652 150 1.7042

h-y 22,668,225 1.411 1.1251 1.397 1.3746 1.3555 100 1.3732

Average -- 1.762 1.5760 1.711 1.7227 1.7020 -- 1.7395

Note: Values in each column (except for Size and Lm) refer to bits per base (bpb). ‘*’ indicates that a model consumes much more memory (around or larger than 2.0GB)
than other methods. The proposed algorithm COMPACT-NOREF provides a best result among all other algorithms (except ‘XM’).
doi:10.1371/journal.pone.0080377.t002
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portionS½max(1,Z�W),Z� 1�as the search window for the

remaining sequence S½Z,N�, where Wis the predefined sliding

window size. The algorithm compares substrings with-

inS½max(1,Z�W),Z� 1�and S½Z,ZzW� 1�to find the longest

match S½Z,ZzM� 1�(such that L#M#W), where L is a

threshold parameter (we will discuss the ‘’optimal parameter’’ in

the Results section).

As illustrated in Figure 3, each repeat is represented by a

quadruplet vD,r,P,Mw:Substitution flag ‘D’ is encoded in the

second pass with other DNA bases, so it is not discussed here.

Matching type r requires only one bit, which has no need of

compression. We concentrated on the encoding of the offset

position P and the matching length M. Our algorithm calculated

the offset position P as the distance (i.e., number of symbols)

between the first symbol of matching and the beginning of the

search window (see Figure 3).

We used a log-skewed encoding mechanism [30] to store the

offset position Pbecause: (1) the average code length of such

method is no more than qlog2(P)r bits, and (2) the method assigns

fewer bits for smaller P when possible. Regarding the longest

matching length M, we encoded the value of M� Lz1 instead of

M (because M§L) for better coding efficiency, using a Gamma

coding mechanism [45] that writes the value’s binary represen-

tation preceded by qlog2(M� Lz1)r zeros. We replaced each

subsequence that has a satisfying match with the corresponding

encoded quadruplet, and sent unmatched bases to the second pass

COMPACT coder for further processing.

With reference. We used an adaptive mechanism (denoted by

rLZ) to compress genomes when reference sequences are available.

Similar to the aforementioned first pass in the reference-free

compression, rLZ treats subsequences of the reference sequence as

the sliding window, and conducts bi-directionally searches from

the starting position for the longest and nearest exact repeats of the

current DNA fragment in the target sequence (see Figure 4). The

bi-directional search ensures the tracking of substitution, insertion,

and deletion at a close range between the target sequence and the

reference sequence.

Different from the scenario for compression without reference,

the match length Mis usually much longer and the offset value P is

much smaller. Hence, we encoded the match length M by log-

Table 3. Individual compression results on the five sequences of bacteria.

Sequence XM500 (2007) FCM-Mx (2011) Semi -COMPACT COMPACT -seq COMPACT NOREF

Time bpb Time bpb Time bpb Time bpb Time bpb

NC_013929 288 1.786 71 1.754 340 1.7269 140 1.7588 310 1.7153

NC_014318 296 1.789 73 1.739 350 1.7083 150 1.7496 313 1.7025

NC_013595 312 1.796 73 1.759 350 1.7268 150 1.7651 319 1.7189

NC_013131 323 1.817 75 1.779 352 1.7397 160 1.7857 319 1.7366

NC_010162 371 1.755 92 1.743 438 1.7296 170 1.7443 386 1.7230

Average 1.7870 1.7543 1.7265 1.7600 1.7204

Note: The minimum match length Lm in the first pass is set to 25 in this experiment. The unit of time is second and ‘bpb’ refers to bits per base. Results of ‘’FCM-Mx’’ are
obtained from ([28]) as we could not obtain the software to test in our own computer.
doi:10.1371/journal.pone.0080377.t003

Figure 2. Our proposed two-pass DNA compression framework. The first pass is designed to maximally reduce repetitions. The second pass
handles statistical regularities in the non-repetition zones by synthesizing a mixture of contextual models. ‘’EMC’’ refers to ‘’Exact Matching Coding’’
and ‘’EMD’’ refers to ‘’Exact Matching Decoding’’.
doi:10.1371/journal.pone.0080377.g002
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skewed coding while encoding the offset value P using Gamma

coding. Likewise, the remaining bases after substitution or

insertion will be sent to the second pass.

The second pass
After the first pass, the remaining uncoded sequence will be

further compressed through our second pass, in which each

contextual model provides a probability given certain prior

knowledge of the symbol/bit to be encoded, as shown in Figure

5. Then, the logistic regression model will synthesize these

contextual models’ predictions. The eventual output will be sent

to an arithmetic encoder (i.e., a form of entropy encoding that

encodes the entire message into a single message).

The example shown in Figure 6 offers an intuitive way to show

the advantage of non-sequential contextual models [46]. Suppose

that the alphabet of DNA sequence complies with the following

mappings, i.e., T-00, A-01, G-10, C-11. Then, for example, a

given DNA sequence ATCAT in Figure 6 can be represented by

its corresponding binary form as 0100110100. The left side of

Figure 6 shows a d~3 order sequential contextual model for the

given binary DNA sequence, where each bit yt at location t

depends on the previous three bits, i.e., yt{1
t{3~ yt{3,yt{2,yt{1f g

(the red link lines are an example). In contrast, a d~3 order non-

sequential contextual model can be found in the right side of

Figure 6, where each bit yt only depends on the bits yt{3 and

yt{1. Furthermore, we define the dependency of the DNA bit as

the context denoted by s. For example, both s~ yt{3,yt{1f g and

s~ yt{1f g are the contexts of yt in our non-sequential model. We

also define as and bs as the number of bit 0’s and bit 1’s with the

context s in a given DNA sequence, for which we will not assign

any context for the first d bits in the sequence. For instance, the

number of bit 0’s and bit 1’s with context s~f1g(the bits with

yellow color) in the left side of Figure 6 is as~2 and bs~1. Finally,

we denote by Pe(as,bs)the estimated probability under corre-

sponding context, and use Pw(Pe(as,bs),S) to represent the

weighted probabilities over a set of contexts S (i.e.Vs,s[S).

Readers can check the CTW algorithm in ([47-48]) for more

details about procedures for calculating Pe(as,bs) and

Pw(Pe(as,bs),S). In the example illustrated in Figure 6, the

probability Pw(Pe(as,bs),S) obtained through a non-sequential

model is much higher than that of a sequential model. As a higher

Pw(Pe(as,bs),S) will result in a better compression performance (in

an arithmetic coder), we expect the non-sequential model have

greater prediction power in this case.

Given a DNA sequence yN
1 , one of the non-sequential models

for such sequence can be defined as

M(ymax(t�D,1), � � � ,yt{i{1,yt{iz1, � � � ,yt{1)

Where t~1, � � � ,N and each bit yt depends on its previous D bits

excluding the i� thone (1ƒiƒD{1). Similarly, the sequential

Figure 3. The diagram of the proposed first-pass algorithm, where the longest match with length M is represented by a quadruplet
,D,r,P,M.. given a sliding window. The uncertainty of the symbol X in red (i.e., the next symbol to be compressed) is reduced with the information
provided by the symbol X in blue (i.e., the neighboring symbol after the longest match in the sliding window).
doi:10.1371/journal.pone.0080377.g003

Figure 4. The diagram for the proposed algorithm rLZ. We define the range of the sliding window as ½{Wl ,Wr�.
doi:10.1371/journal.pone.0080377.g004
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model of the same sequence can be expressed as

M(ymax(t�D,1), � � � ,yt{1).

We denote by s0 and s1 the contexts that satisfy the

aforementioned sequential model with the i� thbit equaling 0
and 1, respectively. The context s of our non-sequential model is

almost the same as s0and s1 except for that omitted i� thbit. We

further denote by a,a0,a1 and b,b0,b1 the number of bit 00s and 10s
under the given contextss,s0,s1, respectively. Then, the ratios

between the corresponding counts can be expressed as

u~
a0

a
,v~

b0

b
and r~

a0zb0

azb
. The following proposition, which

was proved by Dai et. al. in [46], gives the sufficient condition by

which a non-sequential model can outperform a sequential one,

under the following assumptions: (1) the difference between u and

v is small and u,v are not close to zero or one; (2) the ratio factor r

is close to
1

2
; (3) the sequence length azb is large enough.

Proposition 1. Under the KT-estimator [47], the non-

sequential context model will result in a better coding efficiency

than a sequential context model when the distribution (i.e., the

counts of bit 1’s and 0’s) of the corresponding context satisfies the

following inequality.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r(1{r)(azb)

s
:2(azb)(u{v)2 min (u(1{u),v(1{v))

ƒC ð1Þ

where C is a constant near the value2
{3

4
ffiffiffi
p
p

.

Pattern-Aware Contextual Modeling:
Although non-sequential models have advantages under certain

conditions, in reality, sequential and non-sequential context

models are complementary, which should be taken into consid-

eration for completeness. However, to make computation feasible,

we have to use only a small sample of the available context models.

First, we define the foremost label of the selected symbols ahead of

the base including the bit to be compressed as the context order n,

e.g., the context order is 6 when the context is selected

as yt{6,yt{4,yt{3,yt{2,yt{1f gfor yt. According to previous con-

text-based DNA algorithms [26], the sequential context models

with competing order (e.g., a low order and a high order) have

significant effect on the final compression performance. Hence,

when the maximum context order in the proposed method is set to

16, our models specifically consist of eleven general sequential

context models with orders equal 1, 2, 4, 6, 8, 10, 11, 12, 13, 14,

16, a total of eleven non—sequential sparse models performed on

the last four bytes (before the base including the bit to be

compressed). If we use bit 1 to refer the picked bit and 0 for the

excluded one, the eleven sparse models can be represented as

‘00F0F0F0’, ‘F0F0F0F0’, ‘00F8F8F8’, ‘F8F8F8F8’, ’00E0E0E0’,

‘E0E0E0E0’, ‘00F0F0FE’, ‘AAAAAAAA’, ‘F00F00FA’, ‘F000F0FD’

and ‘F0000F00’, which are series of hexadecimal digits (The reason

why we choose these non-sequential contexts is explained in

Appendix 5 of File S1 combined with Figure S3 in File S1).

For the i� th(i~1 � � �Mc) model in COMPACT, the predic-

tion of the next outcome bit yj can be expressed as

Pi(yj~1)~p(yj~1jc(i)
k (yj{k), � � � ,c(i)

1 (yj{1)), where Mc is the

number of total context models, and c
(i)
k (yj{k),

Figure 5. The framework of the second pass. Multiple context models (e.g., sequential models, non-sequential models, etc.) are combined by
logistic regression to feed an arithmetic encoder for compression. ‘’DMC’’ is the abbreviation of ‘’Dynamic Markov Compression’’.
doi:10.1371/journal.pone.0080377.g005
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k~1 � � � 16|8(i.e., the maximum context order multiplies the bit

number of each byte) indicates the contextual dependencies (a.k.a.

bit history) for yj defined in the i� thmodel. For example,

c
(i)
k (yj{k)~yj{k if yj depends on yj{k in the i� thmodel,

otherwise, c
(i)
k (yj{k)~NULL. Then, Pi(yj~0) can be easily

calculated as 1{Pi(yj~1). In our implementation, we apply three

lookup-table based functions (i.e., Run Map, Stationary Map, and

Nonstationary Map, referred to http://cs.fit.edu/mmahoney/

compression/), to map the bit history to the corresponding

probability.

In the rest of this paper, we denote the prediction result of bit yj

to be processed by the i� th context model by ti instead of

Pi(yj~1). In the next section, we discuss how to find the most

likely probabilityP(yj jtMc

1 )given the individual predictions

tMc

1 ~ft1, � � � ,tMc
g of all Mc context models.

Model synthesis based on logistic regression
According to the Maximum Entropy Principle (i.e. MAXENT

[49]), the most likely probability for P(yj jtMc

1 ) is the one with the

highest entropy [50] as follows,

P�(yjt)~ arg max
p[P
0

X
(t,y)P(yjt) P (t) log

1

P(yjt)0
ð2Þ

where P (t) is the empirical probability of t and P
0

is subject to

P
0
~(P(yjt)j

X
yp(yjt)~1,Vt and

P(yjt)~
P

(t,y)P(yjt) P (t)fi(t,y){
X

(t,y) P (t,y)fi(t,y),Vfi)
ð3Þ

where fi(t,y) is a function that returns ti if y equals to the bit

being predicted, or returns 0 otherwise. And P (t,y) is the

experienced probability of (t,y). Eq.(2) with constrains of Eq.(3)

can be transformed into the following equation through Lagrange

multipliers.

L~l0½
X

yp(yjt){1�z P
(t,y)P(yjt) P (t) log

1

P(yjt)
z
X

i
li

X
(t,y)fi(t,y)½P(yjt) P (t){ P (t,y)�,

Figure 6. Weighted context tree for DNA bit sequence 0100110100 (ATCAT, T-00, A-01, G-10, C-11). (a, Left) The context tree is created

according to a third order sequential context set. The code length generated for the sequence is { log2 (
95

32768
)~8:43 bits; (b, Right) The context

tree is made with the corresponding model excluding the second symbol (i.e., a non-sequential model). The code length generated for the sequence

is { log2 (
31

8192
)~8:05 bits.

doi:10.1371/journal.pone.0080377.g006
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which gives

P�(yjt)~ e
P

i
li tiP

y e
P

i
li fi (t,y)

~
e
P

i
li ti

1ze
P

i
li ti

ð4Þ

By replacing the parameter li with wi, which can be viewed as the

weight of the i� th model, we obtain

P(yj jtMc
1 )~g(

X
i
witi), g(x)~

1

1ze{x
ð5Þ

Given a binary bit yj , this is exactly a logistic regression model,

which can be optimized efficiently using the Newton-Raphson

algorithm. We add one diagram Figure S1 in File S1 to show how

this model works in each step.

Results

Parameters discussion: model order n and minimum
match length Lm

We implemented the encoder and decoder of COMPACT in

C++, and ran experiments on a workstation with Intel(R) Xeon(R)

3.6 GHZ CPU and 96 GB of RAM. Denoting the parameters

model order by n and minimum match length by Lm in the

proposed algorithm, we explored the relationship between the

compression performance (the average number of bits per base,

bpb) and parameters. To study the issue comprehensively, we

selected four sequences from different species with different sizes :

HUMHPRTB, 56,737 symbols; HEHCMVCG, 229,354 symbols;

y-4, 1,531,929 symbols; NC013929, 10,148,695 symbols.

As indicated in Figure 7, almost all sequences demonstrated a

decrease in bits per base with the increase in model order.

Correlation in the sequence was best predicted using context

models of moderate orders. We chose 16 as the context model

order. The figure also shows that the compression performance

does not always improve with the growing of the minimum match

length.

Performance of compression without reference
In this section, we conducted experiments under the condition

that model order equaled to 16 on a standard dataset of DNA

sequences (Table 1), a DNA corpus consisting of four organisms

used by Manzini et al. in [30] (Table 2), the bacteria DNA

sequences (Table 3) from the National Center for Biotechnology

Information (NCBI) directory, and the complete DNA sequences

of ten species with various sizes (See Table 4). We represented time

in seconds. In these experiments, the proposed compression

algorithm without reference, i.e., COMPACT-NOREF, demon-

strated performance advantage compared to existing models.

Performance of compression with reference
We tested the performance of COMPACT-REF (i.e.

rLZ+COMPACT) with model order 16 and minimum match

length Lm~50 in three cases. As a result, the KOREF_20090224

genome sequence data using KOREF_20090131 as reference, for

which the raw file is 2937.7 MB (KOREF_20090224), were

compressed into a 15.8 MB file, achieving a 189-fold compression

rate (Figure 8). Table 5 displays the 177-fold compression result for

another experiment when the genome of a Han Chinese

individual (YH) was compressed using KOREF_20090224 as

reference. Table 6 displays the compression results of COM-

PACT-REF and GReEn [30] for three different human genome

assemblies (YH, KOREF_20090224 and KOREF_20090131)

with transformed alphabets using hg18 (NCBI36) as their common

reference, and the results of them for the same datasets with

original alphabets are displayed in Table S3 in File S1.

Discussion

Discussion for compression without reference
Table 1 compares the compression results in bits per base (bpb).

Along with our proposed algorithm, we presented here the existing

algorithms, i.e. DNA3 [30], XM500 [13] and FCM [51]. Our

COMPACT-NOREF with the proposed LZ method applied in

the first pass outperformed the one with dnaX (a fast algorithm

using fingerprints introduced by Manzini et al.[30]) for short

sequences. But such advantage was not obvious as the sequence

sizes increased. The reason is that encoding the finite repeats with

a leading indicator rather than copious repeat locations saves

space, and Gamma coding is more efficient than dnaX’s

Figure 7. The relationship between the compression performance and COMPACT parameters (a) model order n (using Lm~25) and (b)
minimum match length Lm (using n~16).
doi:10.1371/journal.pone.0080377.g007
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continuation bit encoding for short sequences. Hence, we

implemented the first pass of remaining experiments for

reference-free scenarios with dnaX.

As for ‘‘difficult’’ sequences like HUMD (i.e., HUMDY-

STROP), HUMH (i.e., HUMHBB) in which we did not gain

performance advantage, we realized that both of them were

human genomes, which often contained approximate repeats

rather than exact duplicated strings. Therefore, the COMPACT-

NONREF and other similar algorithms such as [23,30], which

only took the exact repeats into consideration, did not achieve the

best performance for human genome compression. We have

conducted a testing experiment in Figure S2 in File S1 to support

this hypothesis. In Table 2, it is further witnessed that

COMPACT-NOREF is a little inferior to XM for the ‘‘difficult’’

sequences of four organisms (i.e., yeast, mouse, arabidopsis, and

human). However, we have realized that XM adopts more

sophisticated modeling approach (e.g., the combination of various

‘’experts’’) and too many expert models to attain better

representatoin for DNA sequences at a rapidly increasing cost of

memory and time, while ours only picks out certain suitable ones

relying on short-term knowledge from the past. In our experi-

ments, XM took around or larger than 2.0 GB memory to

compress the sequences over 100 MB in the forth group, which

consumed much more resource than other methods (The

proposed method took much less memory, please refer to Table

S2 in File S1). We carried out additional experiments on the

bacteria DNA sequences from the National Center for Biotech-

nology Information (NCBI) directory (Table 3). We compared a

variation of the proposed algorithm: semi-COMPACT (i.e.,

COMPACT-NOREF without the first pass), COMPACT-

Table 4. Compression results on ten complete genomes.

Organism Size
FCM-S
(2011) FCM-M (2011) XM200 (2007) COMPACT -seq COMPACT -NOREF

MB bpb bpb Time bpb Time bpb Time bpb Time

H.sapiens 2832.12 1.773 1.695 167 m 1.618* 958 m 1.749 742 m 1.673 2329 m

A.thaliana 119.48 1.911 1.821 165 1.659* 2820* 1.775 1454 1.776 3525

A.nidulans 29.54 1.987 1.978 38 1.968 717 1.952 424 1.948 871

C.albicans 14.32 1.882 1.864 17 1.861 291 1.836 198 1.827 500

S.pombe 12.59 1.926 1.887 15 1.865 358 1.861 173 1.859 440

S.cerevisiae 12.16 1.940 1.906 15 1.892 310 1.841 160 1.838 425

E.coli 4.64 1.937 1.901 5 1.914 48 1.903 54 1.888 152

S.aureus 2.80 1.888 1.858 4 1.852 31 1.847 33 1.838 95

T.kodakarensis 2.09 1.935 1.922 3 1.946 14 1.926 23 1.902 71

M.jannaschii 1.66 1.824 1.804 3 1.814 17 1.795 20 1.791 58

M.genitalium 0.58 1.841 1.812 2 1.816 3 1.806 6 1.790 19

Note: The minimum match length Lm in the first pass is set to 25 in this experiment. The unit of time is second except for H.sapiens whose unit is minute. The ‘’XM200’’
column shows the results obtained with the XM algorithm using at most 200 experts. ‘*’ indicates that a model consumes much more memory (around or larger than
2.0 GB) than other methods.
doi:10.1371/journal.pone.0080377.t004

Figure 8. Homo sapiens genome: compression of KOREF_20090224 using KOREF_20090131 as reference. The original sequence
alphabets have been preserved. The size of the alphabet in the target sequence is 21 for all chromosomes, except for chrM chromosome whose size
is 11. The left y-axis refers to the compression ratio while the right y-axis indicates the compression or decompression time in seconds.
doi:10.1371/journal.pone.0080377.g008
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NOREF, together with an XM encoder, and a state-of-the-art

algorithm, FCM-Mx [28], in terms of compression and required

time. Table 3 presents the individual compression results on these

sequences with 10,000,000 or more bases. The table also includes

the average compression result of each algorithm in the last row.

For bacteria, the proposed method demonstrated the best

performance among all algorithms. The average compression rates

of five sequences reported for XM500 and FCM-Mx were 1.787

bpb and 1.7543 bpb, while our method COMPACT-NOREF’s

average performance on the same set was 1.7204 bpb. The time

cost for the proposed methods was comparable to that of XM.

Results for eleven complete genomes are shown in Table 4. The

FCM-S and FCM-M [52] columns contained results provided by

the finite-context models and by the multiple competing finite-

context models. FCM-S processed DNA sequences using the single

finite-context model approach, in which the best context depth

was used, whereas FCM-M obtained the results with the multiple

competing models. The results presented in the Table show a

similar pattern as Table 3. What’s more, all tables from 1 to 4

include the compression results of ‘COMPACT-seq’ that uses only

traditional sequential models (including models based on Markov

chains) followed by logistic regression model. Especially for Table

4, ‘COMPACT-seq’ outperforms all other algorithms on ten

complete genomes, and ‘COMPACT-NOREF’ exceeds ‘COM-

PACT-seq’ on almost all sequences. It can be inferred that both

the proposed non-sequential models and the logistic regression

mixture model are extraordinary.

Discussion for compression with reference
We compared the performance of the proposed method

COMPACT-REF (i.e., rLZ+COMPACT) to that of GRS [15]

and GReEn [17], two most recently proposed approach for

compressing genome resequencing data that handled sequences

over arbitrary alphabets. Figure 8 displays the compression

performance for human genome KOREF_20090224 using

KOREF_20090131 as reference. COMPACT-REF gave better

results in terms of compression ratio but it is slower than GReEn

and GRS. In fact, the speed disadvantage deserved a special note.

Different from GReEn, the compression time of COMPACT-

REF does not vary linearly with the size of the sequence but rather

Table 5. Homo sapiens genome: compression of YH using KOREF_20090224 as reference.

Chr Size
GRS
(2011)

GReEn
(2012)

COMPACT
-REF

MB MB Time MB Time MB Time(c) Time(d) Offset size

1 235.80 - - 2.24 34 1.40 1,115 58 [–12, 11560]

2 231.70 - - 2.31 36 1.34 966 58 [–12, 11560]

3 190.26 16.60 651 1.65 29 1.06 465 45 [–12, 11560]

4 182.41 - - 1.79 26 1.14 734 46 [–12, 11560]

5 172.48 - - 1.71 25 0.95 783 43 [–12, 11560]

6 162.98 24.62 1,569 1.52 24 1.22 1,184 41 [–12,11560]

7 151.46 - - 1.74 22 1.05 846 38 [–12, 11560]

8 139.50 - - 1.30 21 0.94 100 35 [–12, 11560]

9 133.78 - - 1.41 20 0.76 697 33 [–12, 11560]

10 129.10 - - 1.29 19 0.71 630 32 [–12, 11560]

11 128.22 - - 1.22 19 0.75 662 32 [–12, 11560]

12 126.22 15.39 3,016 1.12 19 0.82 716 31 [–12, 11560]

13 108.86 10.71 1,948 0.83 16 0.53 275 24 [–12, 11560]

14 101.44 - - 0.79 15 0.55 454 25 [–12, 11560]

15 95.69 - - 0.85 14 0.51 400 26 [–12, 11560]

16 84.71 - - 0.97 12 0.50 164 22 [–12, 11560]

17 75.13 - - 0.82 11 0.43 250 23 [–12, 11560]

18 72.59 12.58 2,245 0.68 11 0.43 210 17 [–12, 11560]

19 60.86 - - 0.56 9 0.39 143 15 [–12, 11560]

20 59.54 8.02 510 0.47 8 0.36 231 15 [–12, 11560]

21 44.77 0.69 664 0.36 6 0.26 149 11 [–12, 11560]

22 47.39 - - 0.42 9 0.25 144 13 [–12, 11560]

X 147.74 - - 3.11 18 0.59 550 34 [–12, 11560]

Y 55.10 - - 0.82 7 0.25 180 18 [–12, 11560]

M 16,571 321 1 127 1 274 1 1 [–12, 650]

Total 2937.73 - - 29.96 428 16.57 12,049 736 -

Note: Since all bases in the original sequence alphabets are uppercase, we consider both exact repetitions and repetitions between the uppercase base and the
respective lowercase base (e.g., ‘A’ and ‘a’). The missing values ‘-‘ of GRS method are due to the inability of GRS to compress sequences. The ‘Size’ unit of ChrM is Byte
instead of MB. The unit of ‘Time’ is second. ‘Time(c)’ refers to the compression time and ‘Time(d)’ refers to the decompression time. In general, GReEn’s decompression
time is identical to its compression’s.
doi:10.1371/journal.pone.0080377.t005
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depending on the degree of similarity between the reference

sequence and the target sequence. This was also the reason why

some longer sequences took shorter time to compress, like chr8

and chr9. On the other hand, Figure 8 also demonstrates that

COMPACT-REF can achieve comparable decompression con-

sumption time with GReEn since both the decompression

procedure and the decompression runtime of GReEn are identical

to its compression’s, while COMPACT-REF saves time in the first

pass for decompression because it only locates the match position

instead of searching repeats. Hence, we believe that COMPACT-

REF is advantageous in applications for which disk space and

decompression time are the limiting factors but the compression

time is more tolerable, such as sequence archive and sequence

acquisition. In order to have a more specific and clearer

comparison, we also present the results in tabular form in File

S1 (Please refer to Table S1).

In order to provide a more comprehensive comparison between

GRS, GReEn and the proposed compression approaches, we

investigated another human genome assembly, YH, which

referred to the genome of a Han Chinese individual. Table 5

displays the compression results of YH using KOREF_20090224

as reference. GRS performed poorly in both compression rate and

speed. Our COMPACT-REF approach achieved good results

with the appropriate window size, which can be selected by

choosing a large window size and gradually shrinking it down.

Note that the window range only slightly affects the compression

performance. The default left window size and right window size

are adaptively obtained through calculating the difference

percentage, which equals to the sum of the difference values of

each base’s (i.e., ‘A’, ‘C’, ‘T’, ‘G’, ‘N’, ‘a’, ‘c’, ‘t’, ‘g’ and ‘n’)

number in the source sequence and reference sequence dividing by

the base length of source sequence. If the percentage is smaller

than 0.65%, the default window size is set to [–12, 650]; If the

percentage is larger than 0.65% but smaller than 5%, the default

window size is set to [–12, 812]; Otherwise the window size is set

to [–12, 11560]. For the compression of KOREF_20090224 using

KOREF_20090131 as reference, the default window range is [–

12,650] except for [–12, 812] for chr1, 4, X and chrY. In the

compression of YH using KOREF_20090224 as reference, the

default window range is [–12, 11560] for most chromosomes.

Table 6 summarizes compression results of COMPACT-REF

and GReEn for three different human genome assemblies (YH,

KOREF_20090224 and KOREF_20090131) using the same

choice of reference hg18 (NCBI36). KOREF_20090131,

KOREF_20090224 and YH database are three genome databases

generated by two different organizations. YH is the first diploid

genome sequence of a Han Chinese, a representative of Asian

population, completed by Beijing Genomics Institute at Shenzhen

(BGI-Shenzhen). KOREF_20090131 and KOREF_20090224 are

two versions of the first individual Korean genome released in

December 2008 as the result of Korean reference genome

construction project. Consequently, the alphabet set of these two

datasets are different. Both KOREF_20090131 and

KOREF_20090224 consist of 21 symbols, such as ‘A’, ‘C’, ‘T’,

‘G’, ‘N’, ‘M’ and etc., with the additional bases besides {‘A’, ‘C’,

‘T’, ‘G’} indicating different sequencing quality or uncertainty.

But all bases in YH are confined to {‘A’, ‘C’, ‘T’, ‘G’, ‘N’} by

using only ‘N’ to represent uncertain bases. Hence, in order to

keep the alphabet size identical, we transformed all characters to

lowercase and mapped unknown nucleotides to ’n’ for the sake of

comparison. Table S3 in File S1 displays the compression results of

COMPACT-REF and GReEn for the same datasets with original

alphabets. The size of each sequence in Table 6 reduced

significantly by the proposed method although GReEn seems to

show a superior performance. The reason why GReEn generates

better compression results than COMPACT-REF in this situation

may be that GReEn relies on the probability distribution of

characters in the target sequence (assuming that the characters of

the target sequence are an exact copy of (parts of) the reference

sequence). When we do not eliminate the effect of character case

(i.e., uppercase or lowercase) in Table S3, GReEn demonstrates an

obvious disadvantage in terms of compression performance. These

experiments demonstrated the applicability of our framework in

compressing genomic data sets and encouraging further investi-

gation.

Supporting Information

File S1 Supporting figures and tables. Figure S1. The

diagram of logistic regression model synthesizing different models

to obtain a single probability. Figure S2. The relationship

between the compression rate and the quantity of noise over the

sequence HEHCMVCG. Figure S3. The schematic diagram of

the selected contexts for eleven non-sequential sparse models. Red

block refers to the picked bit while the others refer to the excluded

one. Table S1. Homo sapiens genome: compression of

KOREF_20090224 using KOREF_20090131 as reference. Ta-
ble S2. The evalution of memory usage in our experiments.

Table S3. Homo sapiens genome: compression with COM-

PACT-REF and GReEn of the YH, KOREF_20090224 and

KOREF_20090131 versions with original alphabets using hg18 as

a reference.
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