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ABSTRACT
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracel
lular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin 
macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by 
multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience 
leprosy reaction. These varying outcomes depend on host factors such as immune responses 
against bacterial components that determine a range of symptoms. To understand these host 
responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. 
This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, 
immunology, animal models, routes of infection, and clinical findings. It also discusses recent 
diagnostic methods, treatment, and measures according to the World Health Organization (WHO), 
including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against 
other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our 
laboratory has been focused on the metabolism of lipids which constitute the cell wall of 
M. leprae. Our findings may be useful for the development of future treatments.
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Introduction

Leprosy is caused by Mycobacterium leprae (M. leprae), 
which was discovered by Gerhard Armauer Hansen of 
Norway in 1873 [1,2] and M. lepromatosis [3]. Leprosy 
is a chronic infectious disease which occurs worldwide. 
Globally, about 80% of newly registered cases are found 
in Brazil, India and Indonesia [4]. Areas having high 
endemicity are found within countries at a sub-district 
level [5]. New leprosy cases have been remarkably 
reduced by multidrug therapy (MDT) developed with 
the support of the World Health Organization (WHO) 

[6], but in 2019 around 200,000 cases were still 
reported from over 100 countries [4]. The WHO has 
designated leprosy as a neglected tropical disease 
(NTD) [7]. NTDs are infectious diseases that are tar
geted for eradication under the Sustainable 
Development Goals (SDGs), which are positioned as 
universal goals of the WHO [8]. In addition, the 
Global Leprosy Strategy for the years 2021–2030 
entitled “Towards zero leprosy” has begun [9]. The 
goals of this strategy include: (a) no new autochthonous 
cases in 120 countries, (b) a 70% reduction of annual 
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new cases, (c) a 90% reduction in the incidence of new 
Grade-2 disability (G2D) cases, and (d) a 90% decrease 
in the incidence of paediatric leprosy cases [9].

M.leprae is an obligate intracellular organism. This 
pathogen affects mostly the skin and the peripheral 
nerves [10]. This bacterium preferentially invades der
mal histiocytes (tissue macrophages) and Schwann cells 
in peripheral nerves [11]. Skin lesions occur as pale 
papules or rashes with erythematous infiltration. 
Leprosy has been classified into five types using the 
Ridley-Jopling classification: tuberculoid (TT), border
line tuberculoid (BT), mid-borderline (BB), borderline 
lepromatous (BL) and lepromatous (LL). TT is asso
ciated with strong cellular immunity and low humoral 
immunity with granulomatous local skin lesions, 
whereas LL is characterized by strong humoral immu
nity. Nerve damage affected by this bacillus induces 
neuropathy with sensory and motor neuronal impair
ment. Moreover, the leprosy reaction is an intense 
immune reaction of the host against M. leprae. It is 
also a major factor that leads to disabling neurological 
disorders.

Delays in diagnosis and inadequate treatment of 
leprosy are responsible for a large variety of clinical 
symptoms. These symptoms frequently cause deformity 
and disability in perpetuity, often resulting in stigma. In 
particular, sensory nerve damage results in numbness 
and analgesia that can cause repeated injuries and sub
sequent loss of limbs. Motor neuropathy accompanying 
peripheral neuropathy causes major problems in activ
ities of daily living (ADL) such as hand movement and 
gait, whereas secondary disuse muscle atrophy further 
impairs ADL to create a vicious cycle of disease.

A leprosy control program led by the WHO focused 
on early detection of patients and early treatment with 
antimicrobial agents to control new cases globally [12]. 
However, no effective treatment for peripheral neuro
pathy has yet been developed, and even after MDT 
patients may still experience serious disability. The 
WHO held informal consultations on monitoring the 
rate of G2D and the applicability of chemoprophylaxis 
to develop measures to improve leprosy [13]. WHO 
data indicate that there are over 10,000 newly registered 
G2D cases annually; more than 90% of these registra
tions belong to global priority countries over the past 
10 years. Even though leprosy is now understood to be 
a controllable disease with MDT, the need to treat 
leprosy reactions and relapse remains. There is also 
a significant need for long-term treatment, and there 
is concern about the emergence of MDT-resistant 
strains [14].

The biological characteristics of M. leprae may con
tribute to clinical manifestations as well as challenges 

in treatment for leprosy. During infection, M. leprae 
parasitizes host cells and modifies the host cellular 
environment to promote its survival. Cell wall compo
nents of the bacilli may be important factors for such 
parasitization, since cell wall components not only 
elicit host immunity, but can also act as signalling 
factors that aid its survival [15]. M. leprae has many 
pseudogenes and is therefore only capable of surviving 
in host cells, using the functions of host cells for its 
survival. Further, M. leprae has been shown to survive 
in soil for more than 46 days [16]. Although many 
genes required for M. leprae infection, colonization 
and growth are preserved, many other genes have 
been discarded. Thus, M. leprae carries out various 
metabolic mechanisms, including lipid metabolism 
essential for cell wall synthesis, by parasitizing host 
cell machinery. Survival of the bacteria while immuno
logically concealed within host cells may require eva
sion of immune surveillance mechanisms to allow 
long-term parasitization. In this review, we summarize 
the pathogenicity of M. leprae, with particular focus on 
the underlying molecular mechanisms that enable 
intracellular parasitization.

Pathogenicity and infection of M. leprae

Bacteriology

M.leprae is an obligate intracellular organism and the 
taxonomic classification of this bacillus comprises the 
class Schizomycetes, order Actinomycetales, family 
Mycobacteriaceae, and genus Mycobacterium [17,18]. 
The bacteria are slightly curved, and measure 1–8 μm 
in length and 0.3–0.5 μm in diameter. M. leprae is an 
acid-alcohol-fast bacillus, non-motile and microaero
philic. M. leprae mainly infects and invades skin macro
phages and Schwann cells in the peripheral nerves to 
produce a chronic infection in humans. Using the 
Gram strain, M. leprae tests as invisible, producing 
negatively stained representations known as “ghosts,” 
or as rod-shaped Gram-positive bacilli [19,20]. Due to 
its higher lipid content, M. leprae does not become 
discoloured by acid-alcohol with the Ziehl-Neelsen 
stain, a red stain that contains fuchsin. Thus, it appears 
as characteristic acid-alcohol-resistant bacilli using 
a slit skin smear test [19,20] (Figure 4a). M. leprae 
multiplies very slowly, requiring 12 to 14 days for gen
eration, compared to the longer time (20 hours) needed 
by Mycobacterium tuberculosis (M. tuberculosis) 
[21,22]. Although 37 °C is the standard incubation 
temperature used for most pathogens, M. leprae 
requires a low temperature for growth [23–25]. 
Therefore, in humans it tends to preferentially 
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parasitize cooler areas such as the skin, nasal mucosa 
and ears. M. leprae was reported to survive up to 46  
days in the environment [16,24–26].

Bacterial components

M.leprae has a thick cell wall surrounding the plasma 
membrane that comprises inner and outer layers [27] 
(Figure 1). The outermost layer includes the phenolic 
glycolipids (PGLs) that compose the capsules [28] and 
that contain a range of lipids, with phthiocerol dimy
cocerosate (PDIM) and PGL-I predominating [29]. The 
innermost layer beyond the plasma membrane is rigid 
and electron-dense, consisting of peptidoglycan (PGN), 
arabinogalactan (AG), and mycolic acids. The outer cell 
wall also contains lipid-linked polysaccharides such as 
lipomannan (LM), lipoarabinomannan (LAM), phthio
cerol-containing lipids (e.g. PDIM), and dimycolyl tre
halose [30,31]. The inner leaflet of the pseudo-lipid 
bilayer consists of linked mycolic acids and arabinan 
chain termini. An outer leaflet is composed of PGLs, 
mycolic acids with trehalose mono-mycolate (TMM) 
and mycocerosoic acids of PDIM. The M. leprae cell 
wall includes small amounts of TMM [32]. The 
M. leprae cell wall includes more mycolic acid than 
that of M. tuberculosis (the ratio of mycolic acid to 
PGN is 21:10 versus 16:10).

PGL-I containing trisaccharides are located at the 
outermost surface and interact with the host cell mem
brane [33]. The PGL-I triglycosyl unit is composed of 
phenol-PDIM and the specific trisaccharide of 
M. leprae (3,6-di-O-methylglucose linked α-1→4 to 
2,3-di-O-methylrhamnose linked β-1→2 to 
3-O-methylrhamnose) in a glycosidic bond to the 

constituent phenol [34]. PGL-I is thought to be 
involved in host-pathogen interactions, including the 
suppression of inflammatory cytokine secretion [35,36]. 
The adhesion and invasion of Schwann cells by 
M. leprae promotes neural damage [37,38] by increas
ing inducible nitric oxide synthase (iNOS) in the host 
macrophages [36]. In LL, there are high antibody titres 
against natural synthetic trisaccharide and disaccharide 
representing the PGL-I triglycosyl unit [39–41]. Thus, 
PGL-I has proven useful for the serodiagnosis of this 
disease.

LAM consists of three constituents: a mannosyl- 
phosphatidyl-myo-inositol (MPI) anchor, 
a polysaccharide backbone, and capping moieties [42]. 
Three types of LAM are known and these can be 
differentiated by structure: mannose-capped LAM 
(ManLAM), phospho-myo-inositol-capped LAM 
(PILAM) and non-capped LAM (AraLAM). These 
structural variants show different immunomodulatory 
properties, e.g. LAMs are capped by ManLAM in 
M. leprae. The immunomodulatory roles of LAM are 
suppression of T-cell activation [43], interferon (IFN)- 
γ-mediated induction of macrophage gene expression 
[44], inhibition of protein kinase C activity, scavenging 
of oxygen radicals [45], and induction of macrophage- 
associated cytokines such as tumour necrosis factor-α 
(TNF-α) [46,47].

M. leprae PGN belongs to the chemotype IV group 
and contains peptide side chains containing diamino
pimelic acid (DAP) [48,49]. According to previous 
analyses of the Mycobacterium PGN structure, several 
compositions were identified [50–52]. These include 
N-glycolylmuramic acid (MurNGlyc), cross-links of 
DAP-DAP, and modifications of the carboxylic acid 

Figure 1. The structure of the M. leprae cell wall. The M. leprae cell wall consists of an inner and outer layer that surround a plasma 
membrane. The outermost layer includes PGLs that compose capsules. The electron-dense inner layer of cell wall contains PGN, AG, 
and mycolic acids. The outer cell wall, which is an electron-dense layer, consists of lipid-linked polysaccharides such as LAM, LM, and 
phthiocerol-containing lipids including phthiocerol dimycocerosate and dimycolyl trehalose. Mycolic acids link to arabinan chain 
termini and compose the inner leaflet of a pseudo lipid bilayer. An outer leaflet contains TMM mycolic acids and PDIM and PGL 
mycocerosoic acids. Small amounts of TMM also exist in the cell wall of M. leprae.
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functional groups of DAP and D-Glu. A number of 
these attributes are related to PGN of M. leprae [53– 
56], which was previously reported to comprise 
MurNGlyc based on estimates of the glycolic acid con
tent [57]. However, MurNAc is the only type of mura
mic acid that is evident in M. leprae PG [55]. An 
immune response is initiated by the nucleotide- 
binding oligomerization domain (NOD)-like receptors 
(NLRs) upon recognition of the bacterial PGN, with 
a muramyl tripeptide containing meso-DAP being the 
smallest PGN recognizable by NOD1 [58]. 
Furthermore, muramyl peptides which include ami
dated meso-DAP are bound less strongly by NOD1 
[58,59]. When the L-Ala of the muramyl dipeptide 
was replaced with D-Ala, the stimulation of NOD2 
activity was eliminated [60]. Since M. leprae PGN con
tains amidated DAP and Gly residues, it may evade 
host innate immune responses mediated by NOD1 
and NOD2 [55].

Pseudogenes

As mentioned above, the loss of many functional genes 
from the M. leprae genome requires it to parasitize host 
cells for survival. 2001 saw the complete genome 
sequencing of M. leprae. The 3.3 Mbp genome contains 
1,604 genes that encode proteins and the remainder 
include 1,116 pseudogenes as well as non-coding 
regions [61,62]. The average G+C content was 57.8% 
[61]. 50% of the genes corresponding to metabolic 
genes in M. tuberculosis have been lost in M. leprae, 
and the M. tuberculosis genome is larger than the 
M. leprae genome [63]. In M. leprae all major anabolic 
pathways are relatively intact. However, the genes 
encoding the lipolysis pathways used to digest host 
lipids and fatty acids for energy have been extensively 
downsized [63].

Since the genes that contribute to lipid biosynthesis 
and metabolism are pseudogenes, M. leprae depends on 
the host cell lipid metabolism to survive. Of the 24 
genes encoding Lip lipolytic enzymes in 
M. tuberculosis, only ML0119c (lipE), ML0314c (lipU), 
and ML1899 (lipG) are conserved in M. leprae. 
Similarly, the central and energy-related metabolic 
pathways are damaged, and therefore M. leprae cannot 
use common sources of carbon such as galactose and 
acetate to produce ATP from NADH oxidation. In 
addition, all biosynthetic and transport systems includ
ing microaerophilic and anaerobic electron transfer, as 
well as the complementary enzyme groups, have been 
lost in the M. leprae genome. This loss implies that the 
catabolic capacity of M. leprae is limited, and the bac
terium can only employ a minimal number of carbon 

sources for growth [62,64,65]. Genes that are necessary 
for host infection, establishment, and survival are pre
served in M. leprae, but the genes associated with 
a parasitic lifecycle dependent on the host have been 
discarded. In particular, M. leprae relies on host genes 
for various metabolic mechanisms, including those 
involved in lipid metabolism that is essential for cell 
wall synthesis. This parasitization of host cell genes 
could explain the extremely slow growth rate of the 
bacteria and the difficulties with culture using various 
types of normal media. Meanwhile, M. leprae is immu
nologically concealed in host cells, which may facilitate 
the long-term evasion of host immune surveillance 
mechanisms.

Many M. leprae pseudogenes arose from stop codon 
insertions that may have been caused by sigma factor 
dysfunction or the insertion of transposon-derived 
repetitive sequences [66]. Investigation into M. leprae 
gene structures indicated the existence of multiple stop 
codon insertions and fragmented ORFs, precluding the 
translation of these genes into functional proteins [67]. 
Over 26 extinct insertion sequences (ISs) and four 
series of distributed repetitive sequences have been 
confirmed in the M. leprae genome, namely RLEP (37 
copies); REPLEP (15 copies); LEPREP (8 copies); and 
LEPRPT (5 copies) [68]. The decrease in the genome 
size of M. leprae is largely due to the recombination of 
these repetitive sequences, which contribute almost 2% 
of the M. leprae TN genome. RLEP is often present 
within pseudogenes and at the 3’-termini of genes, and 
is often utilized as a PCR target to detect M. leprae. 
These sequences were suggested to be the vestiges of 
transposons that had lost the ability to go through 
transposition [69].

There is little detailed information regarding the 
functional role of pseudogenes and non-coding regions 
in M. leprae. However, some RNAs encoded by these 
regions are expressed as RNA, and these RNAs can 
have variable expression levels after infection and 
among patients with leprosy [70–72]. Among the 
RNA transcripts, 36% are from pseudogenes, and 43% 
of all pseudogenes are transcriptionally active [66,67]. 
In their detailed analysis of RNAs expressed in the 
M. leprae genome, Suzuki et al. revealed that many 
RNAs are transcribed from pseudogenes and untrans
lated regions [71]. Using tiling arrays, Akama et al. 
demonstrated that of the known RNA transcripts, 
fewer than half (30.1%) arose from coding genes, 
whereas 37.3% were derived from pseudogenes and 
32.5% were derived from non-coding regions 
[66,73,74]. An essential characteristic of the M. leprae 
pseudogenes is that between one and 40 stop codons 
are present in-frame. The majority (75%) of 
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pseudogenes that are transcribed do not have 
a conventional start codon, but 67% contain five or 
more stop codons [70]. The signal intensity attributed 
to these non-coding regions was higher than that 
obtained from the pseudogenes. Repetitive RLEP 
sequences specific to M. leprae and sequences with no 
homology to identified functional non-coding RNAs 
are included in the non-coding regions [66]. Although 
the biological significance of these RNAs is not known, 
they are useful in disease diagnosis and in determining 
treatment efficacy in assays employing molecular tech
niques such as PCR in skin-slit smears [72,75,76].

Genotypes

Genotyping with single nucleotide polymorphisms 
(SNPs) and short tandem repeats (STRs) is useful to 
elucidate the transmission and origin of M. leprae. 
Globally, approximately 32 STR loci have been 
employed for the strain typing of M. leprae [77–80]. 
M. leprae branches are classified as specific SNP types 
or subtypes [81], including 4 SNP types (1 to 4) and 16 
SNP subtypes (A to P) [82,83], that provide informa
tion about the global distribution of leprosy [83,84]. 
Consequently, many analyses were performed as to 
the origin and global distribution of leprosy on the 
basis of variable number tandem repeats (VNTRs) 
and SNPs [85–91]. Branch 0 is the most ancestral 
branch and contains bacteria corresponding to the 
SNP subtype 3K. It is primarily found in Eastern Asia 
(China, New Caledonia, and Japan). Meanwhile, 
Branch 1, which is mainly observed in Eastern and 
Southern Asia, corresponds to the SNP type 1 [83,92– 
95]. SNP type 2, including branch 2, is mainly found in 
South Asia and the Near East [83,92,96]. Branch 3, 
which corresponds to the SNP subtype 3I, occurs in 
Latin America. Recently, Branch 3 bacteria have been 
spreading among the nine-banded armadillo in the 
southwestern United States [97] with zoonotic trans
mission observed infrequently [85]. Branch 4, which 
corresponds to the SNP type 4, has been detected in 
West Africa and South America [83,95,98]. The SNP 
types 1 and 3 predominate in Thailand and Myanmar 
but not in Japan, Indonesia, or Korea [99].

The potential for M. leprae to have a long incubation 
period (as long as 30 years) was demonstrated in 
a study by Suzuki et al. The authors reported a 31- 
year-old female chimpanzee who was diagnosed with 
leprosy in Japan. In 1980, this chimpanzee was 2 years 
old and was trapped in Sierra Leone, West Africa, then 
sent to Japan. PCR amplification and direct sequencing 
were performed for SNP analysis to decide the origin of 
this case. The genotype of the bacilli had only been 

identified in West Africa, and had not been detected in 
Japan. It was classified as the SNP type 4 [100,101]. 
Natural leprosy cases in other nonhuman animals have 
been identified, but it is not clear whether they were 
infected by humans or by another nonhuman animal. 
Sequencing and phylogenetic analyses to compare the 
entire M. leprae genomes which were identified from 
nonhuman primates and humans from around the 
world have been carried out. These analyses show that 
an M. leprae strain from a cynomolgus macaque and 
a human M. leprae strain of New Caledonia are closest 
in lineage. However, the M. leprae strains found in 
chimpanzees and sooty mangabeys are closely affiliated 
with a West African human M. leprae strain [102].

Immune reactions and animal models of 
disease

Innate and acquired immune responses

The spectrum of clinicopathological manifestations in 
leprosy arises due to variable host immune responses to 
M. leprae [21,103]. Immune responses include the iden
tification of the pathogen, selection of an adequate 
immune response, repression of damaging or inade
quate immune responses, and over expression of an 
immune response which induces tissue damage. The 
host eliminates or controls the pathogen to restore 
homoeostasis and to prevent tissue damage. While, 
the pathogen is normally eliminated by an immune 
response, an inadequate immune response against 
M. leprae causes the parasite to persist without tissue 
injury of the peripheral nerves and skin.An excessively 
strong immune response can also cause damage. Thus, 
host immune systems influence the clinical presenta
tion of leprosy [104,105]. Histologically, granulomatous 
local skin lesions together with strong cellular immu
nity and low humoral immunity are characteristic of 
TT. In contrast, LL is characterized by strong humoral 
immunity and exhibits tissue reaction by forming 
macrophage granulomas with only a few lymphocytes 
[21,106] (Figure 2). However, the elimination of 
M. leprae by humoral immunity is difficult. This con
tributes to the progression of the disease [107,108].

Initial recognition of M. leprae by host cells occurs 
via pattern recognition receptors (PRRs), including 
Toll-like receptors (TLRs) [109–111] and NLRs [112– 
114]. M. leprae lipoproteins are ligands of the TLR2/1 
heterodimer [115,116] and TLR2/6 heterodimer 
[117,118]. PGN, LAM and zymosan, found in the cell 
walls of bacilli, are TLR2 ligands [111,119,120]. 
M. leprae activates TLR2/1 heterodimers of skin macro
phages, stimulating the killing of M. leprae [120]. 
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M. leprae can also activate innate receptors such as 
TLR4 [121]. However, the outermost cell wall compo
nent of M. leprae, PGL-I, dampens TLR4 signalling 
pathway activity in macrophages by downregulating 
protein expression of the TIR-domain-containing adap
ter-inducing interferon-β (TRIF), a TLR4 adaptor.

In human alveolar epithelial cells, M. leprae also 
induces IL-8 secretion through the TLR9/NF-κB path
way [122]. IL-8 mediates mobilization of leukocytes to 
sites of infection in the airway and helps protect the 
host against invading M. leprae. NOD2 is known as an 
another PRR that participates in the detection of 
M. leprae [113,123]. The human NOD2 receptor 
induces an innate immune response via IL-32, signal
ling monocytes to differentiate into dendritic cells 
[113,114].

The characteristic immune response in patients with 
TT is the Th1 cytokine response with production of 
IFN-γ and IL-12, which induces cell-mediated immu
nity. High T-cell responses also lead to M. leprae clear
ance in the skin lesions [124–126]. In TT cases, the 
activation of macrophages occurs and the formation of 
epithelioid cells, a cell type in which CD4+ T cells 
predominate, takes place. M. leprae-specific humoral 
immunity has rarely been detected in TT cases 
[124,127]. On the other hand, a characteristic of LL 
cases is the Th2 cytokine response with production of 
IL-4, IL-5 and IL-13. This signalling increases the 
humoral immune response to yield strong production 
of antibodies. But even with massive antibody produc
tion and the formation of immune complexes, the 

growth of M. leprae in skin lesions cannot be inhibited 
[128]. In LL cases, patients have fewer CD4+ T cells 
compared to those with TT, but the infiltration of many 
CD8+ T cells is observed. Macrophages which are 
infected with M. leprae as well as foamy macrophages 
in widespread skin lesions can also be seen 
[124,127,129–132] (Figure 2).

Only a few studies have investigated T regulatory 
(Treg) cells in leprosy and there is no consistent theory 
regarding their roles in leprosy cases. The presence of 
Tregs in skin lesions in leprosy is known [133]. 
A relevant role for Tregs in type 1 reactions and their 
elevation in TT cases were reported [134–136]. 
Additionally, the number of peripheral blood mono
nuclear cells (PBMCs) which were stimulated with 
M. leprae cell wall antigen from BL and LL cases was 
higher than that for borderline tuberculoid BT and TT 
cases. This result suggests that Treg cells could be 
associated with the survival of M. leprae [136,137]. 
The expression of IL-10 and cytotoxic T lymphocyte 
antigen-4 (CTLA-4) and the Treg cell count are higher 
in LL than in TT cases [136]. On the other hand, 
a significantly higher frequency of Th17+ cells was 
noted in BT/TT patients as compared to BL/LL 
patients. Th17+ cells produce IL17-A, IL17-F, IL-21 
and IL-22 leading to tissue inflammation and tissue 
damage due to neutrophil recruitment, macrophage 
activation and the activation of Th1 cells [137–140]. 
These findings suggest that Th17+ cells have 
a protective function against M. leprae infection [124]. 
However, patients with leprosy reactions showed higher 
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Figure 2. Classification of leprosy on the Ridley-Jopling scale based on immunology, histology, and bacteriology. Leprosy is classified 
into tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), borderline lepromatous (BL), and lepromatous leprosy (LL). TT 
leprosy showing strong cell mediated immunity is characterized by granulomatous skin lesions infiltrated predominantly by 
lymphocytes and epithelioid cells along with high secretion of the Th1 cytokines IL2, and IFN-γ in TT/BT lesions. Conversely, in 
BL/LL a high level of humoral immunity with a low level of cell mediated immunity is exhibited predominantly by macrophage 
granulomas with foamy macrophages with few lymphocytes, high levels of Treg cells along with numerous acid-fast bacilli and 
secretion of high levels of IL-4, IL-5 and IL-10.

1990 M. SUGAWARA-MIKAMI ET AL.



expression levels of cytokines related to Th17 [141]. 
During leprosy reactions, patients show increased 
expression and release of the pro-inflammatory cyto
kines IL-6 and transforming growth factor (TGF)-β 
that coordinately induce Th17 differentiation. Since 
Treg and Th17 have opposing functions, it can be 
speculated that an imbalance in Treg and Th17 differ
entiation leads to the immunopathology seen with 
leprosy reactions [137,142].

Role of macrophages

Macrophages have an important role in leprosy patho
genesis mediate interactions between the host and 
M. leprae. Macrophages are classified as M1 (pro- 
inflammatory) and M2 (anti-inflammatory) according 
to the Th1-Th2 dichotomy. These macrophages differ 
in their cell surface markers, cytokine secretion and 
biological functions [143,144]. A characteristic of M1 
macrophages is their enhancement of antimicrobial, 
inflammatory and antigen-presenting activities. 
Additionally, M1 macrophages are activated by proin
flammatory cytokines, e.g. IFN-γ. M2 macrophages, 
which have anti-inflammatory actions, are related to 
the repair of tissue along with fibrosis, and are activated 
by IL-4 and IL-13 [144,145]. M. leprae is phagocytosed 
by macrophages, a process that is facilitated by the 
complement receptors CR1 (CD35), CR3 (CD11b/ 
CD18) and CR4 (CD11c/CD18) [146]. LL skin lesions 
are characterized by heavily infiltrated foamy macro
phages. In this disease type, M. leprae multiplies in 
lipid-filled phagosomes in foamy macrophages. On 
the other hand, in TT lesions, M1 macrophages activate 
the classical pathway, leading to the induction of IFN-γ, 
TNF-α, and iNOS [147]. These cytokines may contri
bute to immune responses to M. leprae [148,149]. 
A potential regulating factor in leprosy as it pertains 
to macrophage polarity is the protein jagged 1 (JAG1) 
[150]. Further, endothelial cells without stimulation 
lead to M2 macrophage polarization, but endothelial 
cells activated by IFN-γ give rise to M1 macrophages. 
JAG1 is present in the vascular endothelium of TT skin 
lesions. It triggers M1 antimicrobial macrophage differ
entiation [150]. Therefore, adequate signalling from 
endothelial cells to monocytes leads to an effective 
response against M. leprae infection. Conversely, 
a predominance of M2 macrophages promotes anti- 
inflammatory reactions that can be observed in LL 
lesions. M2 macrophages induce the production of 
TGF-β, IL-10, fibroblast growth factor (FGF)-β, 
CD163, CD209, arginase 1, and indoleamine 2, 3-diox
ygenase (IDO), which is involved in immunosuppres
sive reactions and repair of tissue [151–153]. IL-10- 

programmed macrophages that play a role in lipid 
uptake [154] are typified by a strong expression of 
CD206 (mannose receptor) and scavenger receptors, 
including CD163 (haemoglobin scavenger receptor), 
CD204 (scavenger receptor A: SR-A), CD36 and 
macrophage receptors with a collagenous structure 
(MARCO) [155]. Uptake of M. leprae by CD209 
+CD163+ macrophages was also demonstrated with 
LDL in foam cells of LL lesions, suggesting a function 
for IL-10 derived macrophages in lipid uptake [155].

The association of M4 macrophages with the patho
genesis of atherosclerosis was recently acknowledged 
and studied in relation to leprosy [156,157]. The immu
nolabeling of markers of M4 macrophages, including 
CD68, S100A8 and MMP7 [158], revealed numbers 
that are higher in LL lesions compared to TT lesions 
[157]. The phagocytosis of M4 macrophages was sup
pressed and may be related to low CD163 expression 
levels [150]. The predominance of M4 macrophages, 
which are associated with atherosclerosis, may affect 
foam cell formation, indicating the onset of an oxida
tive stress reaction. This promotes the production of 
chemokines and monocyte recruitment. The emergence 
of Virchow cells is part of an adaptive process.

On the other hand, studies of M. bovis Bacille 
Calmette-Guérin (M. bovis BCG) infection indicated 
that the tryptophan aspartate-containing coat protein 
(TACO; also termed coronin-1 or CORO1A) accumu
lates on the phagosome membrane and inhibits phago
some-lysosome fusion to enhance intracellular survival 
[159]. Following phagocytosis, macrophage mycobac
teria-containing phagosomes mature with lysosomes to 
kill engulfed bacteria. However, intracellular M. leprae 
suppresses immune responses and can survive in 
macrophages. We observed that after M. leprae infec
tion, CORO1A was recruited to phagosomal mem
branes where it suppresses TLR-mediated innate 
immune activation in cultured macrophages. We also 
found that the innate immune response, which is acti
vated by TLR2, suppresses CORO1A expression 
[160,161]. M. leprae infection also suppresses NF-κB 
activation [161]. This escape of various bactericidal 
actions likely allows the survival of M. leprae in host 
cells for long periods.

Animal models

There have been numerous studies aiming to grow 
M. leprae in vitro or in animals, and to find an animal 
model of leprosy to study the pathogenesis and treat
ment of M. leprae infections. Animals used for this 
purpose include various birds, mammals, and cold- 
blooded animals [162]. Most attempts resulted in no 
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host response or only mild inflammation at the inocu
lation site. This outcome may have been due to a lack 
of an innate response by the host to M. leprae. The high 
body temperature (≥37°C) in traditional rodent models 
may also disturb M. leprae proliferation, thereby mak
ing it difficult to establish conventional animal models 
to study M. leprae pathogenesis [163]. An initial success 
of transmission for limited infection in animals was 
achieved in 1960 by Shepard et al. in mouse footpads 
[164], and was based on the preference of M. leprae for 
cooler areas of the body. Although immunocompetent 
mice are quite resistant to M. leprae infection, inocula
tion with 103-104 bacilli into the posterior footpad of 
BALB/c, B6, or CFW mice resulted in local growth with 
a plateau at about 105-106 organisms within 4–6  
months [165]. However, with the inoculation of 106 

bacilli into each mouse footpad, the number of bacteria 
did not increase. This result suggests that proliferation 
could occur when the inoculum contains few bacilli. 
Thus, inhibition of bacterial growth was not because of 
the low temperature of the inoculation site, but because 
of cellular immunity [166,167]. The inoculation of 
immunocompromised (thymectomized-irradiated 
(T-R)) mice resulted in 10- to 100-fold more growth 
than that seen in immunocompetent mice.

In the first few months post-infection, host reactions 
against M. leprae are assumed to be largely under the 
control of innate immunity. At the peak or plateau 
stage of growth, the onset of adaptive cellular immunity 
takes place, which results in the death of the bacilli. In 
immunocompetent mice, a moderate granulomatous 
reaction with a mild lymphocytic infiltrate and a small 
number of epithelioid cells and histiocytes resembling 
a TT lesion can be seen. In contrast, M. leprae sponta
neously grows in the footpads of athymic nude mice, 
which lack cell-mediated immune responses, and gran
uloma formation similar to that seen for LL occurs in 
athymic nude mice [168]. In infected footpad tissue, 
giant lepromas and many bacilli can be seen in the 
histiocytes in the absence of mature T cells. Other 
models such as severe combined immunodeficiency 
(SCID) mice and mice having gene-knockouts (KO) 
of IFN-γ and nitric oxide synthase 2 (NOS2) [168] 
failed to reproduce human leprosy-like regions [169– 
171]. Meanwhile, a congenic hypertensive nude rat 
SHR.F344-Foxn1rnu carrying nude (rnu) and hyperten
sion genes had high IL-10 production and high suscept
ibility to M. leprae [172,173]. Inoculation of these nude 
rats with M. leprae induces leproma patterns in the 
inoculated and non-inoculated sites. Although this 
model is not widely used, it may be useful as an animal 
model for leprosy, particularly LL leprosy. Successful 
M. leprae growth in this model suggests a possible link 

between M. leprae growth and a genetic background of 
hypertension or other abnormalities of systemic 
metabolism.

The nine-banded armadillo (Dasypus novemcinctus) 
is a natural host and reservoir of M. leprae in the 
United States [85,99,174]. In 1971, the first successful 
inoculation of M. leprae in the nine-banded armadillo 
was reported [175]. This animal model has extensive 
neurological involvement with M. leprae. Thus, the 
armadillo is useful to understand mechanisms of neu
ropathy and to investigate new therapeutic interven
tions [176,177]. A limitation is that armadillos do not 
breed in a laboratory environment and must be cap
tured from the wild [178]. The zebrafish (Danio rerio) 
is a useful model for the study of M. tuberculosis gran
ulomas using Mycobacterium marinum (M. marinum) 
[179]. Recently, M. leprae-induced granulomas and 
early nerve damage were studied in adult zebrafish 
[180]. These animal models, although limited, have 
allowed for basic research on the pathogenesis of 
M. leprae and the epidemiology and therapeutic 
approach to leprosy [96,181–183]. Among primates, 
procedures for intravenous and intradermal inoculation 
with M. leprae were established in more than half of 
sooty mangabey monkeys (Cercocebus atys) and 
African green monkeys (Chlorocebus aethiops) studied, 
but experiments with rhesus monkeys (Macaca 
mulatta) and Cynomolgus monkeys (Macaca fascicu
laris) were less successful [184,185].

Host interactions

Route of transmission

M. leprae’s transmission routes are not completely 
known, although an increased risk of human-to- 
human transmission because of close contact with 
untreated leprosy patients has been noted. The most 
likely candidate for transmission is the spread through 
infectious aerosols [186]. Although several reports 
described the detection of M. leprae in placental tissue, 
congenital transmission of leprosy has not been estab
lished [186,187]. Most reported cases of leprosy in very 
young infants can be explained by exogenous transmis
sion through airborne infection of newborns from 
mothers or other untreated leprosy patients. The term 
of incubation is known to be long, as is the time for 
disease onset [100,188,189]. In the southeastern part of 
the United States, there have been reports of zoonotic 
transmission from wild infected armadillos, which 
seems to be the cause of autochthonous transmission 
in this area [85,97,190]. Some cases of transmission of 
leprosy through armadillos were reported in Latin 
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America including Venezuela, Colombia, Brazil and 
Mexico, although the transmission between armadillos 
and humans is very rare [191]. Recently, British red 
squirrels (Sciurus vulgaris) were found to harbor 
M. leprae and M. lepromatosis [192,193].

M. leprae has also been detected in wild chimpanzees 
(Pan troglodytes) and sooty mangabey monkeys [100– 
184–194–198]. Leprosy-like symptoms, such as loss of 
hair and hypopigmentation of facial skin, along with 
nodules on the face and other areas, have been 
observed. Deformations and ulcers of the hands (claw 
hand) and of the feet were reported in two groups of 
wild Western chimpanzees native to a national park in 
West Africa [198]. Fecal and necropsy samples of these 
animals showed that M. leprae is the causative patho
gen. Phylogenomic analysis and comparison to strains 
from other animals, including humans, allowed the 
identification of the rare bacterial genotypes 4N/O 
and 2F among the chimpanzees. There have not been 
any cases of genotype 2F in West Africa and very few 
cases in Ethiopia. In West Africa, there was only one 
case of genotype 4N/O that was found in a human 
sample. Despite the prime hypothesis that M. leprae 
infection could occur through chimpanzee-to-human 
transmission, this phylogenomic analysis suggested 
a possible distribution of M. leprae in the wild environ
ment. Recently, potential reservoirs have been identi
fied. It is possible that M. leprae could be delivered 
through tick bites [199–201], and M. leprae can survive 
in amoebae and in kissing bugs (Rhodnius prolixus) 

[202]. Further research is required to establish the 
role of these vectors in M. leprae transmission 
[203,204].

Regarding the relationship between the environment 
and infection, the detection of mRNA indicated the 
existence of the bacilli in soil and water samples taken 
in India and Brazil [205,206]. The results showed that 
the SNP subtype (SNP type 1and subtype 1-D from 
India and subtype 4-N from Brazil) of M. leprae from 
skin biopsies coincided with those identified in envir
onmental samples. The confirmed and hypothetical 
transmission pathways are shown in Figure 3 (same as 
graphical abstract).

Role of Schwann cells in nerve injury

M. leprae infects from the outside of nerves likely 
through epineural blood vessels and lymphatics 
[207,208]. M. leprae can reach the endoneurium via 
blood vessels and then invade and proliferate within 
Schwann cells [177]. M. leprae invades Schwann cells 
through α-dystroglycan (DG) which is present in the 
G domain of the laminin (LN)-2 α2 chain of the basal 
lamina [209,210]. Schwann cells and M. leprae interact 
through the surface moieties of the bacteria, including 
PGL-I, which has an important role in adhesion and 
survival within Schwann cells. Histone-like protein 
(Hlp) [211] and LPS-binding protein (LBP-21) [212] 
also participate in the interaction.

Figure 3. The transmission pathways of M. leprae. The M. leprae transmission pathways are not fully clear. However, an increased risk 
of human-to-human transmission because of intimate communication between untreated leprosy patients has been noted. 
Spreading via infectious aerosols is considered to be the most likely route of infection. M. leprae invades skin macrophages and 
Schwann cells, inducing skin lesions and neurological injury. Zoonotic transmission of M. leprae due to natural infection of armadillos 
in the Southeast United States has been reported, and humans and armadillos share a specific M. leprae strain. Red squirrels (Sciurus 
vulgaris) in the British Isles harbour M. leprae. Non-human primates including chimpanzees (Pan troglodytes) have been detected 
with leprosy in Africa and Asia. It has been speculated that potential vectors, such as amoebae, kissing bugs, and ticks, as well as the 
environment, could be potential transmission routes for M. leprae as a zoonotic disease. Black dotted arrows show confirmed 
transmission pathways. Grey arrows show hypothetical transmission pathways. Red dotted arrows show the main route of 
transmission between humans. An aerosol spreads the nasal secretions.
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M. leprae induces neural demyelination by stimulat
ing the production of matrix metalloproteinases 
(MMPs), C-X-C motif chemokine ligand 10 
(CXCL10) and C-C motif chemokine 2 (CCL2), which 
attract macrophages. PGL-I induces nitric oxide (NO) 
synthase production in infected macrophages that 
results in damage to axons caused by mitochondrial 
injury and the induction of demyelination [180,213]. 
Nitrotyrosine, which is the metabolism product of NO, 
is seen in the nerves of BL patients. Nitrotyrosine is also 
involved in the lipid peroxidation of myelin, which 
leads to the demyelination of nerves [214]. Also, it 
has been reported that the direct mechanism of 
M. leprae-induced demyelination depends on pathogen 
binding to the receptor-type tyrosine kinase ErbB2 on 
Schwann cells and the resulting activation of Erk1/2 
signal transduction pathways through the Ras-Raf- 
MEK-ERK pathway [215,216]. T cells are known to 
kill Schwann cells by cell-mediated immunity 
[131,217] and other cytokines, like IL-1β, IFN-γ, and 
TNF-α lead to apoptosis in cultured Schwann cells 
[218,219]. In addition, the complement system is 
involved in the demyelination seen in leprosy patients, 
which is termed rapid Wallerian degeneration. Recent 
findings showed that nerve damage observed in the 
early phase may be associated with the innate immune 
response. The complement membrane attack complex 
(MAC), which consists of C5b, C6, C7, C8 and C9, 

colocalizes with LAM of the M. leprae cell wall in the 
nerves of patients with leprosy, indicating that comple
ment targets LAM [220]. MAC deposition occurs on 
the sensory nerves of the skin and on damaged sensory 
nerves of LL patients, but not of TT patients [220,221].

M. leprae induces significant changes of the meta
bolic pathways in Schwann cells, such as inducing 
insulin-like growth factor 1 (IGF-1) which enables bac
teria to survive in host cells [222]. In addition, 
M. leprae upregulates glucose uptake and lipid synth
esis while downregulating oxidative stress, apoptosis, 
and autophagy [223–225]. In host cells, PGL-I activates 
endocytic mannose receptor (MR/CD206) expression 
depending on the peroxisome proliferator-activated 
receptor gamma (PPAR-γ). Crosstalk between CD206 
and PPAR-γ leads to the formation of lipid droplets 
(LDs) and produces prostaglandin E2 (PGE2) [226]. 
Meanwhile, TLR6 has a role in bacterial sensing and 
entry in Schwann cells [224]. It has been shown that 
M. leprae Man LAM is recognized by CD206, resulting 
in bacterial invasion, weak activation of PPAR-γ, and 
upregulation of CD206 expression. M. leprae amplifies 
CD206/PPAR-γ crosstalk to promote LD formation 
and phagosome recruitment. Elevated LDs induce 
PGE2 and IL-10 production [224].

M.leprae induces the Schwann cell dedifferentiation 
by promoting early demyelination. The bacteria may 
further promote the spread of infection by 

Figure 4. Histopathology of leprosy. (a) TT is characterized by granulomas with lymphocyte infiltration. These are multiple, well- 
formed granulomas with multinuclear Langhans giant cells. Erosion of the basal layer of epidermis is observed, with lymphocytes 
(→). (HE stain, 40×). (b) in BT lesions a granulomatous appearance can be observed (→), similar to TT lesions, with the presence of 
a grenz zone. Lymphocytic infiltration is less than in TT. (HE stain, 40×). (c) in BL cases, lymphocytic infiltration and histiocytes (→) 
with granular to foamy cytoplasm are observed. (HE stain, 40×). (d) LL is characterized by foamy histiocytes with a grenz zone below 
the epidermis. (→) (HE stain, 40×) (A) the slit skin smear test shows the acid fast bacilli. (→) (Ziehl- Neelsen stain, 1000×). (B) a large 
number of bacilli are observed within foamy histiocytes with LL lesions. (→) (Ziehl- Neelsen stain, Wade-Fite, 400×). 
Photomicrographs are courtesy of Dr. Norihisa Ishii, National Sanatorium Tama Zenshoen.
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reprogramming Schwann cells to the progenitor/stem 
cell stage [227]. The infection with M. leprae stimulates 
the expression of multiple immune-related genes 
related to innate immunity [228]. Schwann cells 
which are infected with M. leprae for an extended 
period showed early demyelination followed by increas
ing Schwann cell number. Further dedifferentiation 
results in the loss of cell lineage characteristics and 
the formation of progenitor/stem cell-like cells 
(pSLCs) having an expression profile like that of 
mesenchymal stem cells. These pSLCs can differentiate 
into fibroblasts and can undergo reprogramming that 
allows spread of the infection [227,228].

Lipid accumulation in infected cells

Mycobacteria cell walls contain a large range of lipids. 
As stated above, M. leprae has lost approximately 50% 
of the lipid metabolism-related genes of M. tuberculosis 
[64,229]. Thus, M. leprae may have also lost the ability 
to metabolize lipids needed to maintain complex cell 
walls and as a carbon source. Microscopic analysis of 
skin biopsies from LL cases showed that phagosomes 
containing M. leprae co-localized with LDs in foam 
cells [230]. Recently, we used high-performance thin- 
layer chromatography (HPTLC) to indicate that triacyl
glycerol (TAG) is the major lipid of human monocyte 
THP-1 cells infected with M. leprae [15]. The accumu
lation of TAG was sustained with live bacilli, but was 
temporary when dead bacilli were used. M. leprae pro
motes glucose uptake by increasing the expression of 
the solute carrier family 2 member 1 (SLC2A1). 
SLC2A1 activates the pentose phosphate pathway and 
provides TAG synthesis in Schwann cells [231]. TAG is 
associated with adipose differentiation-related protein 
(ADRP) and perilipin, which regulate lipid metabolism 
[232]. We previously showed that there is upregulation 
of ADRP and perilipin in foamy macrophages involving 
M. leprae in skin lesions [111]. The expression of peri
lipin and ADRP is highly promoted by M. leprae infec
tion, which is in agreement with in vivo data. These 
proteins are found in M. leprae-containing phagosomes 
in THP-1 cells [111]. On the other hand, M. leprae 
suppresses TAG degradation by inhibiting the revela
tion of hormone-sensitive lipase (HSL), therefore pro
moting an intra-host macrophage environment that 
contains high levels of lipids [72]. TAG biosynthesis 
occurs mainly through a de novo pathway that involves 
the glycerol-3-phosphate pathway [233]. In that path
way, glycerol-3-phosphate acyltransferase (GPAT) 
functions as a rate-limiting enzyme of TAG biosynth
esis. M. leprae infection causes the synthesis of TAG 
within host cells by inducing expression of GPAT3 

among four isoforms (GPAT1–4) [15]. This finding is 
supported by the observation that THP-1 cells with 
CRISPR-Cas9-mediated GPAT3 KO had dramatically 
reduced TAG accumulation after M. leprae infection. 
These observations indicate that M. leprae changes lipid 
metabolism of the host cell to sustain TAG accumula
tion. M. leprae-containing histiocytes and Schwann 
cells were also reported to be filled with cholesterol 
[225,234], which was confirmed by TLC showing that 
cholesterol accumulates in M. leprae-infected primary 
macrophages [225,230]. In addition, the expression of 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) 
increased in host cells, and lovastatin inhibition of 
HMG-CoA reductase reduced the M. leprae survival 
rate [230]. Thus, the viability of M. leprae is likely to 
be associated with lipid metabolism in host cells, espe
cially TAG and cholesterol storage.

After infection, M. leprae causes dramatic changes in 
host gene expression profiles [72,76,111,231,235]. 
PPARs, which include PPAR-α, PPAR-β/δ, and 
PPAR-γ, which are major regulators of lipid metabo
lism, have important roles in the formation of LDs 
containing TAG. We showed that PPAR-δ and PPAR- 
γ expression is induced by M. leprae infection and 
nuclear translocation in THP-1 cells [76]. Activation 
of these genes by M. leprae induced the expression of 
genes encoding CD36 and the acyl-CoA synthetase 
long-chain family (ACSL). CD36 mediates the macro
phage uptake of oxidized low-density lipoproteins 
(LDL) and induces the expression of fatty acid- 
binding protein 4 (FABP4) which promotes foam-cell 
formation through fatty acid transport. ACSL is asso
ciated with de novo TAG synthesis from intracellular 
fatty acids [76,235]. Also, PPAR-β/δ and PPAR-γ reg
ulate GPAT3 and ADRP expression [236,237], but the 
components derived from viable bacteria that act as 
triggers of these PPARs are unknown. Since lipids 
accumulated in host cells are essential for M. leprae 
survival, drugs that target lipid metabolism could be 
a new therapeutic strategy for leprosy.

As mentioned above, mycolic acid is a cell wall lipid 
that is unique to mycobacteria and is a key virulence 
factor [238]. Mycolic acid primarily exists in combina
tion with trehalose, glucose, and glycerol. Subtypes of 
mycolic acid in M. tuberculosis include alpha-, keto-, 
and methoxy-mycolic acid based on functional groups 
within the mero mycolate chain. Meanwhile, M. leprae 
has alpha- and keto-mycolic acids [239]. The structure 
of these mycolic acids contributes important character
istics to the different bacteria including resistance to 
chemical damage and dehydration, low permeability to 
hydrophobic antibiotic substances, and the ability to 
survive within phagosomes [240]. Mycobacterium 
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smegmatis (M. smegmatis) synthesizes mycolic acid 
using an extension reaction from acyl-CoA via fatty 
acid synthase I and II (FASI and FASII) as well as 
a pathway that uses TAG-metabolized fatty acids 
[241]. Interestingly, inhibition of TAG degradation by 
anhydrotetracycline (ATc) dramatically reduced myco
lic acid biosynthesis, suggesting that M. smegmatis 
stores lipids that could serve as an intracellular fatty 
acid reservoir for biosynthesis of complex lipids [241]. 
As we have reported, TAG accumulated in M. leprae- 
infected macrophages contains a complex mixture of 
fatty acids and may produce materials for the synthesis 
of mycolic acid. Further studies are needed to investi
gate whether M. leprae synthesizes mycolic acid from 
host-derived TAGs to escape host-derived exclusion 
systems and allow intracellular parasitization.

Clinical characteristics and epidemiology

New cases

According to the WHO, there were 202,185 new 
leprosy cases worldwide in 2019. India had the highest 
number, followed by Brazil and Indonesia. Of these, 
14,981 cases were in children younger than 15 years 
old. G2D, which is defined as leprosy accompanied by 
visible deformities due to leprosy neuropathy, was 
detected in 10,813 cases. The COVID-19 pandemic 
hampered implementation of the WHO program and 
there were 37% fewer new cases reported in 2020 than 
in 2019 [242], although whether there was an actual 
decrease in incidence is unclear.

Classification

Leprosy can be classified into five types: TT, BT, BB, BL 
and LL by the Ridley-Jopling scale. This classification is 
based on clinical, immunological and histological dif
ferences in the disease [128]. Dimorphic cases are clas
sified according to which pole they move towards (TT 
or LL) and are preceded by the word borderline (BL, 
BT and BB) [29] (Figure 2). Most of the indeterminate 
cases are known to be cured without treatment. 
Dimorphic cases will upgrade or downgrade on the 
immunological scale according to the immune status 
of the host. As treatment is initiated such cases tend to 
upgrade on the Ridley-Jopling scale [243,244]. The skin 
smear is used to estimate the number of acid-fast bac
teria present. This value is reported as the Bacterial 
Index (BI) [245]. The WHO Expert Committee on 
Leprosy established a practical classification system 
that can be applied worldwide in 1998 [6]. Cases having 
six or more skin lesions are classified as multibacillary 

(MB), and those with five or fewer skin lesions are 
classified as paucibacillary (PB). The classification of 
PB and MB was adopted for easy administration of 
MDT under field conditions. The skin manifestations 
and nerve damage caused by leprosy are strongly influ
enced by the immune response of each patient and may 
show a variety of clinical manifestations and histo
pathologic morphology [128,246,247].

Histopathology

On a histological basis, TT is characterized by granu
lomas with lymphocyte infiltration. These granulomas 
are composed of epithelioid histiocytes that build mul
tinuclear Langhans giant cells. Erosion of the basal 
layer of epidermis with lymphocytes can be observed 
without an intervening clear zone (Figure 4a). Nerve 
bundles are difficult to identify within the granulomas 
and S100 immunostaining may be required. In TT 
lesions, bacilli are not seen. In BT lesions, 
a granulomatous appearance can be observed with 
a grenz zone, which is a very narrow space that 
separates the superficial inflammatory infiltrate and 
the epidermis; this appearance is similar to that of 
TT lesions. Lymphocytic infiltration around granulo
mas is less than that seen for TT and the swelling of 
nerve bundles may be observed in the granulomas 
(Figure 4b). In BB cases, diffuse epithelial histiocytes 
that form small lesions are observed, but diffuse lym
phocytic infiltration is present and there are no 
Langhans giant cells. BI is frequently 3+ to 4+ in BB 
lesions. In BL cases, lymphocytic infiltration and the 
presence of histiocytes with a granular to foamy cyto
plasm can be observed (Figure 4c) and BI is usually 5  
+ .In LL cases, foamy histiocytes (Virchow cells) 
including numerous bacilli (Figure 4b), which in 
some cases exist in large clumps termed globi, are 
present, as is a grenz zone below the epidermis. 
Lymphocytic infiltration is not evident, and nerve 
bundle damage is often seen. Below the epidermis, 
often in the grenz zone, is a very narrow space of 
collagen that separates granulomas and the epidermis 
[248,249] (Figure 4d). BI in LL is generally on the 
higher side, often between 5+ and 6 + .In type 1 
leprosy reaction lesions, histopathology findings are 
characterized by oedema with lymphocytic infiltrates 
and giant cells [250]. In type 2 leprosy reaction 
lesions, neutrophil infiltration of the perivascular 
areas in the dermis and subcutaneous tissue is 
observed. Necrotizing vasculitis may be seen, along 
with lobular panniculitis [250]. (See section 4. 6 
Leprosy reaction)
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Diagnosis

Recently, the diagnosis of leprosy by polymerase chain 
reaction (PCR) has become a useful and recommended 
technique. PCR began to be used for the amplification 
of M. leprae DNA about 20 years ago, and field-based 
assays are now being developed. This technology has 
come to be used not only for diagnosis, but also for 
detection of resistant bacteria, identification of the 
route of infection, evaluation of therapeutic effects, 
and confirmation of household contacts. It has been 
verified and reported that multiplex real-time quantita
tive PCR (qPCR) using two or three genes, namely 
RLEP, 16S rRNA and superoxide dismutase (sodA), is 
effective [251–253].

The antibodies to PGL-I of M. leprae can be detected 
by enzyme-linked immunosorbent assays (ELISAs) and 
related immunoassays; these have also been used in 
epidemiological research [254,255]. Immune biomar
kers of infection are also of interest for the IgM 
response to certain antibodies, particularly PGL-I, 
which is detected in patients’ serum [256,257]. 
Elevated levels of IgM, IgG1, and C3d were detected 
in MB patients who developed erythema nodosum 
leprosum (ENL); these serum markers may be applic
able to estimate the risk of developing a reaction [258]. 
It was also observed that IgG and IgM antibody levels 
decreased in LL cases in the first year of their treatment 
[108,259]. Immunoblot and ELISA-based studies of 
M. leprae antigens are useful for diagnosis and evalua
tion of the effectiveness of antibiotic treatment. Other 
molecular detection methods for M. leprae include 
analysis of urine for DNA and protein [260] and detec
tion of antigens and antibodies in cerebrospinal fluid 
(CSF) [261,262]. In current clinical practice, the diag
nosis of leprosy is based on the presence of at least one 
of three cardinal signs: (i) the loss of sensation in 
a reddish or pale (hypopigmented) area of skin; (ii) 
a thickened peripheral nerve with weakness and/or 
loss of sensation of the muscles; or (iii) the detection 
of acid-fast bacilli in a slit-skin smear [263,264].

Neuropathy

Neuropathy is an important clinical manifestation of 
leprosy and has a large impact on affected individuals. 
Nerve thickness is a prominent clinical manifestation of 
leprosy. In the WHO classification [6], PB is defined as 
having no peripheral nerve damage or is limited to 
a single nerve, whereas MB has one or more nerve 
infiltrates. The characteristic of pure neuritic leprosy 
(PNL) is the damage of peripheral nerve trunks without 
skin symptoms. In PNL, the ulnar nerve is most 

frequently influenced, with enlargement of the nerve 
accompanied by loss of function [265]. In India, 4–18% 
of leprosy cases are PNL, and in Brazil PNL accounts 
for 7.8% of cases [266–269]. Mononeuritis with sensory 
neuropathy of the upper extremities is more frequent 
than the lower extremities. PNL can be difficult to 
diagnose because there are no skin lesions, and diag
noses are often delayed. 60% of patients with LL have 
nerve damage at the time of diagnosis. Furthermore, 
nerve damage may occur in 30% cases during the 
treatment of LL and in 10% of cases, new nerve damage 
associated with immune reactions occurs after drug 
treatment [270].

Leprosy reaction

Leprosy reaction is the immune response against 
M. leprae and is a major factor in neurological disor
ders associated with leprosy. This reaction occurs with 
a sudden and severe immune response to the degraded 
leprosy bacillus components, which often appear with 
antibiotic therapy. Leprosy reactions are classified as 
type 1 (T1 R) and type 2 (also known as erythema 
nodosum leprosum or ENL). These reactions occur in 
30 to 50% of all leprosy patients [271,272]. T1 R is also 
known as a borderline reaction or a reversal reaction 
that happens in borderline cases (BT, BB and BL) and 
some LL cases. Acute inflammation of pre-existing skin 
lesions with neuroinflammation is a hallmark of T1 R. 
Approximately 95% of T1 R cases have already started 
at the time of diagnosis of leprosy or begin in the first 
two years of MDT [273]. Neurologic dysfunction is 
present in approximately 10% of PB patients and 40% 
of MB patients, and is particularly prominent in 
patients with T1 R [274]. The immune responses 
related to the pathogenesis of T1 R are a type-IV hyper
sensitivity reaction [275] and CD4+ T cell infiltration 
might be responsible for the immune-mediated tissue 
damage that occurs during T1 R [276]. The Th1 cell- 
derived cytokines, including TNF-α, IL-2, IL-1β, and 
IFN-γ, have important functions in T1 R (Figure 5a).

ENL occurs with neutrophil infiltration and systemic 
inflammation. Complement activation, immune com
plex formation, increasing CD4+/CD8+ T cell subset 
ratios and elevated TNF-α may be seen in the lesions 
and in the circulation [277–279] (Figure 5b). In the 
acute stage of ENL lesions, large numbers of neutro
philic infiltrations are observed, but the actual function 
of neutrophils in ENL is unclear. Recent studies showed 
that neutrophils expressing CD64 are associated with 
the systemic inflammation of ENL [280], and therefore 
the CD64 expression level on the neutrophils of per
ipheral blood may be a marker for ENL and disease 
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severity. ENL occurs in patients with LL or BL who 
exhibit low cellular immunity but have sufficient num
bers of B cells and plasma cells to produce antibodies 
against M. leprae [281,282]. The antibodies form 

immune complexes that deposit in tissues and blood 
vessels to cause a type III hypersensitivity reaction 
[283]. ENL occurs in more than half of LL cases and 
5–10% of BL cases, especially where there is a BI value 

Figure 5. The mechanism of the leprosy reaction. (a) T1 R is led by a cellular immune response mediated via CD4+ T cells. Activated 
macrophages release pro-inflammatory Th1 cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, IL-2, IL-12, TGF-β and iNOS, which cause 
tissue damage. (b) ENL is a generalized proinflammatory reaction featuring the infiltration of neutrophils. The activation of 
complement, immune complexes, increasing CD4+/CD8+ T cell subset ratios and high degree of proinflammatory cytokines 
including TNF-α in the lesions and in the circulation can also be observed. ENL shows low cellular immunity, but there are enough 
B cells and plasma cells to produce antibodies against M. leprae. In the acute stage of ENL lesions, a large number of neutrophilic 
infiltrations is observed. An activated CD8+ T cell secretes cytotoxic granule proteins such as perforin and granzymes which lead to 
apoptosis of the cells.
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≥4 [284]. These immune responses are related to TNF- 
α produced against M. leprae itself or to the compo
nents of dead bacilli after antimicrobial treatment 
[284]. In fact, most ENL occur during the first year of 
MDT [285]. The main ENL symptom is painful red 
skin lesions that are often soft and subcutaneous. In 
addition, systemic inflammation which affects the 
nerves, joints, eyes, testes, and lymph nodes may 
occur with high fever. Leprosy reactions are the most 
common source of persistent nerve damage, deformity, 
and induced disability following M. leprae infection.

Treatment and drug resistance

The current WHO-recommended MDT strategy for 
leprosy control is a three-drug combination of rifampi
cin, dapsone and clofazimine given over a 6-month 
period for PB leprosy and over a 12-month period for 
MB leprosy. The standard regimen for adult MB 
patients is a 12-month course consisting of a once- 
monthly 600 mg dose of rifampicin, 100 mg dapsone 
daily, 50 mg clofazimine daily and one 300 mg dose 
monthly [263]. Adult PB patients require a regimen 
consisting of a 6-month course of 600 mg rifampicin 
once monthly and 100 mg dapsone daily. For paediatric 
cases, the dose is based on weight and age, so for a child 
younger than 10 years old who weighs less than 40 kg, 
the regimen is: dapsone 2 mg/kg/day, rifampicin 10 mg/ 
kg/day, and clofazimine 100 mg once a month and 50  
mg twice weekly. Delays in the diagnosis and required 
treatment of leprosy often result in deformity and dis
ability, which may result in stigma, and also correlate 
with the development of G2D [286]. The motor neuro
pathy that accompanies peripheral neuropathy can 
cause major problems with ADL and muscle atrophy.

Leprosy treatment with antimicrobials began in the 
early 1940s, by Dr. Guy Henry Faget of the National 
Hansen’s Disease Center in Carville, Louisiana. Sulfone 
therapy (Promin) was replaced with dapsone to limit 
toxicity of the treatment [287,288]. Dapsone was used 
as a single agent on a long-term basis until the devel
opment of drug resistance was confirmed. The first 
dapsone-resistant case was reported in 1953 and cases 
have since been reported [289,290]. In the 1970s, 
relapses and drug resistance to dapsone occurred in 
nearly 19% of patients [291]. To avoid the emergence 
of drug resistance, the WHO recommends MDT as 
described above, but nevertheless, reports of drug resis
tance still occur.

Rifampicin is an antibiotic that inhibits transcription 
in bacteria, especially mycobacteria, by impeding the 
enzymatic activity of the beta-subunit of RNA polymer
ase (rpoB) via steric hindrance of the 5’-ribonucleotide 

of the elongating RNA [292,293]. Missense mutations 
in the rpoB gene lead to changes in the amino acids 
lining the rifampin binding pocket and produce 
changes in the enzyme’s structure and rifampin resis
tance [292]. Within the drug resistance determining 
region (DRDR), mutations in the rpoB gene occur 
between the codon positions 410–480 [290].

Dapsone is a sulpha drug that does not have 
a sulphonamide structure but is instead 
a p-aminobenzoate (PABA) analog that competes with 
PABA as a substrate for dihydropteroate synthase 
(DHPS). It acts to bacteriostatically inhibit nucleic 
acid (both RNA and DNA) synthesis in pathogens 
[294]. The mechanism of M. leprae dapsone resistance 
incorporates mutations found in the folP gene encoding 
DHPS, causing a reduction in binding affinity between 
dapsone and the DHPS active site [295]. In the mouse 
footpad assay, clinical isolates from patients who were 
resistant to dapsone therapy contained missense muta
tions at codons 53 and 55 in the folP1 gene [296–298]. 
Clofazimine is a therapeutic agent used as a first line 
MDT; however, its mechanism of effect is not fully 
clear. Over the years, the number of reported clofazi
mine-resistant leprosy cases has been small. 
Clofazimine may have several different effects, with 
high drug accumulation in mononuclear phagocytes, 
slow metabolic clearance, and anti-inflammatory effects 
that together may explain why there are few resistant 
strains [299–301]. Ofloxacin is a fluoroquinolone anti
microbial agent used as part of a second line MDT 
against M. leprae. Fluoroquinolones target type II 
DNA topoisomerases, such as DNA gyrase and topoi
somerase IV [302]. Fluoroquinolone resistance, includ
ing resistance to ofloxacin, is conferred primarily by 
amino acid substitutions in the DRDR near the 
N-terminus of the DNA gyrase A (Gyr A) due to 
mutations in the gyrA gene [303]. Two amino acid 
substitutions have been reported for ofloxacin resis
tance, a glycine to cysteine substitution at position 89 
of GyrA (Gly89Cys) and an alanine to valine substitu
tion at position 91 (Ala91Val). However, most quino
lone-resistant M. leprae are Ala91Val substituted 
strains, with limited resistance to Gly89Cys substitu
tions [297].

Since the 1970s, rifampicin has been a mainstay of 
leprosy treatment; however, since the reporting in 1976 
of the first case of resistance [304], resistant strains 
have since been reported in several other endemic 
areas [305–308]. In the WHO Global Leprosy 
Programme (GLP), M. leprae drug resistance, in parti
cular to rifampicin, was an issue of deep concern. In 
2008, in 18 sentinel countries, global-level drug resis
tance surveillance was performed to evaluate drug 
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resistance levels and MDT efficacy. This surveillance 
showed that resistant strains are present in many ende
mic regions across the world [309]. Drug-resistant 
strains were determined by antibiotic susceptibility test
ing in mouse footpads, necessitating a one-year term 
for experimentation. Later, gene sequencing of DRDRs 
in M. leprae rpoB, folP1, and gyrA were used to gauge 
resistance to rifampicin, dapsone, and quinolones, 
respectively [310–312]. Although the WHO carried 
out sentinel surveillance using PCR direct sequencing 
[313], such sequencing analyses or even PCR detection 
of M. leprae DNA in most endemic countries remains 
challenging. In this regard, development of a rapid, 
cost-effective point-of-care diagnostic tool is needed.

Prevention and infection control

The WHO Guidelines Development Group (GDG) 
analysed evidence regarding vaccines for leprosy 
[314–316]. Current strategies for vaccine development 
revolve around using cross-sensitizing mycobacteria. 
The efficacy of Mycobacterium bovis (M. bovis) and 
Bacille Calmette-Guérin (BCG) has been reported in 
different countries [314]. Three meta-analyses summar
ized the protective efficacy of BCG vaccination 
[315,317,318]. It was reported that on average the pre
ventive effect of BCG was 26% in experimental studies, 
while in observational studies, it was found to be 61% 
[315]. Recently, India has focused interest on another 
vaccine, the Mycobacterium indicus pranii vaccine, 
which is known as Mycobacterium w (Mw) [319,320]. 
Various recombinant BCGs and M. leprae subunit vac
cines have been developed, of which the new subunit 
recombinant vaccine LepVax has successfully com
pleted Phase 1a clinical trials [321].

Allocation of post-exposure prophylaxis (PEP), 
consisting of a single dose of rifampicin (SDR), is 
one of the most promising options for people 
exposed to M. leprae. PEP reduces the risk of devel
oping leprosy by about 60% during the first two years 
after exposure [322–326]. M. leprae detected in the 
nasal cavities of asymptomatic people is a risk for the 
onset of illness in a community over time [327,328]. 
The transmission among subclinical patients seems to 
be suggested by the association of positive asympto
matic residents with infected residents [186]. 
Individuals in contact with those who are afflicted 
with leprosy are at increased risk of developing the 
disease [329,330]. Thus, administration of SDR-PEP 
to individuals in contact with leprosy patients may 
help control transmission, thereby reducing new 
leprosy case numbers [331].

Conclusion

The Global Leprosy Strategy 2021–2030 “Towards zero 
leprosy” has been carried out with the goal of targeted 
reduction of new patients, but a substantial number of 
infections still occur. This is due to inadequate knowl
edge about the mechanisms of M. leprae pathogenicity 
and difficulties accessing medical treatment that persist 
in endemic regions, especially those in Southeast Asia, 
East Africa, and Brazil, which still account for a large 
proportion of newly reported cases. This review sum
marized the unique biological properties of M. leprae 
with a focus on survival within host cells such as 
macrophages and Schwann cells through modulation 
of the innate immune response and lipid metabolism. 
M. leprae has extremely few gene-coding regions, and 
pseudogenes and non-coding regions consume nearly 
half its genome. Thus, these bacteria are highly depen
dent on host cells, particularly for the production of 
lipids and cell wall components. Alterations in lipid 
metabolism affect bacterial survival and proliferation. 
Although WHO-recommended MDT administration 
has drastically brought down the prevalence of leprosy 
in the world, the emergence of new cases along with 
drug-resistant cases at this point of elimination may 
delay the elimination of leprosy. Further research on 
the physiological characteristics, particularly the para
sitic mechanisms, of M. leprae will contribute to the 
development of new therapeutic strategies and drugs 
and may help realize the goal of “Towards zero 
leprosy.”

Abbreviations

M.leprae Mycobacterium leprae
M. tuberculosis Mycobacterium tuberculosis
WHO World Health Organization
G2D Grade-2 disability
LL lepromatous leprosy
BT borderline tuberculoid leprosy
BB mid-borderline leprosy
BL borderline lepromatous leprosy
TT tuberculoid leprosy
ENL erythema nodosum leprosum
PEP post-exposure prophylaxis
SDR single dose of rifampicin
PGL-I phenolic glycolipid I
MDT multidrug therapy
TLRs Toll-like receptors
IFN-γ interferon-γ
TNF-α tumour necrosis factor-α
iNOS inducible nitric oxide synthase
NOD nucleotide-binding oligomerization domain
NLRs NOD-like receptors
TGF transforming growth factor
JAG1 protein jagged 1
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Hlp histone-like protein
SNPs single nucleotide polymorphisms
MAC membrane attack complex
LAM lipoarabinomannan
LM lipomannan
PG peptidoglycan
AG arabinogalactan
PDIMs phthiocerol dimycocerosate
TMM trehalose mono-mycolate
DAP diaminopimelic acid
TAG triacylglycerol
GPAT glycerol-3-phosphate acyltransferase
LDs Lipid droplets
ADRP adipose differentiation-related protein
PPARs peroxisome proliferator-activated receptors
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