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B cells are well known as key mediators of humoral immune responses via the production
of antibodies. Immunoglobulin A (IgA) is the most abundantly produced antibody isotype
and provides the first line of immune protection at mucosal surfaces. However, IgA has
long been a divisive molecule with respect to tumor progression. IgA exerts anti- or pro-
tumor effect in different tumor types. In this review, we summarize emerging evidence
regarding the production and effects of IgA and IgA+ cells in the tumor microenvironment
(TME). Moreover, we discuss that the TME cytokines, host diet, microbiome, and
metabolites play a pivotal role in controlling the class-switch recombination (CSR) of
IgA. The analysis of intratumoral Ig repertoires and determination of metabolites that
influence CSR may help establish novel therapeutic targets for the treatment of cancers.
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INTRODUCTION

Immunoglobulin A (IgA) is the most abundant antibody class present on mucosal surfaces. It plays
a key role at these surfaces, which are continuously exposed to antigens, food, and commensal
microorganisms (1). IgA-producing plasma cells (IgA+ PCs) are derived from B cells and undergo
antibody class-switch recombination (CSR). Emerging evidence shows significant tumor infiltration
by B cells. However, the role of B cells and their antibodies in tumors has remained elusive, perhaps
due to their phenotype, antibody isotype and production, localization, and the tumor type and
tumor microenvironment (TME) (2–5). Multiple lines of evidence now leave no doubt that B cells
undergo clonal proliferation, selection for high-affinity antibodies, and isotype switching within
tumor-associated tertiary lymphoid structures (TLS) and in less organized structures, ultimately
converting into effector/memory B cells and antibody-producing PCs (6–9). However, under certain
conditions, tumor-infiltrating B cells, PCs, and their antibodies may exert prominent
immunosuppressive effects. Studies have provided well-founded evidence of discrete subsets of
immunosuppressive or regulatory B cells (Bregs) in both mice and humans. Their function depends
on immunosuppressive factors, such as IL-10, PD-L1, and/or TGF-b (10–13). Moreover, IgA has
recently been recognized as a key biomarker of immunosuppressive B cells. However, the effect of
IgA+ cells and their antibodies on cancer development remains controversial (1, 11, 14–16). In this
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review, we summarize recent findings related to the production
and effect of IgA and IgA+ cells in the TME and discuss their
potential roles in novel cancer treatment strategies.
SOURCE AND LOCATION OF IgA

Approximately 80% of all human PCs are located in organized
gut-associated lymphoid tissue (GALT). In GALT, IgA is
produced at a constant synthesis rate of 50 mg/kg/day, which
is more than the total synthesis rate of other Ig isotypes,
indicating that continuous secretion of IgA requires an
enormous amount of energy in mammalian species (17). In
addition, IgA is present in milk and bronchial secretions (18).
Serum IgA is predominantly monomeric in humans and is
produced by local PCs of the bone marrow, spleen, and lymph
nodes (1). IgA at mucosal surfaces is generally produced by local
PCs as dimeric molecules, although small amounts of monomers,
trimers, tetramers, or polymers can also be present. Dimeric IgA
interacts with the polymeric Ig receptor (pIgR), an antibody
transporter expressed on the basolateral surface of intestinal
epithelial cells (IECs). A secretory IgA (sIgA) complex is formed
after a secretory component (SC) of pIgR binds to IgA through a
joining (J) chain. SC is a hydrophilic and highly (N- and O-
linked) glycosylated negatively charged molecule that protects
sIgA from degradation in luminal secretions (19).

It has been confirmed that various structural compartments
differ in the mode of IgA induction. Mucosal antigens initiate
IgA production through both T cell-dependent (TD) and T
cell-independent (TI) reactions (20–22). Most antigens
produce IgA by activating follicular B cells in the germinal
center of Peyer’s patches (PPs) and mesenteric lymph nodes
(MLNs). This TD pathway involves a cognate interaction
between follicular B cells and antigen-activated CD4+ T cells,
including TH2 cells, regulatory T (Treg) cells, and T follicular
helper (TFH) cells (22, 23). Together with follicular dendritic
cells (FDCs), this interaction fosters proliferat ion,
differentiation, somatic hypermutation (SHM), and IgA CSR
of B cells in the germinal center. Ultimately, this TD pathway
leads to the emergence of long-lived memory B cells and PCs
that release high-affinity IgA antibodies in the lamina propria
(LP) (20). However, TD antibody responses require 5-7 days,
which can be too much of a delay to control pathogens. To
compensate for this limitation, a TI reaction occurs in PPs,
MLNs, isolated lymphoid follicles (ILFs), and LP. Commensals
trigger multiple Toll-like receptors (TLRs), which stimulate
FDCs, DCs, and stromal cells to release BAFF, APRIL, TGF-b,
and other IgA-inducing cytokines, thereby triggering the
induction of TI IgA CSR and production in PPs, MLNs,
ILFs, and LP (24, 25). Class-switched B cells emerging from
these pathways ultimately release both low- and high-affinity
IgA antibodies in LP. Moreover, it is likely that the generation
of IgA+ PCs depends on the nature of IgA and the initial
location of B cells. A precise combination of different
leukocyte and mesenchymal cell types may also influence the
generation of IgA+ PCs (23) (Figure 1).
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IMMUNOSUPPRESSIVE B CELLS IN
TUMORS MARKED WITH IgA

The tumor-promoting effects of B cells and PCs are generally
associated with the presence of heterogeneous cell populations
called Bregs and immunosuppressive plasma cells (ISPCs), which
may accelerate tumor progression through various mechanisms.
Multiple studies have shown that Bregs suppress tumor
immunity through immunosuppressive factors, such as IL-10,
TGF-b, PD-L1, FASL, IL-35, and Tim1 (11, 14, 26–28). This type
of tumor immunity suppression is activated by signals from
CD40, TLRs, and B cell receptors (BCRs) (10, 29). Furthermore,
Bregs reportedly cause cytotoxic T lymphocyte (CTL)
suppression by inducing M2 macrophage polarization (30, 31)
and Tregs in squamous carcinomas (SCCs) and pancreatic ductal
adenocarcinoma (PDAC) (32).

However, no specific transcriptional marker has been
identified that exclusively defines the Bregs phenotype in
mouse or humans. Numerous studies have now demonstrated
that Bregs mainly suppress inflammatory responses via IL-10-
depengdent and -independent mechanisms (33). Subsets that are
enriched for IL-10-producing B cells include transitional-2
marginal zone precursor (T2-MZP) B cells, peritoneal B-1 B
cells, and antibody-producing B cell subsets in mice, as well as
antibody-producing and immature B cell subsets in humans. In a
recent series of studies, recirculating IgA+ regulatory B cells have
been shown to suppress inflammation via expression of IL-10
(34, 35). Shalapour et al. discovered in 2015 that IgA+ PCs
suppress anti-tumor immunity. These immunosuppressive B
cells are IgA-producing PCs that express PD-L1, IL-10, and
Fas-L (11). Most tumoral CD19+ B cells in oxaliplatin-treated
pancreatic cancer are IgA-positive, and successful eradication of
tumors requires removal of IgA+ cells (11). In a murine study of
hepatocellular carcinoma, IgA+ cells expressing high levels of
PD-L1, IL-10, and TGF-b were shown to directly repress CD8+ T
cell proliferation and activation (14). IgA+ PCs within prostate
tumors induce CD8+ T cell exhaustion and suppress anti-tumor
CTL responses through PD-L1 and IL-10, either of which can
induce anergy or exhaustion (36, 37). In general, IgA+ cells
promote the expansion of Treg cell populations, whereas Treg
cells produce TGF-b, which mediates the isotype class switch to
IgA (9, 38). This regulatory loop induces a state of relative
immune suppression and may further promote tumor
progression in at least some cancer types or subtypes (Figure 2).
DUAL EFFECT OF IgA ON
TUMOR IMMUNITY

Although there is more than sufficient evidence indicating that
IgA+ B cells and PCs may exert prominent immunosuppressive
effects, the antitumor effect of IgA+ cells has also been reported;
this may have resulted from the dual effect of IgA. The expression
of IgA by tumor-infiltrating PCs has been linked to poor
outcomes in colorectal cancer (CRC) (44) and melanoma (45,
46). Elevated levels of intratumoral IgA have been shown to be
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associated with poor prognosis and shorter survival in patients
with bladder cancer (47). A recent meta-analysis indicated a
strong association between IgA CSR and solid cancer diagnosis,
and confirmed its immunosuppressive and pro-tumorigenic
roles (48). The aforementioned study showed that, compared
with healthy individuals, patients with solid malignancies had
significantly higher serum IgA levels, which further increased in
patients with advanced cancer. However, Biswas et al.
demonstrated that tumor-antigen-specific and tumor-antigen-
independent IgA responses antagonize the growth of ovarian
Frontiers in Immunology | www.frontiersin.org 3
cancer by governing coordinated tumor cell, T cell, and B cell
responses (15). These results suggest that IgA may play various
roles in different tumor types or in the tumor immune
microenvironment (Table 1).

Pro-Tumor Effect of IgA
A systematic review and meta-analysis revealed that a 2-fold
increase in the standardized mean difference (SMD) of the IgA
level occurred in advanced cancer compared with early
carcinoma, further supporting the possibility that serum IgA
FIGURE 1 | Map of IgA class switching through both TD and TI reaction in the gut. This TD pathway involves a cognate interaction of follicular B cells with antigen-
activated CD4+ T cells, including TH2 cells, regulatory T (Treg) cells, and T follicular helper (TFH) cells (22, 23). First, Dendritic cells (DCs) in the subepithelial dome
(SED) of the PP capture and present antigen to follicular CD4+ T cells, thereby inducing them to differentiate into effector T cells releasing IgA-inducing cytokines.
These T cells also interact with antigen-specific IgM+IgD+ naive B cells. Together with follicular dendritic cells (FDCs), this interaction fosters a proliferation,
differentiation, somatic hypermutation (SHM) and IgA class-switch recombination (CSR) of B cells in germinal center. Ultimately, TD pathway leads to the emergence
of long-lived memory B cells and plasma cells that release high-affinity IgA antibodies in the lamina propria (20). In addition, commensals trigger multiple Toll-like
receptors (TLRs) to stimulate FDC, DC and stromal cells release of BAFF, APRIL, TGFb and other IgA-inducing cytokines, thereby triggering direct IgA CSR in lamina
propria IgM+ B cells in a T-cell-independent manner (24, 25).
November 2021 | Volume 12 | Article 765044
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levels may correlate with immune escape and tumor burden (48).
A high intratumoral proportion of the IgA isotype has a close
relationship with a negative prognosis in the KRAS-mutant
subtype of lung adenocarcinoma (4). TCGA RNA-seq data of
human melanoma indicate that high proportions of IgA, IgD,
and IgE are related to a poor prognosis (2).

The tumor-promoting mechanism of IgA can be summarized
as follows. Firstly, it is a tumor immunosuppressive environment
and not a tumor antigen that promotes IgA production. IgA with
unfocused specificity is ineffective in mediating antitumor
responses, for which it cannot facilitate antigen presentation or
mediate antibody-dependent cellular cytotoxicity (ADCC) and
phagocytosis (ADCP) of tumor cells (39, 40). On the other hand,
Frontiers in Immunology | www.frontiersin.org 4
such antibodies can form immune complexes with tumor or
non-tumor antigens, promoting chronic inflammation and tissue
remodeling, and thus directly or indirectly favoring the myeloid-
derived suppressor cell phenotype (41–43) (Figure 2). Another
possible role of mucosal IgA in tumor immunity depends on its
dynamic relationship with environmental factors, such as
microbiota or diet (56). Tissue-specific immunoregulation may
determine the ability of different tumors to exploit the IgA–
microbiota axis to facilitate immune escape (56, 57).
Furthermore, IgA fails to activate the complement system but
mediates the regulatory effects of its main inducer, TGF-b (58).
In particular, monomeric IgA exerts inhibitory effects on many
immune cell subsets by activating the myeloid-cell-specific type I
FIGURE 2 | Multiple functions of IgA+ cells and IgA in tumor. IgA+ B cells and plasma cells may promote tumor progression through several mechanisms. First, they
can release high level of PD-L1, IL-10 and TGFb, which directly induce CD8+T cell exhaustion and suppress anti-tumor CTL responses (14, 36, 37). Second, the
IgA+ cells promote expansion of Treg cell populations, while Treg cells produce TGFb, which mediates isotype class switch to IgA (9, 38). In addition, these
immunosuppressive cytokines secreted by IgA+ cells, such as IL-10 and TGFb, can promote immunosuppressive phenotypes in macrophage and myeloid cells. IgA
performs dual effects on tumor immunity. In immunosuppressive environment, due to the binding of IgA without identified function and Fca receptors (FcaR)
expressed on macrophages, natural killer (NK) cells and neutrophils, high levels of production of IgA block ADCC and ADCP (39, 40). Meanwhile, such antibodies
can form immune complexes with tumor or non-tumor antigens, promoting chronic inflammation, tissue remodeling (41–43). However, in some specific tumor types,
IgA transcytosis induced broad transcriptional changes in inflammatory pathways in tumor cells, contributing to hindering malignant progression. In further support of
antibody-dependent cellular phagocytosis, tumor-derived IgA redirection of Fca/µ+(CD351) myeloid cells against extracellular oncogenic drivers, which causes tumor
cell death (15).
November 2021 | Volume 12 | Article 765044
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Fc receptor for IgA (FcaRI; also known as CD89) (59, 60) and
inducing IL-10 production (61), as well as by regulating
proinflammatory cytokines (62).

Anti-Tumor Effect of IgA
IgA also plays an anti-tumor role in some specific cancers.
Recent studies have demonstrated that tumor-derived IgA
abrogates tumor growth through antigen-dependent
redirection of Fca/µ+ myeloid cells and antigen-independent,
pIgR-mediated transcytosis (15). IgA can bind to polymeric IgA
receptors that are universally expressed on ovarian cancer cells.
IgA transcytosis induces broad transcriptional changes in
inflammatory pathways in tumor cells, including the
upregulation of IFN-g receptors and downregulation of tumor-
promoting ephrins. In addition, IgA transcytosis through
malignant epithelial cells can antagonize the RAS pathway and
sensitize tumor cells to cytolytic killing by T cells, which also
helps prevent malignant progression (Figure 2). Thus, tumor-
antigen-specific and tumor-antigen-independent IgA responses
inhibit the growth of ovarian cancer cells by regulating
coordinated B cell, T cell, and tumor cell responses.

These results indicate that IgA plays a completely different
role in governing ovarian cancer than that in some other types of
tumors. The causes may be related to the tumor type and TME. It
can be hypothesized that most solid tumor cells do not express
polymeric IgA receptors that are universally expressed on
Frontiers in Immunology | www.frontiersin.org 5
ovarian cancer cells, and hence IgA fails to exert anti-tumor
effects through transcytosis. Furthermore, some tumor antigens
can be specifically recognized by IgA in ovarian cancer. However,
in some other tumor types, tumor antigens may not be exposed
and thus cannot be recognized on the surface of tumor cells, or
do not contain immunogenic peptides suitable for presentation
to T cells on major histocompatibility complex class (MHC)
molecules, which may lead to failure of recognition by IgA and
thus mislead the immune response and favor pro-tumor
processes (40, 63). Therefore, the analysis of intratumoral IgA
expression and clonality is crucial for evaluating the role of IgA
in tumors.
TUMOR-RELATED IgA CLASS SWITCHING

Emerging evidence points that a combination of host,
environmental, and tumor factors mediates IgA class switching
and determines the efficiency of cancer surveillance or
promotion (48, 64). At the host level, this implies that
increased serum IgA levels are related to older age, male
gender, metabolic syndrome, etc. (48, 64, 65). Recent study has
shown that environmental factors, including commensal bacteria
and diet, and tumor immunosuppressive cytokines, including IL-
10 and TGF-b, affect the production of IgA (66–68).
TABLE 1 | Mechanism and prognostic impact of IgA in cancers.

Cancer type Number
of

patients

Animal models Methods Prognostic Response
to therapy

Mechanism Ref.

IgA-mediated effects Beyond IgA
production

Prostate 87 Transplanted tumor
models TRAMP
transgenic tumor
models

IHC, Serum IgA↓ oxaliplatin↓ N/A TGFb
receptor
signaling↑

(11)

Hepatocellular 598 MUP-µPA, STAM,
CCl4, MCD models

IHC, FC, Serum IgA↓ N/A N/A PD-L1↑, IL-
10↑

(14)

Ovarian 534 Transplanted tumor
models

IHC, TCGA,
Single-cell V(D)J
(BCR)
sequencing

IgA↑ N/A IgA transcytosis N/A (15)

Colorectal 90 AD model IHC IgA↓ N/A N/A PD-L1↑, IL-
10↑, TGFb↑

(44)

Melanoma 710 N/A IHC IgA↓ N/A Inability to activate the complement cascade,
low affinities for activating FcRs、 low
potency in triggering ADCC and ADCP

N/A (45,
46,
49)

Bladder 110 N/A IHC IgA↓ N/A N/A N/A (47)
LUAD 442 N/A TCGA IgA↓ N/A N/A PD-L1↑, IL-

10↑
(4)

AML 13 N/A TCGA, scRNA-
seq

IgA↓ N/A N/A PD-L1↑,
TGFb↑

(50)

Breast 66 N/A Serum, IHC IgA!
IgA-Fc-
folate
conjugate↑

N/A ADCC N/A (51,
52)

Head and
neck

97
226

N/A Serum IgA!
IgA↓

N/A N/A N/A (53,
54)

Pancreatic 812073 N/A Serum, Urine IgA! N/A N/A N/A (55)
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CSR Triggers in Immunosuppressive TME
In the TME, most tumor-infiltrating TH/TFH cells present a
regulatory phenotype, which secretes immunosuppressive
cytokines and supports the development of immunosuppressive
and anti-inflammatory isotypes (69). Furthermore, activated
cancer-associated fibroblasts (CAFs) and tumor-associated
macrophages (TAMs) in the TME can produce TGF-b, which
represses NK cell and CTL activation, promotes Tregs, and
supports IgA CSR (38, 70, 71). More precisely, naïve B cells are
recruited into the TME by CAFs via CXCL13 and CXCL12 and
further exposed toTGF-b, IL-21, IL-33, lymphotoxinb (LTb), and
IL-10,which favors IgM-naïveBCRclass switching to IgA (11, 70).
Emerging evidence shows that tumors can also induce IgA CSR
through a regulatory loop formed by myeloid-derived suppressor
cells (MDSCs) and IgA. A recent study showed that CD11b+

MDSCs induced the differentiation of B cells into IgA+ PCs by
secreting IL-10 and TGF-b (72). IgA with unfocused specificity
can form immune complexes simultaneously with tumor or non-
tumor antigens, promoting immunosuppressive phenotypes in
myeloid cells (40).

CSR Triggers From Host Diet,
Microbiome, and Metabolites
Diet is universally considered a mechanism that can affect energy
metabolism and immune responses, including intestinal IgA
production (73). Among the various dietary components,
vitamins are the most important factors for immune responses.
For example, vitamin B1 has been confirmed to play a pivotal
role in intestinal IgA responses as a cofactor of pyruvate
dehydrogenase and a-ketoglutarate dehydrogenase, which are
essential enzymes in the TCA cycle (74). Similar to vitamins,
dietary fatty acids influence B cell metabolism and the
production of IgA (73, 75). A study showed that intestinal IgA
production increased in mice maintained on a palmitic acid-
enriched oil (76). Palmitoyl-CoA and serine act as substrates of
serine palmitoyltransferase (SPT) and are subsequently
converted into sphingolipids, such as ceramide, sphingosine,
sphingomyelin, and S1P (77). Sphingolipids are a class of
membrane lipids that also have biologic functions (78). For
instance, an increase in ceramide concentrations may induce
the proliferation of IgA PCs. Moreover, S1P can recruit IgA PCs
into the intestine. These activation pathways may coincide with
the changes in energy metabolism that occur in intestinal IgA
PCs (76). Furthermore, metabolic intermediates of glycolysis,
such as glucose monophosphate and fructose bis-phosphate,
were detected preferentially in IgA PCs compared with naïve B
cells, which implied that the shift to glycolysis-mediated energy
metabolism likely is useful for the generation and production of
IgA (73). For example, the glucose monophosphate and 3-
phosphoglycerate generated through glycolysis are used in the
pentose phosphate and serine biosynthetic pathways for
nucleotide and amino acid synthesis, respectively (79). In
addition, pyruvate, the metabolic product of glycolysis, can
subsequently be converted to acetyl coenzyme A (acetyl-CoA)
and used in fatty acid synthesis, which is required for B cell
differentiation (80) (Figure 3).
Frontiers in Immunology | www.frontiersin.org 6
In addition, dysbiosis and changes in microbiome diversity
were recently shown to regulate the IgA–microbiota axis and
influence multiple aspects of antitumor immunity by altering the
risk of developing cancer and regulating responses to
immunotherapy (81–83). It was shown that gut and lung
microbiota themselves are capable of promoting IgA CSR
through antigen presentation by CD103+ DCs and induction of
IL-10 and TGF-b (84). Conversely, a decrease in intestinal IgA
responses and structural immaturity of PPs occurred in germ-
free mice (85). Gut commensal microbes can produce
biologically active metabolites, represented by the short-chain
fatty acids (SCFAs) acetate, propionate and butyrate, which are
all reported to promote IgA CSR (86, 87). Recently, Isobe et al.
discovered that commensal-bacteria-derived butyrate up-
regulated the production of TGF-b and all-trans retinoic acid
by CD103+CD11b+DCs, both of which promote the T-cell-
independent IgA response in the colon (88) (Figure 3).

A possible role of IgA in tumor immunity arises from its
dynamic relationship with diet and the microbiota. Hyper-
nutrition and alcohol consumption not only regulate the
magnitude of B cell activity and effector function but also
change the levels and diversity of IgA, which may further
enhance tumor development (14, 89, 90). In addition, Piper
et al. identified that the aryl-hydrocarbon receptor (AhR), a
ligand-activated transcription factor that senses dietary,
microbial, and metabolic cues, binds to the IL-10 locus in
murine cells (91). The supplementation with microbially
derived SCFA butyrate supports Breg to produce IL-10 by
amplifying AhR activation (91). IL-10 upregulates the
expression of AID and triggers the induction of SHM and CSR
from IgM to IgA, which may mediate tumor progression (20, 33).
INTRATUMORAL IgA REPERTOIRES

RNA- and DNA-based analyses of Ig repertoires and
intratumoral T-cell receptors have received considerable
attention as powerful tools for identifying prognostic and
predictive cancer biomarkers, such as clonality metrics (2, 92).
In particular, assessment of the degree of clonality and the
amount of somatic hypermutations in Ig gene segments can
offer prognostic value for some types of cancer (93). Clonality
reflects mainly the presence of plasma cell clonal expansion.
TCGA RNA-seq data on melanoma samples have demonstrated
that a high IgG1 proportion is strongly associated with the
presence of large clonal expansions, contributing to a better
prognosis. In contrast, a high IgA proportion correlates with low
clonality, resulting in a negative outcome (2). These results can
be explained by a focused immune response leading to the
production of high-affinity, tumor-specific IgG1 antibodies;
conversely, switching of B cells to the IgA isotype is not driven
by particular antigens but is a passive consequence of the
intratumoral suppressive cytokine environment (40).
Therefore, it can be hypothesized that dual effect of IgA on
tumor immunity is highly associated with clonal expansion of
PCs. High IgA expression and high clonality, implying that IgA
November 2021 | Volume 12 | Article 765044
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may be driven by a focused immune response and may result in a
better prognosis, whereas high IgA expression and low clonality
mean that an immunosuppressive microenvironment drives IgA
production and is likely to contribute to poor outcomes in some
specific malignancies.
CONCLUSION

IgA and IgA+ cells are active participants that can fundamentally
orchestrate the immune response in the TME. IgA can exert pro-
tumorigenic roles in cancer by inducing the release of
immunosuppressive cytokines, forming immune complexes
with tumor or non-tumor antigens, and interacting with
immunosuppressive cells, such as MDSCs or Tregs. However,
IgA can also promote anticancer immunity and suppress tumor
growth. These opposing effects can be explained by the influence
of different tumor types, environmental factors, and host factors,
which elicit a different antigen specificity of IgA, as well as the
inconsistent interaction between IgA and tumor cells. Decisions
on the application of IgA-targeted therapies and their
combination with other therapies should be based on an
Frontiers in Immunology | www.frontiersin.org 7
advanced understanding of the prevailing nature of IgA
involvement in tumor–immune interactions in each cancer
subtype or even in each patient. Therefore, analysis of
intratumoral IgA repertoires and determination of their
metabolites are becoming powerful tools for identifying
prognostic and predictive cancer biomarkers.
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FIGURE 3 | Tumor microenvironmental stimuli that induce IgA class switching. TGFb is highly expressed in the tumor microenvironment, which activates the constant
heavy chain a (Ca) gene promoters (38, 70, 71). Exposure to dietary extracellular metabolites within the immediate microenvironment may play an important role in
controlling the production of IgA (73–75, 77). Fatty acid or microbial products can activate TLRs, which promote activation of IkB kinase (IKK) complex, phosphorylation
and degradation of IkB [inhibitor of nuclear factor-kB (NF-kB)]. Subsequently, IkB-free NF-kB translocates to the nucleus and initiates CSR by binding to kB motifs on
the AID gene promoter (81–83).
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