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Kappa opioid receptor (KOR) agonists have been promising therapeutic candidates, owing
to their potential for relieving pain and treating intractable pruritus. Although lacking
morphine-like central nervous system (CNS) effects, KOR agonists do elicit sedation,
dysphoria and diuresis which seriously impede their development. Peripherally-restricted
KOR agonists have a poor ability to penetrate into the CNS system, so that CNS-related
adverse effects can be ameliorated or even abolished. However, the only approved
peripherally-restricted KOR agonist CR845 remains some frequent CNS adverse
events. In the present study, we aim to address pharmacological profiles of
HSK21542, with an expectation to provide a safe and effective alternative for patients
who are suffering from pain and pruritus. The in vitro experimental results showed that
HSK21542 was a selective and potent KOR agonist with higher potency than CR845, and
had a brain/plasma concentration ratio of 0.001, indicating its peripheral selectivity. In
animal models of pain, HSK21542 significantly inhibited acetic acid-, hindpaw incision- or
chronic constriction injury-induced pain-related behaviors, and the efficacy was
comparable to CR845 at 15min post-dosing. HSK21542 had a long-lasting analgesic
potency with a median effective dose of 1.48 mg/kg at 24 h post-drug in writhing test.
Meanwhile, the antinociceptive activity of HSK21542 was effectively reversed by a KOR
antagonist nor-binaltorphimine. In addition, HSK21542 had powerful antipruritic activities
in compound 48/80-induced itch model. On the other hand, HSK21542 had a weak ability
to produce central antinociceptive effects in a hot-plate test and fewer effects on the
locomotor activity of mice. HSK21542 didn’t affect the respiratory rate of mice. Therefore,
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HSK21542might be a safe and effective KOR agonist and promising candidate for treating
pain and pruritus.

Keywords: HSK21542, kappa opioid receptor, pain, pruritus, animal models

INTRODUCTION

Kappa opioid receptor (KOR), one of the classical opioid
receptors, is an inhibitory G-protein coupled receptor (GPCR)
that is distributed in both the central nervous system (CNS) and
the peripheral tissues (Ragen et al., 2015; Snyder et al., 2018). Due
to the wide distribution and associated physiological functions of
KOR, it has been used in exploring as a potential target for drug
development in many diseases, including pain, inflammation,
pruritus and addiction (Kieffer and Gaveriaux-Ruff, 2002; Bailey
and Ribeiro-da-Silva, 2006; Chavkin, 2011; Kardon et al., 2014).
Since the cloning of KOR in 1993 (Chen et al., 1993; Yasuda et al.,
1993), the centrally penetrating KOR agonists have become the
main focus of research for a long time. Unfortunately, although
the undesirable side effects induced by mu opioid receptor
(MOR) agonists are lacking, the centrally penetrating KOR
agonists are frequently accompanied by certain side effects
such as sedation, dysphoria and diuresis. The development of
centrally penetrating KOR agonists is severely limited due to its
unpleasant adverse events, and only one centrally penetrating
KOR agonist nalfurafine has been approved so far for the
treatment of pruritus in Japan (Inui, 2015).

To avoid these adverse side effects, other approaches have
been attempted for developing the KOR agonists, and the biased
KOR agonists and peripherally-restricted KOR agonists among
these have gained much attention. The development of biased
KOR agonists was based on the concept that G-protein coupled
receptors (GPCRs) can selectively signal in different contexts
(Violin et al., 2014). It is evident that opioid receptors-mediated
GPCRs have the ability to interact with both G proteins and
β-arrestins simultaneously. Previous studies have revealed that
the side effects associated with opioid receptor activation are
mediated by β-arrestin-mediated signaling pathway (Schmid
et al., 2017; Hill et al., 2018b). Therefore, developing G
protein-biased agonists of opioid receptors is considered as a
promising strategy to bypass the CNS-mediated side effects. The
biased KOR agonists were shown to be effective in treating pain
and pruritus in animal models (Brust et al., 2016; Gupta et al.,
2016). However, the results from two phase 3 clinical trials
showed that the performance of oliceridine (TRV130), which
is a biased MOR agonist, is not obviously superior to morphine,
especially for reducing the respiratory depression (Singla et al.,
2019; Viscusi et al., 2019). Since then, the concept of biased opioid
receptor agonist has met with less enthusiasm.

The actions of peripherally-restricted KOR agonists are
restricted to peripheral sites due to their low penetration into
the brain, and the CNS-associated side effects associated with this
can be significantly ameliorated or even completely abolished.
The peripherally-restricted KOR agonists had analgesic, anti-
inflammatory and antipruritic effects (Naser and Kuner, 2018).
Till now, some peripherally-restricted KOR agonists, including

ICI-204448, GR-94839, asimadoline, ADL-10-0116, FE200665
(CR665) and difelikefalin (CR845), have been successfully
identified (Barber et al., 1994; Binder et al., 2001; Vanderah
et al., 2004; Negus et al., 2012). However, the development of
other compounds, except for asimadoline and CR845, has been
discontinued. Originally, asimadoline was studied in treating pain
and found to be ineffective. Subsequently, asimadoline has been
shown to be an effective treatment for pruritus associated with
atopic dermatitis (Bishop et al., 2015; Vakharia and Silverberg,
2018), but no further development of it has been reported after
that. CR845, a peptide-based peripherally-restricted KOR
agonist, exhibited excellent analgesic and antipruritic effects in
clinical trials with limited side effects (Menzaghi et al., 2015;
Fishbane et al., 2020; Steele, 2020). At present, CR845 has been
approved for the treatment of moderate-to-severe pruritus
associated with chronic kidney disease (CKD-aP) in adults
undergoing hemodialysis. However, CR845 is only available in
the United States and has some frequent adverse events, such as
diarrhea, dizziness, vomiting and nasopharyngitis (Fishbane
et al., 2020).

With the aim to develop more effective and safer peripherally-
restricted KOR agonist, HSK21542 [7-(D-phenylalanyl-D-
phenylalanyl-D-leucyl-D-lysyl)-2-acetyl-2,7-diazaspiro (3.5)
nonane], was synthesized. Several studies were conducted to
comprehensively address the pharmacological profiles of
HSK21542. The biological activity and selectivity of HSK21542
were examined using in vitro assays, including [3H]
diprenorphine binding assay, cAMP accumulation assay, and a
SafetyScreen panel. Its ability to penetrate into CNS tissues was
detected with a brain/plasma distribution study. Four different
animal models of pain and compound 48/80-induced scratching
mouse model of pruritus were used to evaluate the in vivo
pharmacological activities of HSK21542, and the CNS side
effects associated with it were also detected. Further,
pharmacological profiles of HSK21542 and CR845 were
compared.

MATERIALS AND METHODS

Animals
ICR mice weighing 18–22 g and Sprague Dawley (SD) rats
weighing 160–180 g were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (China). C57BL/6J mice
weighing 18–22 g were obtained from Chengdu DOSSY
Laboratory Animal Technology Co., Ltd. (China). All animals
were aged between 8 and 10 weeks at the start of the experiments.
Animals were maintained on a standard 12 h light/12 h dark cycle
in a temperature-and humidity-controlled facility with free access
to food and water. The investigators were blinded to the
treatment conditions. All animal care and experimental
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procedures were performed in accordance with the guidelines of
National Institutes of Health for the handling and use of
laboratory animals and approved by the Guideline of the
Institutional Animal Care and Use Committee of Haisco
Pharmaceutical Group Co., Ltd. [HSK-(HEISCO-I-17)-2-1-
2001-01].

Chemicals and Reagents
HSK21542 and CR845 were synthesized in Sichuan Haisco
Pharmaceutical Co., Ltd. (China). The synthesis and
physicochemical characteristics of HSK21542 have been
described in a patent (WO2019015644). The chemical
structures of HSK21542 and CR845 are shown in Figure 1.
The sources of chemicals were as follows: [3H]diprenorphine
(Perkin Elmer, United States), U69593 (Sigma-Aldrich,
United States), morphine sulfate (National Institutes for Food
and Drug Control, China), nor-binaltorphimine (Abcam,
United Kingdom), nalfurafine hydrochloride (MedChem
Express, United States) and compound 48/80 (Sigma-Aldrich,
United States). For in vivo experiments, all the test compounds
were solubilized in normal saline, and intravenously administered
with a volume of 10 μL/g, except for morphine and nor-
binaltorphimine (subcutaneously) when the animals were not
under anesthesia and were awake. All other reagents used were of
analytical grade unless otherwise stated.

[3H]Diprenorphine Binding Assay
HEK-293 cells (ATCC) were maintained in Eagle’s Minimum
Essential Medium with 10% FBS, and incubated at 37°C in
humidified air containing 5% CO2. HEK-293 cells that stably
express human κ opioid receptor were established in our
laboratory and used in this assay. The cell membranes were
prepared in 50 mM Tris-HCl buffer (pH 7.4). An equivalent of
30 μg of membranes was incubated with compounds and 0.6 nM
[3H]diprenorphine (an opioid antagonist) at 25°C for 60 min
(inhibitory effect) or the multiple time points (binding kinetics).
Nonspecific binding was estimated in the presence of 10 μM
naloxone. The bound and free fractions were separated by
vacuum filtration through a GF/B filter that was pretreated
with 0.3% polyetherimide. The filters were washed with ice-
cold buffer and then were counted to specifically determine
the bound radioligand (Olianas et al., 2006). The percentage
inhibition of [3H]diprenorphine binding was calculated as
follows: inhibition rate (%) � (CPMtotal−CPMcompound)/
(CPMtotal−CPMnon-specific) × 100, where CPMtotal � total [3H]
diprenorphine bound (membrane +0.6 nM [3H]diprenorphine)
and CPMnon-specific � non-specific [3H]diprenorphine bound
(membrane +0.6 nM [3H]diprenorphine + 10 μM naloxone).
For the unlabeled compounds, the association/dissociation
constants were calculated by fitting the data using equations as
described by Motulsky and Mahan (Motulsky and Mahan, 1984).

cAMP Accumulation Assay
PathHunter® U2OS OPRK1 β-Arrestin cell line (DiscoverX) was
maintained in McCoy’s 5A with 10% FBS, 250 μg/ml
Hygromycin B and 500 μg/ml G418. When the cells reached
to 80–90% confluence, they were collected and resuspended in
HBSS (1X) containing 50 mM HEPES, 5 mM IBMX and 1% BSA
stabilizer (lance® UltracAMP Kit, PerkinElmer) by adjusting the
cell density to 3 × 105 cells/mL. The cells were divided into 384-
well white plate (Corning®3572) at a volume of 5 μL, and were
treated with compounds and 2 μM forskolin (an inducer of
intracellular cAMP formation) for 30 min at room
temperature. Subsequently, 5 μL of Eu-cAMP Tracer Working
Solution and 5 μL of Ulight-anti-cAMP Working Solution per
well were added to reach a final volume of 20 μL. The plate was
incubated for 1 h at room temperature in the dark. The cAMP
levels were then determined by using a microplate reader with
TR-FRET assay (Wang et al., 2014). The results was expressed as
(1–Signal[compound]/Signal[control]) × 100.

In vitro SafetyScreen Panel
In vitro off-target pharmacological activities of HSK21542 were
evaluated on 86 targets using a SafetyScreen panel (Item PP223,
target selectivity panel) and the corresponding methods could be
found at https://www.eurofinsdiscoveryservices.com/.

In vivo Brain/Plasma Distribution of
HSK21542 in Rats
SD rats (half male and half female) were intravenously given a
single dose of 0.3 mg/kg HSK21542. The samples were collected
at 0.083, 0.5, 1.5 and 4 h after dosing. The rats were anesthetized

FIGURE 1 | Chemical structures of HSK21542 (A) and CR845 (B).
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with isoflurane and then sacrificed by taking blood from the
abdominal aorta. The whole brains were rapidly removed from
the crania. The plasma (∼100 μL) was separated from the blood
by centrifugating at 2000 ×g for 10 min at 4°C. The brains were
rinsed with ice-cold normal saline, blotted dry, weighted and
placed into a plastic tube. For 1.0 g of brain sample, 4 ml of
acetonitrile-ultrapure water solution (1:4, v/v) was added to the
tube. The brain samples were then homogenized for 120 s at
50 Hz and ultrasound was performed for 5 min. The plasma and
the brain samples were analyzed using a LC-MS/MS assay as
detailed in supplementary materials.

LC-MS/MS Assay
The plasma or brain homogenate was ice thawed. After 30 μL of
plasma or brain homogenate was transferred into a centrifuge
tube, 50 μL of internal standard (D4-HSK21542, 50 ng/ml) and
120 μL of acetonitrile were added. The mixture was vortexed for
10 min and centrifuged at 2000 ×g for 10 min at 4°C. The
collected supernatant (150 μL) was placed in a 96-well plate
and dried under nitrogen. The residue was reconstituted with
150 μL of ultrapure water and vortexed for 10 min. The resulting
solution was then analyzed to determine the concentrations of
HSK21542 on a LC-MS/MS system, which consisted of a DGU-
20A5R degasser, a LC-30AD pump, a SIL-30AC autosampler, a
CTO-20A column oven (Shimadzu, Japan) and an AB Sciex
Triple Quad 5500 mass spectrometer (Sciex, Canada). The LC
system was coupled to mass spectrometer by using an electro-
spray ionization (ESI) source (Yang et al., 2011; Dong et al., 2018).
Chromatographic separation was performed on a reverse phase
column (Venusil ASB C18, 4.6 mm × 50 mm) under a ternary
gradient elution. The temperatures of autosampler and column
were maintained at 4 and 40°C, respectively. The mobile phase A
consisted of 0.3% formic acid in 2 mM acetic acid solution and the
mobile phase B consisted of 0.2% formic acid in acetonitrile. The
flow rate was held constant (0.7 ml/min) and the injection volume
was set to 20 μL. Quantification was conducted in positive ion
mode. The MRM transition of m/z 704.4→295.2 was used to
quantify HSK21542.

Writhing Test
ICR mice (half male and half female) were used in this assay.
Fifteen or 30 min (only for morphine) after test compounds were
given, each mouse was intraperitoneally injected with 0.6% acetic
acid at a volume of 0.4 ml. Subsequently, each animal was
individually maintained in a Plexiglas chamber and the pain-
induced writhing behaviors were observed for 15 min (Abdollahi
et al., 2003; Bourgeois et al., 2014). A writhe was defined as a wave
of contraction of the abdominal musculature followed by
extension of the hind limbs (Wang et al., 2018). The
percentage inhibition of writhes was calculated by the
following formula: % antinociception � (Nv−Nt)/Nv × 100,
where Nv is the number of writhes in vehicle group and Nt is
the number of writhes in treatment groups.

Hindpaw Incision Model
The surgery was conducted as reported previously (Brennan et al.,
1996; Whiteside et al., 2004; Biddlestone et al., 2007). Male SD

rats were anesthetized with isoflurane inhalation (3–5%) and the
plantar surface of the left hindpaw was sterilized using iodophor
solution. A 1-cm longitudinal incision was made on the plantar
surface with no. Eleven scalpel blade, starting at 0.5 cm from the
heel and extending toward the toes. The deep fascia was cut to
expose the flexor digitorum brevis muscle. The muscle was
elevated with curved forceps and incised longitudinally with
the tip of a scalpel blade without disturbing the origin and
insertion. Following hemostasis with gentle pressure, the skin
was closed with silk thread using two mattress sutures. After
surgery, antibiotic ointment was applied on the incision site and
the animals were returned to their home cages with clean bedding
to prevent further damage to the injured hindpaw. The responses
to mechanical stimulation of the hindpaws were recorded at 2 h
post-surgery and the mechanical pain thresholds were defined as
pre-dose values. After dividing into different groups according to
the pre-dose values, the animals were administered vehicle
(normal saline) or test compounds and the mechanical pain
thresholds were measured at 15 min and 24 h post-dose.

Chronic Constriction Injury Model
The CCI surgery was performed as described previously with
slight modifications (Bennett and Xie, 1988). Male SD rats were
used in the CCI model. After isoflurane inhalation anesthesia, the
femoral skin of the left hindlimb was incised and the sciatic nerve
was exposed by blunt dissection of the biceps femoris muscle with
a pair of forceps (Chen et al., 2018). A 2 mm-long polyethylene
cuff was successively implanted around the nerve and the incision
was then closed with skin stapler (Bailey and Ribeiro-da-Silva,
2006; Balasubramanyan et al., 2006). Animals were returned to
their cages after recovering from anesthesia. Seventeen days after
the surgery, the responses to mechanical stimulation of the
hindpaws were measured before the compounds were
administered. The rats were then divided into different groups
according to the pre-administration values. After the animals
were given vehicle or test compounds, the mechanical pain
thresholds were taken at multiple time points.

Mechanical Allodynia Testing
The rats were placed individually in Plexiglas chambers on a
metallic mesh floor and allowed to acclimatize for 30–60 min
(Tsuda et al., 2011). Mechanical allodynia was determined by
probing the plantar surface of the hindpaw from below the mesh
floor with a series of calibrated von Frey filaments (Stoelting) in
log increments of force (Lai et al., 2006). The interval between two
neighboring stimulations was more than 5 s in order to eliminate
the effects of the previous stimulation, and the bending angle of
von Frey filaments was controlled at 15–30°. Followed by, Dixon’s
up-down procedure was done to present the series of hairs and
calculate the 50% paw withdrawal threshold (PWT) (Chaplan
et al., 1994; Weir et al., 2017). The area under the curve (AUC,
50% PWT vs. time) was calculated using a trapezoid rule.

Compound 48/80-Induced Scratching Test
After acclimatization for 30–60 min in Plexiglas chambers, the
male ICRmice were given vehicle or test compounds. Compound
48/80 (50 μg, 0.1 ml) was subcutaneously injected into the back of
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the neck at 15 min after drug administration (Salaga et al., 2015).
The mice were immediately placed back into the chambers and
the scratching behaviors were recorded for 30 min (Kobayashi
et al., 2003; Inan et al., 2009; Hachisuka et al., 2010). One bout of
scratching was defined as the mouse lifting its hindpaw towards
the injection site to scratch until it either licked or bite the
hindpaw or placed it back down on the floor (Nojima and
Carstens, 2003). The percentage inhibition of scratching was
calculated by the following formula: % antipruritis � (Bv−Bt)/
Bv × 100, where Bv is the bouts of scratching in vehicle group and
Bt is the bouts of scratching in treatment groups.

Hot-Plate Test
The hot-plate test was performed according to previous reports
(DeWire et al., 2013; Hill et al., 2018a; Wang et al., 2018). Female
C57BL/6J mice were individually placed on a hot plate at 56°C
and the latency to licking or jumping was then recorded. A cut-off
time of 30 s was imposed in order to prevent tissue damage.
Before drug administration, the latency of each mouse was
measured and defined as the pre-drug value. The animals with
a pre-drug value of greater than 20 s were excluded. Fifteen or
30 min (only for morphine) after drug administration, the post-
drug values were taken, and the percentage of maximum possible
effect (% MPE) was determined as follows: [(post-drug
value−pre-drug value)/(30−pre-drug value)] × 100.

Locomotor Activity Test
The locomotor activity test was applied to analyze sedation in rats
(half male and half female). Experiments were performed after
animals were acclimatized to a rectangular experimental cage (35
× 35 × 35 cm3) for 2 days. 15 or 30 min (only for morphine) after
either vehicle or test compounds were administered, each rat was
returned to the cage, and then allowed to explore the field for 1 h.
The data were collected using an ANY-maze video tracking
system and the total distance traveled was analyzed (Gou
et al., 2021).

Measurement of Respiration
A whole body plethysmography (DSI, US) was used to measure
respiration in freely moving ICR mice (half male and half female)
as described previously (Manglik et al., 2016; Hill et al., 2018a;
Hill et al., 2018b) with some modifications. The respiratory
frequency was recorded and then averaged for over 5-min
period. The baseline values were recorded for 10 min before
dosing. The mice were then removed from the chambers and
given drugs, and respiration was then measured for 45 min.

Data and Statistical Analysis
All study endpoints were expressed as means ± SD and no data
have been excluded. Statistical comparisons were made using
GraphPad Prism 8.3.0 software (San Diego, CA, United States).
No statistical methods were used to predetermine the sample
sizes, but the choice of sample sizes was based on our previous
studies and the sample sizes are similar to those that are typically
used in the field. For in vitro experiments, the IC50 or EC50 value
was determined by non-linear, least squares regression analysis.
The binding kinetic curves were fitted by a competitive binding

model. In this model, the K1 (the association rate of [3H]
diprenorphine) and K2 (the dissociation rate of [3H]
diprenorphine) were constrained to 1.44 × 108 M−1 min−1 and
0.0257 min−1, respectively. The association kinetic curves of [3H]
diprenorphine are shown in Supplementary Figure S1. For most
of the in vivo experiments, a parametric analysis (one-way
analysis of variance) was performed if the Bartlett’s test for
variance homogeneity showed no significance at 1% level, and
the treated groups were compared to the vehicle group using
Dunnett’s test when F achieves the necessary level of statistical
significance (the null hypothesis: there was no difference among
the treated groups and the vehicle group). Otherwise, a non-
parametric analysis (Kruskal-Wallis test) was performed, and the
treated groups were compared to the vehicle group using Dunn’s
test when necessary. Planned comparison was done between the
two groups using student’s t-test (with same variance) or Mann-
Whitney test. The original data from chronic constriction injury
model and the measurement of respiration in mice were analyzed
by two-way analysis of variance (ANOVA) using the treatment
conditions and time as factors. Then, post-hoc Dunnett’s test was
performed at different time points if there was an interaction
effect. The criterion for statistical significance was set at p < 0.05.

RESULTS

HSK21542 is a Peripherally-Restricted
Kappa Opioid Receptor Agonist
To unravel the pharmacological profiles of HSK21542 at KOR,
[3H]diprenorphine binding assay was performed to investigate
the inhibitory effects of HSK21542 on [3H]diprenorphine
competition binding and determine the binding kinetics of
unlabeled HSK21542. U69593, a positive control, obviously
prevented [3H]diprenorphine binding to KOR with an IC50

value of 14.72 nM (95% CI: 9.08–22.38 nM). As anticipated,
HSK21542 significantly inhibited [3H]diprenorphine binding
to KOR with an IC50 value of 0.54 nM (95% CI:
0.38–0.75 nM), while CR845 had an IC50 value of 1.16 nM
(95% CI: 0.85–1.57 nM, Figure 2A). The results of the
binding kinetics study revealed that HSK21542 and CR845
bound to KOR with Kd values of 0.068 nM (95% CI:
0.028–0.092 nM) and 0.23 nM (95% CI: 0.17–0.26 nM),
respectively (Figures 2B,C). Meanwhile, HSK21542 had a t1/2
value of 90.6 min (95% CI: 53.6–292.7 min), which was found to
be longer than that of CR845 (42.0 min, 95% CI: 28.6–79.4 min).
On the other hand, HSK21542 significantly inhibited forskolin-
induced cAMP accumulation in HEK-293 cells that stably
expressed human κ opioid receptor with an EC50 value of 2.41
pM (95% CI: 1.43–4.67 pM), which was 12.4-fold and 747-fold
lower than those of CR845 and U69593, respectively (Figure 2D).

To investigate the specificity, the in vitro profile of HSK21542
was observed against a broad panel of receptors, ion channels,
transporters and enzymes, including MOR and DOR. At a
concentration of 10 μM, HSK21542 was shown to bind to
cannabinoid CB1 receptor with an inhibitory rate of 47%, and
no obvious activity was observed at the remaining 85 targets
(Supplementary Table S1).
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Furthermore, it was extremely hard for HSK21542 to
penetrate into the brain tissues with a brain/plasma
concentration ratio of 0.001 (Supplementary Figure S2).

HSK21542 Causes Potent Antinociceptive
Effects
The antinociceptive effects of HSK21542 were evaluated using a
writhing test in mice, which is an animal model of inflammatory
pain. Both male and female mice were used to investigate any sex
differences in this assay. Morphine (10 mg/kg), a positive control,
completed suppressed acetic acid-induced pain behaviors at
30 min post-dosing (p < 0.001, Mann-Whitney test). However,
the efficacy of 10 mg/kg morphine had vanished at 24 h post-
dosing (t(18) � 1.25, p � 0.30), which was corresponding to the
pharmacological profile of morphine. Fifteen minutes after drug
administration, HSK21542 inhibited acetic acid-induced writhing
response in a dose-dependent manner (Figure 3A, F(7, 72) � 41.18,
p < 0.001), and there was no obvious sex difference
(Supplementary Figure S3A, F(1, 32) � 3.40, p � 0.075).
HSK21542 at a dose of 0.03 mg/kg induced an inhibitory rate
of 27.46% on writhing behaviors, and there was a statistically

significant difference in writhing responses between 0.03 mg/kg
HSK21542-treated group and vehicle group (p � 0.023).
Therefore, the dose of 0.03 mg/kg was defined as the
minimum effective dose (MED), which was 3.33-fold lower
than that of CR845 (0.1 mg/kg). Moreover, the ED50 values of
HSK21542 and CR845 were both 0.09 mg/kg (95% CI:
0.06–0.12 mg/kg), and the inhibitory activity of HSK21542 on
writhing response was comparable to that produced by CR845 at
the same doses. Finally, nor-binaltorphimine (32 mg/kg, s.c.), a
kappa opioid receptor antagonist which was given at 24 h before
drug administation, reversed the antinociceptive effects produced
by 0.3 or 1 mg/kg HSK21542 (Figure 3B).

To explore the duration of action of a single dose of
HSK21542, the antinociceptive effects of HSK21542 were
detected at 24 h post-drug. Surprisingly, 0.3 mg/kg of
HSK21542 still significantly inhibited the writhing responses
with an inhibitory rate of 32.75% (Figure 3C, p � 0.02). At
the doses of 1, 3, 10 and 30 mg/kg, HSK21542 induced inhibitory
rates of 49.67, 55.60, 68.12 and 75.16%, respectively. However, as
for CR845, a dose of 30 mg/kg was needed to maintain the
antinociceptive effects at 24 h post-drug (p < 0.001). The ED50

values of HSK21542 and CR845 were 1.48 mg/kg (95% CI:

FIGURE 2 | Kappa opioid receptor binding affinity and the effects on forskolin-induced cAMP accumulation of HSK21542 and CR845. (A) Concentration-effect
curves of the inhibitory rates induced by HSK21542, CR845 or U69593 (the positive control) on [3H]diprenorphine binding to KOR. (B) The binding kinetic curves of
HSK21542 binding to KOR. (C) The binding kinetic curves of CR845 binding to KOR. (D) Concentration-effect curves of the inhibitory rates induced by HSK21542,
CR845 or U69593 (the positive control) on forskolin-induced cAMP accumulation. Data are presented as means ± SD of triple determinations.
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0.62–2.45 mg/kg) and 24.62 mg/kg (95% CI: 13.90–42.55 mg/kg),
respectively.

HSK21542 Produces Significant
Antiallodynic Effects
The hindpaw incision model and chronic constriction injury
(CCI) model in rats, which were widely used for evaluating the
analgesic property, were employed to determine the antiallodynic
effects of HSK21542. Morphine, a potent analgesic, was given as a
positive control. Obviously, morphine (10 mg/kg) completely
inhibited hindpaw incision- or CCI-induced mechanical
allodynia at 15 min after dosing (p < 0.001, Mann-Whitney
test), while morphine had no any effect on pain behaviors at
24 h post-dosing (p � 0.30, Mann-Whitney test).

In the hindpaw incision model, systemic HSK21542
(0.1–10 mg/kg) exerted a dose-dependent inhibitory effect on
incision-induced mechanical allodynia (p < 0.001, Kruskal-Wallis
test). At a dose of 1 mg/kg, HSK21542 induced a 10.5-fold
increase of 50% PWT (7.51 g vs. 0.72 g in the vehicle group,
p � 0.001) at 15 min post-dosing. The MED value of HSK21542
was 1 mg/kg, which was comparable to that achieved by CR845 at
15 min after dosing, and 10 mg/kg HSK21542 induced the
maximum antiallodynic activity (Figure 4A). It is noteworthy
that the effects of HSK21542 were still statistically significant at
24 h after drug administration at the doses of 3 mg/kg (p � 0.01)
and 10 mg/kg (p < 0.001), which were similar to those of CR845
(Figure 4B).

In the chronic constriction injury model, intravenous injection
of HSK21542 (0.1–3 mg/kg) suppressed CCI-induced mechanical
allodynia in rats in a dose-dependent manner (F(5, 316) � 245.0,
p < 0.001). At a dose of 0.3 mg/kg, HSK21542 induced a 5.15-fold
increase of 50% PWT (6.62 g vs. 1.29 g in the vehicle group) at
15 min post-dosing. In 1 or 3 mg/kg HSK21542-treated group,
the 50% PWT value reached a peak at 2 h post-dosing, and then
gradually faded (Figure 4C). Furthermore, when given at a dose
of 1 or 3 mg/kg, the mechanical pain threshold in HSK21542-
treated groups was significantly higher than that in the vehicle-
treated group at 24 h post-dosing. The results showed that the
treatment with 0.3 mg/kg HSK21542 induced a statistically
significant increase on the AUC value (50% PWT vs. time,
Figure 4D, p < 0.001). Therefore, the dose of 0.3 mg/kg was
defined as the MED value of HSK21542. On the other hand, there
was no obvious difference in mechanical pain thresholds between
0.1 mg/kg HSK21542-treated group and vehicle-treated group at
any time points post-dosing. Moreover, although the
antiallodynic effects of CR845 could still persist until 24 h
post-administration at a dose of 3 mg/kg (p < 0.001), the
effects of CR845 had completely vanished at a dose of 1 mg/kg
(Figure 4E, p � 0.13).

HSK21542 Attenuates Compound 48/
80-Induced Itch
KOR agonist has been validated as an effective therapy for
pathological itch (Kardon et al., 2014; Cowan et al., 2015; Inui,

FIGURE 3 | Antinociceptive effects of HSK21542 and CR845 in
acetic acid-induced writhing response in mice. (A) The writhing tests were
conducted at 15 min post-dosing. (B) Nor-binaltorphimine (Nor-BNI,
32 mg/kg, s.c.), a KOR antagonist, was given at 24 h before drug
administration, and the antinociceptive effects of HSK21542 and CR845
were examined at 15 min post-dosing. (C) The writhing tests were
performed at 24 h post-dosing. Data are presented as means ± SD (n �
10/group). (A, C) *p < 0.05, ***p < 0.001 vs. vehicle, one-way ANOVA
followed by Dunnett’s test; (B) ***p < 0.001 vs. vehicle, Student’s t-test;
###p < 0.001 vs. vehicle, Mann-Whitney test. V, Vehicle; M, Morphine
(10 mg/kg, a positive control).
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2015). The antipruritic effects of HSK21542 were then
determined with compound 48/80-induced scratching test in
mice. In the compound 48/80-induced scratching test, when
given at a dose of 0.02 mg/kg, nalfurafine (a positive control)
effectively suppressed the scratching responses with an inhibitory
rate of 94.30% (p < 0.001, Mann-Whitney test). HSK21542
(0.01–3 mg/kg) inhibited the scratching responses to a similar
extent as did CR845 in a dose-dependent manner at 15 min post-
drug (Figure 5, F(6, 63) � 27.82, p < 0.001). At a dose of

0.03 mg/kg, HSK21542 induced an inhibitory rate of 34.89%,
and the number of scratching bouts was statistically less than that
in the vehicle-treated group (p � 0.015). Therefore, the MED
value of HSK21542 was designated as 0.03 mg/kg. At a dose of
1 mg/kg, the antipruritic activity of HSK21542 reached a peak
with an inhibitory rate of 99.78%. In the 0.1 and 0.3 mg/kg
HSK21542-treated groups, the inhibitory rates of 53.02 and
73.75% were observed, respectively. Furthermore, the analysis
of dose-response curve showed that HSK21542 had an ED50 value

FIGURE 4 | Antiallodynic effects of HSK21542 and CR845 in hindpaw incision- or CCI-induced mechanical pain. In hindpaw incision model, the mechanical
allodynia testing (von Frey) was performed at 15 min (A) and 24 h (B) after drug administration. In CCI model, mechanical allodynia testing was performed at 0.25, 2, 6,
12 and 24 h post-drug (C, E), and the area under the curve (AUC) was calculated using a trapezoidal method (D, F). Morphine was presented as a positive control. Data
are presented as means ± SD (n � 7–10/group). (A and B) *p < 0.05, **p < 0.01, ***p < 0.001 vs. vehicle, Kruskal-Wallis test followed by Dunn’s post-hoc test; (C, E)
*p < 0.05, **p < 0.01, ***p < 0.001 vs. vehicle, two-way ANOVA followed by Dunnett’s test; (D, F) *p < 0.05, ***p < 0.001 vs. vehicle, one-way ANOVA followed by
Dunnett’s test; ###p < 0.05 vs. vehicle, Mann-Whitney test. V, Vehicle.
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of 0.09 mg/kg (95% CI: 0.04–0.16 mg/kg), and this was
comparable to that of CR845 (0.10 mg/kg, 95% CI:
0.04–0.23 mg/kg, p � 0.91, Extra sum-of-squares F test).

HSK21542 Showed Fewer CNS Side Effects
As a supraspinal model for acute pain, the hot-plate test is
considered as one of the experimental methods for
differentiating the central and peripheral antinociceptive
effects (Le Bars et al., 2001). To validate whether the in vivo
pharmacological effects of HSK21542 are mediated by a
peripheral mechanism, a hot-plate test was employed in mice
to evaluate the central antinociceptive effects of HSK21542 at
15 min post-drug. As one of central analgesics, 10 mg/kg
morphine (a positive control) showed an almost complete
efficacy. HSK21542 at 3.75 mg/kg did not evoke significant
antinociceptive effects (p � 0.12), although 7.5 mg/kg
HSK21542 induced a percent maximum possible effect (%
MPE) of 29.60%, which was statistically higher than that in
the vehicle-treated group (p � 0.007). However, CR845
displayed significant antinociceptive effects at a dose of
3.75 mg/kg (Figure 6A, p � 0.008). In addition, the effects of
HSK21542 at 7.5 mg/kg were comparable to that of CR845 at
3.75 mg/kg (29.60% vs. 21.67%, t(18) � 0.42, p � 0.68). The ED50

values of HSK21542 and CR845 were 10.49 mg/kg (95% CI:
7.58–15.37 mg/kg) and 6.76 mg/kg (95% CI: 4.70–8.69 mg/kg),
respectively (p � 0.026, Extra sum-of-squares F test).

To directly explore the CNS effects of HSK21542, its effects on
sedation and respiration rate were measured. The sedative effects
of HSK21542 and CR845 at 15 min post-dosing were evaluated
using a locomotor activity test. The results showed that 10 mg/kg
morphine reduced remarkedly the distance traveled by mice (p <
0.001) and there was no sex difference (Supplementary Figure
S4, F(1, 24) � 4.19, p � 0.052). Although HSK21542 at 2 mg/kg
induced an obvious sedative effect (p � 0.005), the lower dose of
HSK21542 (0.4 mg/kg) did not significantly affect the locomotor
activity of mice (Figure 6B, p � 0.16). On the other hand,
0.4 mg/kg CR845 induced an obvious decrease in the total

distance traveled by mice (p < 0.001) with comparable efficacy
to the higher dose of HSK21542 or CR845 (p > 0.05, Student’s
t-test). As shown in Figure 6C, 10 mg/kg morphine significantly
reduced the respiratory rate (p < 0.001). There were no obvious
effects on respiration when HSK21542 was given at a dose of as
high as 2 mg/kg (p > 0.05). In contrast, CR845 caused significant
decrease in the respiratory rate at a dose of 2 mg/kg at 25 min
post-administration and the effects reached a peak at 45 min
post-drug (Figure 6D, p < 0.01).

DISCUSSION

The current work provided significant findings, validating that
HSK21542 is a peripherally-restricted KOR agonist and has an
outstanding translational potential. These studies revealed that the
combination of radioligand [3H]diprenorphine and KOR was
significantly inhibited by HSK21542, which could bind to KOR
with high affinity, and HSK21542 inhibited cAMP accumulation
induced by KOR activation. On the other hand, HSK21542 had no
obvious biological effects on the remaining 86 targets. Meanwhile, the
brain/plasma concentration ratio of HSK21542 remained extremely
low, suggesting its peripheral selectivity. Furthermore, HSK21542
produced powerful analgesic and antipruritic effects in animal
models. HSK21542 attenuated acetic acid-induced writhing
response and the therapeutic efficacy was maintained for over 24 h
by a single intravenous dose of 0.1–3mg/kg.Meanwhile, the analgesic
activity of HSK21542 could be reversed by the KOR antagonist nor-
BNI, indicating its on-target activity. HSK21542 also suppressed
hindpaw incision- or CCI-induced mechanical allodynia and the
effects were still able to be detected at 24 h post-drug within a certain
range of doses. Moreover, HSK21542 inhibited compound 48/80-
induced scratching response. Finally, HSK21542 lacked obvious
antinociceptive effects in hot-plate test, and had weaker effects on
the locomotor activity and respiratory rate in mice.

CR845 is a peripherally-restricted KOR agonist that has been
originally developed by Ferring Pharmaceuticals SA, and has been
approved for treating pruritus. To validate if HSK21542 would be a
better alternative for patients who are suffering from pain or pruritus,
its pharmacological profiles were compared to those of CR845. In
[3H]diprenorphine binding assay, the IC50 and Kd values of
HSK21542 were much smaller than those of CR845, and
HSK21542 had a longer t1/2 value for disassociating from KOR.
These results indicated that HSK21542 acts as a ligand of KOR with
higher affinity. Moreover, HSK21542 reversed forskolin-induced
cAMP accumulation in HEK-293 cells that stably express human
κ opioid receptor with subnanomolar potency, and was superior to
CR845.

In 0.6% acetic acid-induced writhing test, HSK21542 induced
potent antinociceptive effects at 15 min after systemic
administration. The profile of HSK21542 was similar to that of
CR845. Although the ED50 value of HSK21542 was completely
identical to that of CR845 at 15 min post-dose, the ED50 value of
HSK21542 was 16.6-fold lower than that of CR845 at 24 h post-
drug. In addition, the MED of HSK21542 was 3.33–100 times
lower than that of CR845. Therefore, HSK21542 is considered as a
more promising candidate than CR845 for treating pain. To

FIGURE 5 | Antipruritic effects of HSK21542 and CR845 in compound
48/80-induced itch model. Data are presented as means ± SD (n � 10/group).
*p < 0.05, ***p < 0.001 vs. vehicle, one-way ANOVA followed by Dunnett’s
test; ###p < 0.001 vs. vehicle, Mann-Whitney test. V, Vehicle; N,
Nalfurafine (0.02 mg/kg, a positive control).
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verify this conclusion, the antiallodynic effects of HSK21542 and
CR845 were also evaluated in a hindpaw incision model and a
CCI model. As predicted, HSK21542 achieved outstanding
antiallodynic effects, which were comparable or even superior
to CR845. The more potent analgesic effects of HSK21542 are
attributed to its excellent in vitro biological activities. It is
undeniable that HSK21542 might be a more potent and
longer-acting analgesic than CR845. To further address the in
vivo pharmacological profiles of HSK21542 and CR845, their
antipruritic activities were measured in an animal model of
compound 48/80-induced itch, wherein HSK21542 presented
remarkable antipruritic effects, similar to that of CR845.

To validate HSK21542 as a safer candidate drug for treating pain
and pruritus, the central antinociceptive effects of HSK21542 and
CR845 were assessed with a hot-plate test, and the effects on
locomotor activity and respiration in mice were observed. In the
hot-plate test, the MED value (7.5 mg/kg) of HSK21542 was higher
than the dose (1mg/kg) needed to produce maximum

antinociceptive effects in writhing test. The ED50 value of
HSK21542 was 10.49mg/kg, suggesting that HSK21542 has a
therapeutic index of 116.6 (Supplementary Table S2). In contrast,
CR845 has a smaller therapeutic index (75.1). Furthermore,
HSK21542 at a dose of 2mg/kg did not affect the locomotor
activity and respiratory rate in mice, which was obviously higher
than the doses needed to produce analgesic and antipruritic effects.
However, CR845 suppressed the respiratory rate in mice at the same
dose. Morphine, a typical representative of MOR agonist, highly
inhibited the respiratory rate in mice at a dose of 10mg/kg, at which
the antinociceptive effects of morphine was comparable to that
achieved by HSK21542 or CR85 (Supplementary Figure S5).
Therefore, HSK21542 does not produce obvious CNS effects,
which are typical profiles of centrally penetrating KOR agonists
and MOR agonist. In view of all these results, HSK21542 might
have a larger translational potential than CR845.

However, it is noteworthy that there is a huge challenge in
preclinical-to-clinical translation for analgesic and antipruritic

FIGURE 6 | Central antinociceptive activities, and effects on locomotor activity and respiratory rate of HSK21542 and CR845 in mice. (A) The central
antinociceptive activities were evaluated using a hot-plate test in mice at 15 min post-drug. (B) The sedative effects at 15 min post-dosing were detected using a
locomotor activity test. (C, D) The effects on respiratory rate in mice were measured with whole body plethysmography. Data are presented as means ± SD (n � 10/
group). (A, B) **p < 0.01, ***p < 0.001 vs. vehicle, one-way ANOVA followed by Dunnett’s test; (C, D) **p < 0.01, ***p < 0.001 vs. vehicle, two-way ANOVA followed
by Dunnett’s test; ###p < 0.001 vs. vehicle, Mann-Whitney test. V, Vehicle; M, Moprhine (10 mg/kg, a positive control).
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candidates. One of the main causes is the discordance in
endpoints between animal and human studies. In animals, the
pain- or itch-stimulated behaviors are recorded to label analgesic
or antipruritic candidates, making it unavoidable that the false-
positive effects might exist, resulting from non-selective drug
effects such as sedation and paralysis (Lazenka et al., 2018).
Therefore, it is important to look forward to the results of
clinical trials that will validate if HSK21542 could be a safe
and effective analgesic and antipruritic drug. At present,
HSK21542 is under Phase II clinical development for treating
pain or pruritis (CTR20201702, CTR20201210, CTR20200371;
http://www.chinadrugtrials.org.cn/clinicaltrials.searchlist.
dhtml).

In conclusion, the in vitro findings revealed that HSK21542 is a
selective KOR agonist with a higher potency than CR845. The
brain/plasma distribution study showed that HSK21542 has an
extremely poor ability to penetrate into the CNS system. The in
vivo pharmacological activities supported the translational
potential of HSK21542 as a safe and effective analgesic and
antipruritic candidate. Generally, HSK21542 has the ability to
avoid adverse CNS effects that are associated with centrally
penetrating KOR agonists and MOR agonist, and might provide
an effective alternative for treating patients with pain or pruritus.
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