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Abstract: Host genomic information, specifically genomic variations, may characterize susceptibility
to disease and identify people with a higher risk of harm, leading to better targeting of care and
vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into
a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the
other hand has a very low mortality rate. In this study, we compared whole-genome sequencing data
of 14398 adults and Qatari-national to 925 Italian individuals. We also included in the comparison
whole-exome sequence data from 189 Italian laboratory-confirmed COVID-19 cases. We focused
our study on a curated list of 3619 candidate genes involved in innate immunity and host-pathogen
interaction. Two population-gene metric scores, the Delta Singleton-Cohort variant score (DSC)
and Sum Singleton-Cohort variant score (SSC), were applied to estimate the presence of selective
constraints in the Qatari population and in the Italian cohorts. Results based on DSC and SSC
metrics demonstrated a different selective pressure on three genes (MUC5AC, ABCA7, FLNA)
between Qatari and Italian populations. This study highlighted the genetic differences between
Qatari and Italian populations and identified a subset of genes involved in innate immunity and
host-pathogen interaction.

Keywords: COVID-19; population genetics; genetic constraints; COVID-19 severity

1. Introduction

COVID-19 continues to spread worldwide, with over four million deaths to date and
rising. However, this global spread is coupled with stark anomalies in morbidity and
mortality. These differences can be seen not only between different populations but also
within the same population [1–4]. While most of these differences can be attributed to
sociodemographic and clinical factors, this is also a unique opportunity to assess asso-
ciations with host genomes. Host genomic information, specifically genomic variations,
may characterize susceptibility to disease and identify people with a higher risk of harm,
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leading to better targeting of care and vaccination [5–7]. In addition, characterizing these
host factors may help identifying and development of adapted drugs and vaccines [8–10].
The scientific community came together with several efforts to investigate how the genomic
variation in the host affects disease susceptibility and progress [11,12]. So far, these large
consortia efforts have led to the identification of over 20 loci associated with susceptibility
or severity of the disease [13].

Italy was the epicentre for the spread of COVID-19 in Europe and the first country
to go into a national lockdown. It had one of the highest COVID-19 associated mortality
rates in Europe [4]. At the time of writing, almost five million cases have been confirmed,
with a death toll of more than 130 thousand people (infection fatality rate = 2.7%). Qatar,
on the other hand, despite having one of the highest worldwide numbers of laboratory-
confirmed cases (36,729 cases per million, by July 2020), has a very low mortality rate
(infection fatality rate = 0.91 per 10,000 persons, by July 2020, per WHO COVID-19 mortality
classification) [14]. Studies have even suggested that some communities in Qatar have
reached herd immunity for SARS-CoV-2 at a proportion of infection of 65–70% [15]. With
the development of the first generation of RNA based vaccines [16,17], along with the more
standard adenovirus-based solutions [18,19], the end of the pandemic seems to be in sight,
though we are aware that this is just the beginning of a more bearable coexistence with
the virus.

Differences in terms of fatality rate or disease prevalence between population groups,
besides the socio-economic factors, could also be imputed to the patients’ genetic back-
ground, and, as mentioned above, several studies are investigating the host genetic contri-
bution to the disease susceptibility and severity [11–13]. In this study, we focused on genes
involved in the immune response, combining them with a dataset of 1500 proteins mostly
involved in COVID-19 disease [20] and a subset of genes already identified as linked to
COVID-19 susceptibility and progression [7]. We applied, on this set of genes, a prioriti-
zation method based on ultra-rare and population-specific variants. With this approach,
we aim to identify a group of genes showing different signs of selective pressure in our
study cohorts. Our hypothesis is that those genes can provide information to understand
the pandemic progression and maybe help towards therapy.

2. Materials and Methods
2.1. Population Description

The Qatari Cohort: The Qatar Genome Program (QGP) [21] is a population-based
project launched by the Qatar Foundation to generate a large-scale whole-genome sequence
(WGS) dataset, in combination with comprehensive phenotypic information collected by
the Qatar Biobank (QBB) [22]. All subjects included in the analysis were of Qatari Middle
Eastern Arabian ancestry [23]. In this study, we use a cohort of 14,398 individuals with an
average coverage of 30X. Data preprocessing and downstream quality control analyses for
WGS data were conducted as recommended by the Covid19 Host Genetics Initiative study
protocol [7].

Italian Genetic Isolated cohorts: Three Italian cohorts belonging to the Italian network
of Genetic Isolates (INGI) were involved in this study due to the availability of whole
genome-sequence data. The selected populations localized in three different geographical
areas of Italy: North-West (Val Borbera-VBI), North-East (Friuli Venezia Giulia-FVG) and
South-East (Carlantino-CAR); In each cohort, a wide range of phenotypic data is available
for each participant (e.g., anthropometric traits, blood tests, sensory impairment, taste and
food preferences, extensive personal and familial anamnesis). A total of 925 samples with
low coverage (4X to 10X) WGS data were selected for the analyses [24]

Italian COVID-19 positive samples: a cohort of 189 individuals which tested positive
for the SARS-CoV-2 infection and collected at the Bambino Gesu’ hospital in Rome was
included in the study to provide information on the pattern of genetic variation in a group
of selected genes in an outbred Italian cohort. Whole Exome Sequencing data was generated
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by the University of Tor Vergata from peripheral blood. The samples are clustered in three
groups, based on the disease severity: severe, extremely severe and asymptomatic [25].

All data analyzed was aligned to the reference genome’s GRCh38 release, and func-
tional annotations were obtained using the Ensembl VEP tool [26].

2.2. Principal Component Analysis

To highlight the study cohorts’ population structure level, we performed a principal
component analysis (PCA) using KING software [27]. Plink v1.9 software [28] was used
to convert data from vcf to plink binary format. QGP and each INGI cohort results were
projected into the 1000Genomes Project data [29]. To highlight the peculiar ancestry struc-
ture of the Qatari population, we also performed an ancestry inference analysis using the
software KING.

2.3. Genes Selection and Prioritization Analyses

Literature curation process, Genomics England (GEL) panel expert and Ingenuity
Variant Analysis (IVA): The candidate gene generation process, the initial candidate gene
list ranking and curation are conveyed on the recent literature review to extract a list of
genes involved in innate immunity and host-pathogen interaction. The primary gene list is
curated according to the knowledge-literature base by the Ingenuity® Variant Analysis™
software from QIAGEN [30] and the viral gene panel expert from Genomics England
(GEL) [31]. This list includes a total of 3617 genes (Table S1).

Candidate genes were annotated with the most common gene-ranking metrics using
the loss of function intolerance score (pLI) [32] and the Residual Variation Intolerance
Score (RVIS) [33]. In addition, we selected a list of 25 genes (Table S2) that were recently
associated with COVID-19 susceptibility and severity [7] and overlapped with the primary
list, extracting a subset of genes that underwent further analyses.

Population-based Gene constraints: Two population-based gene metric scores, the
Delta Singleton-Cohort variant score (DSC–accounting for the difference in singletons
between coding and non-coding regions) and Sum Singleton-Cohort variant score (SSC—
accounting for the sum of singletons variants in the coding and non-coding regions), were
adopted to estimate the presence of specific pressures selection in the Qatari population
as well as the Italian Isolated cohorts [34]. Only variants with a QUAL value above 30
were used in the calculation to limit the inclusion of genotyping error for variants with
allele count (AC) equal to 1. Only scores calculated on canonical transcripts were selected.
Only genes with scores values lower or equal to −2 and greater or equal to 2 were retained
in each population. These values represent the significant threshold that allows us to
discriminate between a gene under constraint (DSC or SSC score ≤ −2) or under relaxation
(DSC or SSC score ≥ 2). Since we aim to compare two populations with different structures
and high levels of inbreeding, we also calculated the same set of scores for the closest
ancestry populations of each study cohort. We used data from the gnomAD v3.1 [35]
call set, including 1000Genomes project samples and extracted information on the EUR,
AFR and SAS superpopulations subset. The EUR subset was used as reference for the
Italian samples [36], while the AFR and SAS subsets for the Qatari cohort [23]. We defined
two different levels of comparison: at the ancestry level, in which we selected all genes
showing concordant selective signals between our study cohorts and their closest ancestry
population, and at the population level, in which we selected only genes showing different
behaviour between our target population and the reference. Since we were dealing with
three Italian populations, comparing only with one reference, we selected genes that
satisfied our criteria in at least one of the three target Italian populations.

On the other hand, we used two different references for the Qatari target population,
so we selected all genes that meet our criteria in at least one reference population. Finally,
we proceeded with the comparisons between our target populations, performing three sets
of comparisons: population-specific, population-specific vs. ancestry related and ancestry
related comparisons (Table S3). Each comparison was performed separately for SSC and
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DSC scores. Finally, we generated a list of genes overlapping between SSC and DSC
comparisons to select those genes that consistently showed opposite behaviour in terms
of selection or relaxation in our target populations. We used the Fisher’s test to compare
DSC and SSC scores distributions between study cohorts, and reference populations. We
performed a Shapiro-Wilk test to assess the normality of the score distribution in each
cohort and an enrichment test to assess whether there was an enrichment in relaxed or
constrained genes in our target populations vs. the selected reference populations.

2.4. WES COVID-19 Cohorts

Using Whole Exome Sequence data from a cohort of COVID-19 positive samples
(n = 189), we calculated singletons count and singletons density in the coding regions
of the genes belonging to the shortlist generated, adjusting by sample size, and com-
pared using Fisher’s test against data from the other target and reference populations.
In this cohort, each sample was characterized by a disease severity code. The disease
severity classes are defined as follows: (1) Asymptomatic/Paucisymptomatic, (2) Severe,
(3) Critical/life-threatening [25]. We used this information to investigate if we could iden-
tify any contribution of the singleton burden of the prioritized genes to the classification.
A multinomial analysis with R was performed using age, gender and the singleton count
as explanatory variables. We also analyzed the contribution of the prioritized genes to the
outcome (Survived/Deceased) with a logistic regression model and the same covariates
used in the multinomial analysis. We performed the analyses using both the whole-gene
singleton count and the coding regions singleton count. A summary of the phenotype
information is available in Table S4.

3. Results
3.1. Population Stratification

As expected, the PCA analysis (Figure 1) showed a clear differentiation between QGP
and INGI (European) ancestry. The Italian cohorts clustered with the European samples
from the 1000Genomes Project reference data, while the QGP samples overlapped with
clusters from different populations (AFR, SAS, AMR, EUR). Using the ancestry inference
function provided by the KING software, we confirmed the presence of different sub-
population clusters in the QGP cohort, highlighting that a considerable proportion of the
analyzed samples (more than 4000 samples) belong to a ‘missing’ super population cluster
(Figure S1). This is mainly due to the absence of population from the Near East in the
1000 Genomes Project data. This outcome confirms results already obtained by different
studies on the Italian populations [36] and on the first subset of nearly 6000 samples of the
Qatari population [37].

3.2. Population Based Gene Prioritization

For each population and each gene in the selected subset, we calculated two scores
related to the presence of cohort-singletons variants. In (Figure 2) , we show the distribution,
among the 3617 genes selected, of the DSC score ((Figure 2) top panel) and the SSC score
((Figure 2) bottom panel), in each study cohort and the selected reference groups (EUR,
AFR and SAS). We compared each target population score distribution with the relevant
reference population (Table S5). All the INGI populations are significantly different from the
reference EUR population for both scores. In contrast, the Qatari population significantly
differs from the reference populations (AFR and SAS) in DSC score distribution, but not
for the SSC score distribution. This pattern is also confirmed in the enrichment analyses of
relaxed and constrained genes, in target populations vs. reference populations, of relaxed
and constrained genes. Exact Fisher’s tests show enrichment in constrained genes in all the
target populations when comparing DSC scores (Table S6). Similarly, if we consider the
SSC scores, all target populations do not show significant enrichment in constrained genes.
Regarding the relaxed genes, though, we detected a significant enrichment in both DSC
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and SSC scores for the Italian populations (CAR, VBI and FVG) but not for the QGP cohort
(Table S6).
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Figure 1. PCA plot of the QGP and INGI cohorts projected onto 1000Genomes Project data. As
expected, the first two principal components already show the separation between the QGP and the
INGI cohorts and the overlap with the selected populations for the ancestry-related comparisons.
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Figure 2. Distributions of the prioritization scores. Violin plots of the distributions of DSC (top panel)
and SSC (bottom panel) scores in the subset of selected genes for all target populations (CAR, FVG,
VBI, QGP) and all reference outbred populations (AFR, EUR, SAS) from 1000Genomes project.

We used a threshold of −2 to define significant constraint and a threshold of +2 to
define a significant relaxation signal [34]. Results for the comparisons between our target
populations are summarized in Tables 1 and 2. Regarding the DSC score, we identified six
genes with a signature of constraint in the QGP population and relaxation in at least one of
the Italian populations. Two of those genes (TTN and LRP1B) are results of population-
specific comparisons, and one (RICTOR) is the outcome of an ancestry-related comparison.
Eight genes showed an opposite pattern of relaxation in the Qatari cohort and constraint
in at least one Italian cohort. Among them, RYR3 is the result of an ancestry related
comparison. When comparing our target populations based on the overall burden of
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singletons in each gene (SSC score), we identified a total of 35 genes that behave differently
between the Qatari population and at least one Italian population (Table 2). Seventeen
of those genes showed a pattern of constraint in the Qatar population and relaxation in
at least one Italian cohort. The HELZ gene was the only one arising from a population-
specific comparison. The remaining eighteen genes showed a pattern of relaxation in the
QGP dataset but a significant constraint in at least one of the other targets. In this subset,
the CELSR2 gene is the result of a population-specific comparison. Since our focus is to
identify genes that consistently show different selection signals among our cohorts, we
selected a subset of genes for which both DSC and SSC scores are concordant: ABCA7,
FLNA, MUC5AC (Table 3). Those three genes showed a consistent relaxation pattern in
the QGP cohort while being always characterized by strong signals of constraints in at
least one Italian cohort. Interestingly, FLNA shows a significant signal of constraint in CAR
and VBI cohorts while remaining neutral in the FVG dataset. The trend for the constraint
signal is also replicated in all the reference cohorts selected. Data from other outbred
populations from the 1000Genome project (EAS and AMR) confirm the trend of constraints
(Table S7). ABCA7 repeats the pattern observed for FLNA, in terms of target populations,
with a significant constraint signal in the FVG cohort, and a trend of constraint in the
CAR cohort, while being neutral in the VBI cohort. This time though, we can see how the
outbred reference populations, plus the remaining super populations of 1000Genomes, are
all in agreement, showing relaxation signals. Lastly, the MUC5AC gene shows a consistent
pattern of significant constraint signal in all the Italian cohorts, but conversely, always a
significantly relaxed pattern in all other populations.

3.3. COVID-19 Cohort Analysis

Next, we included a cohort of 189 COVID-19 positive samples (TOV cohort) and
calculated the number of singleton variants in this subset for the three genes of interest.
Table 4 shows the results of the comparisons with the other study populations and the
reference populations. If we consider the whole gene, we can see how, for the FLNA gene,
the TOV cohort shows a small difference in the singleton density when compared to the
FVG cohort and a more significant difference with the VBI and QGP cohorts, while ABCA7
and MUC5AC genes have consistently a significantly different pattern when compared
with all reference and target populations (Table S8). If we consider only the coding part of
each gene, we confirm the minor differences in the FLNA gene between the TOV cohort and
the VBI and QGP cohorts. We also confirm the results for ABCA7 and MUC5AC (Table S9).

To investigate if the burden of singletons in the prioritized genes could contribute to
the disease severity classification, we performed multinomial logistic regression analyses.
Disease severity class was the response variable, and age, gender and singleton count the
explanatory variables. When we consider the contribution of the burden of singleton in
the whole gene, the multinomial analyses showed that only age and gender are important
predictors for the disease severity classification (Table S10, Figure S2). Using the burden of
singletons in the coding regions as parameters in the regression model resulted in age and
gender being significant predictors for being in class 2 vs. class 1 (p-values: 6.09 × 10−7

and 0.04463 respectively) and belonging to class 3 vs. class 1 (p-values: 6.42 × 10−10 and
0.02035). Age resulted in a significant predictor of being in class 2 vs. class 3 (p-value:
0.008617). Regarding genes contribution, the model highlighted only the FLNA gene as a
significant predictor for being in class 2 vs. class 1 and for being in class 3 vs. class 2 (all
p-values: < 2.2 × 10−16) (Table S11).

We also retrieved the disease outcome (Survived/Deceased) information and used the
same parameters to perform a logistic regression analysis. As a result, we can still see that
age is a major predictor for the outcome (p-value: 1.50 × 10−10) (Figure S3). We can also
see a contribution of the ABCA7 gene, but only when we consider the number of singletons
in the whole gene (p-value: 0.0228) (Tables S12 and S13).
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Table 1. Results from comparison of DSC scores between target cohorts (CAR, FVG, VBI, QGP) and the relevant reference
superpopulations from the 1000 Genomes Project (EUR, AFR, SAS). The last column refers to the nature of the comparison
carried out, as detailed in Supplementary Table S3.

DSC Score

Transcript ID Gene Name QGP CAR FVG VBI EUR AFR SAS Comparison

ENST00000369850 FLNA 3.854 −2.435 0.272 −2.510 −2.399 −2.166 −1.879 C5
ENST00000350763 TNC 3.370 −3.792 1.388 −0.631 2.666 1.838 2.187 C4
ENST00000389048 ALK 2.575 3.651 0.290 −4.098 3.388 3.212 2.852 C4
ENST00000263094 ABCA7 2.566 −0.433 −2.168 0.071 3.020 2.681 2.150 C4
ENST00000647814 ABCC2 2.528 −3.466 0.467 3.004 2.562 2.877 2.508 C4
ENST00000621226 MUC5AC 2.435 −2.404 −2.017 −2.892 3.477 3.500 3.032 C4
ENST00000634891 RYR3 2.229 −3.377 −1.554 −3.586 −2.431 2.639 −3.449 C8
ENST00000542267 FBXL17 2.026 −1.232 0.180 −2.658 3.086 0.266 2.477 C4
ENST00000589042 TTN −2.242 −2.595 3.411 4.584 −2.388 −1.965 3.498 C1
ENST00000357387 RICTOR −2.369 −2.206 −0.033 2.407 2.181 1.284 −4.070 C7
ENST00000561890 MUC22 −2.472 −1.682 −1.632 2.156 −2.562 −2.191 −2.425 C3
ENST00000336596 EPHA3 −3.001 2.139 −3.421 −1.535 −3.704 1.921 −2.814 C3
ENST00000648947 INO80 −3.444 −1.309 2.424 −2.928 −3.439 −2.692 −0.727 C3
ENST00000389484 LRP1B −4.888 −4.916 3.192 2.602 −4.245 −2.136 3.231 C1

Table 2. Results from comparison of SSC scores between target cohorts (CAR, FVG, VBI, QGP) and the relevant reference
superpopulations from the 1000 Genomes Project (EUR, AFR, SAS). The last column refers to the nature of the comparison
carried out, as detailed in Supplementary Table S3.

SSC Score

Transcript ID Gene Name QGP CAR FVG VBI EUR AFR SAS Comparison

ENST00000378473 PLCB4 −4.524 2.917 −3.907 −0.413 −4.272 −2.873 −3.079 C3
ENST00000366574 RYR2 −4.347 3.792 −4.694 −5.053 −3.704 −2.318 −2.087 C3
ENST00000315872 ROCK2 −3.680 3.822 −2.372 −1.149 −4.160 −3.248 −3.665 C3
ENST00000361445 MTOR −3.371 −0.975 0.100 2.659 −3.378 −4.276 −3.888 C3
ENST00000358691 HELZ −3.131 4.249 1.658 −3.729 −3.437 −2.929 3.413 C1
ENST00000355286 EYA4 −3.000 −1.900 2.671 −1.486 −2.087 −2.589 −0.756 C3
ENST00000381501 TEC −2.996 −2.615 −1.656 3.085 −2.497 −2.427 −0.767 C3
ENST00000265382 PIP5K1B −2.952 2.574 −0.576 −2.746 −3.246 −3.197 −1.583 C3
ENST00000359015 MAP3K5 −2.758 2.108 0.850 1.431 −3.555 −2.472 −3.293 C3
ENST00000335670 RORA −2.586 −2.953 1.176 2.228 −2.499 −2.743 −0.526 C3
ENST00000370056 VAV3 −2.523 3.467 1.312 1.038 −3.282 −2.646 −1.406 C3
ENST00000381298 IL6ST −2.522 −1.224 3.859 2.542 −2.120 −1.466 −2.644 C3
ENST00000432237 CD163 −2.506 −1.404 2.793 −2.306 −2.419 −0.629 −2.156 C3
ENST00000392552 GPR155 −2.338 −1.261 −1.336 2.338 −2.417 −1.608 −2.585 C3
ENST00000382292 SACS −2.324 −4.408 3.917 2.284 −3.530 −2.726 −2.082 C3
ENST00000392132 XRCC5 −2.176 −2.147 2.722 −1.257 −2.673 −2.107 −1.787 C3
ENST00000313708 EBF1 −2.068 2.253 −1.422 −0.914 −2.980 −1.665 −3.222 C3
ENST00000400841 CRLF2 2.036 −1.347 −1.496 −2.083 2.581 2.185 1.052 C4
ENST00000369850 FLNA 2.058 −3.158 −0.860 −4.025 −3.073 −3.351 −3.097 C5
ENST00000344327 TRPC6 2.062 −3.776 −2.671 −2.711 −3.382 0.278 −2.242 C5
ENST00000263317 NOX4 2.225 −2.716 −2.554 −2.717 2.134 3.532 3.770 C4
ENST00000403662 CSF2RB 2.237 −2.363 1.702 0.620 2.613 0.319 2.782 C4
ENST00000297494 NOS3 2.243 1.436 −2.178 −0.851 2.109 2.460 2.455 C4
ENST00000295598 ATP1A1 2.258 −2.679 0.547 0.930 −2.204 −1.886 −2.448 C5
ENST00000085219 CD22 2.288 0.576 0.028 −2.311 2.368 −0.600 2.142 C4
ENST00000305877 BCR 2.397 −1.338 2.028 −3.021 3.994 2.923 3.631 C4
ENST00000333149 TRIM50 2.501 2.275 1.138 −2.022 2.271 1.372 3.197 C4
ENST00000271332 CELSR2 2.522 3.651 −2.581 2.455 2.443 −2.129 2.936 C2
ENST00000447648 TECPR1 2.666 −2.351 1.822 −1.669 2.777 3.213 −0.027 C4
ENST00000324856 ARID1A 3.434 −3.120 −2.683 −1.845 −2.085 −2.053 0.835 C5
ENST00000263094 ABCA7 3.796 −1.601 −2.581 1.004 2.591 3.325 3.998 C4
ENST00000372923 DNM1 3.941 −2.514 −1.222 −0.710 −2.066 −1.575 −2.077 C5
ENST00000621226 MUC5AC 3.965 −3.705 −3.751 −4.601 3.679 3.267 4.244 C4
ENST00000533211 SPTBN2 4.531 −2.266 1.209 −1.893 2.589 2.191 2.778 C4
ENST00000529681 MUC5B 4.744 3.085 1.483 −2.070 4.884 4.396 5.095 C4
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Table 3. List of genes with a concordant signature of selection between DSC and SSC scores, after the comparison between
target cohorts (CAR, FVG, VBI, QGP) and the relevant reference superpopulations from the 1000 Genomes Project (EUR,
AFR, SAS).

DSC Score SSC Score

Transcript ID Gene Name QGP CAR FVG VBI EUR AFR SAS QGP CAR FVG VBI EUR AFR SAS

ENST00000369850 FLNA 3.854 −2.435 0.272 −2.510 −2.399 −2.166 −1.879 2.058 −3.158 −0.860 −4.025 −3.073 −3.351 −3.097
ENST00000263094 ABCA7 2.566 −0.433 −2.168 0.071 3.020 2.681 2.150 3.796 −1.601 −2.581 1.004 2.591 3.325 3.998
ENST00000621226 MUC5AC 2.435 −2.404 −2.017 −2.892 3.477 3.500 3.032 3.965 −3.705 −3.751 −4.601 3.679 3.267 4.244

Table 4. Comparison of Singleton burden between the COVID-19 positive cohort (TOV) and other target and reference
populations. The reported p-values refer to the comparison between whole gene singleton burden (“p-value whole gene”
column) and coding regions singletons burden (“p-value CDS region” column). All singleton counts have been adjusted
considering the sample size of each cohort.

Transcript ID Gene Name Cohort p-Value Whole Gene p-Value CDS Regions

ENST00000369850 FLNA

CAR 0.630140 0.409653
FVG 0.046901 0.316565
VBI 0.000458 0.013015
QGP 0.000028 0.039803
EUR 0.312323 0.786342
AFR 0.878006 0.787767
SAS 0.200408 0.813561

ENST00000263094 ABCA7

CAR 3.2746 × 10−11 2.5959 × 10−7

FVG 3.1278 × 10−23 1.0535 × 10−17

VBI 7.1607 × 10−21 2.0060 × 10−16

QGP 6.2413 × 10−63 1.5606 × 10−40

EUR 4.4467 × 10−10 1.0966 × 10−8

AFR 1.7360 × 10−8 5.3713 × 10−9

SAS 2.3435 × 10−4 3.7924 × 10−6

ENST00000621226 MUC5AC

CAR 7.4274 × 10−12 8.4692 × 10−11

FVG 1.8836 × 10−31 2.7623 × 10−24

VBI 2.3148 × 10−36 3.2118 × 10−30

QGP 1.5512 × 10−76 1.2101 × 10−64

EUR 3.3142 × 10−6 4.0071 × 10−8

AFR 2.9701 × 10−8 1.0241 × 10−10

SAS 7.2316 × 10−3 9.9471 × 10−5

4. Discussion

Since the H1N1 influenza pandemic in 1918, the ongoing COVID-19 pandemic is the
most severe emergency we have met globally.

For the scientific community, this emergency has been a wake-up call to join forces
to fight back, investigate the effect of the virus on patients’ health, and understand the
infection’s molecular mechanisms. All this ongoing effort is producing knowledge that is
driving therapy and vaccine development. In this context, we focused on population-based
statistics to characterize a subset of genes involved in the inflammation/immune response
biological process. These statistics were obtained by analyzing populations with different
ancestries and levels of inbreeding and consanguinity.

We performed a comparison between our study cohorts and their matched reference
populations, according to principal component analysis (PCA) results. The comparisons
within our target populations allowed us to show the different patterns in genetic con-
straints for a large subset of genes involved in the immune response, leading to the
prioritization of a group of genes that we could define as “the most differentiated” in terms
of signatures of genetic constraints. These differences are most prominent for three genes
(MUC5AC, ABCA7, FLNA), which harbor a pattern of relaxation in the QGP cohort with
respect to other cohorts analyzed. This different pattern of relaxation could be a hint for a
different impact of the role of these genes in different populations.
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Two of the genes, MUC5AC and FLNA, have already been linked to the COVID-19
host response to different degrees. The MUC5AC gene is a gel-forming mucin expressed
in the lungs in response to infectious agents. This protein plays a protective role against
inhaled pathogens, like influenza [38]. A recent study [39] compared levels of MUC5AC,
MUC1 and MUC1-CT between critical ill COVID-19 patients and healthy controls, finding
a significantly higher level of those proteins in the patients’ mucus. It is also worth noting
that another recent work from Kousathanas et al. reported a significant genome-wide
association between variants in the MUC1 gene and critical illness caused by [9,39].

The second gene, FLNA, codes for the Filamin A protein, which has been identified
as a putative interaction candidate with coronaviruses S protein and is involved in the
coronavirus replication cycle [40]. A recent study showed that the FLNA gene is part of
the host protein-protein interaction (PPI) network for the SARS-CoV-2 virus and among
the targets of different drugs under development [41]. A loss-of-function mutation of the
FLNA gene was reported in family adults with emphysema [42].

There is no study showing a direct link between the ABCA7 gene and COVID-19 yet,
but it has been proven that it is highly expressed in the reticuloendothelial system and
modulates the phagocytosis activity [43,44], though its function, like many other ABC-
transporters, has yet to be clarified. Interestingly the BioGRID interactome database [45]
lists physical interactions of ABCA7 with ADBR2, C5AR2 and SGTB, among others. Each
one of these genes has been linked to COVID-19 host response in previous studies, in terms
of interaction [46], therapy [47] and severity in case of pre-existing health conditions [48].

Altogether with the information available on the prioritized genes and the knowledge
of the different evolution of the pandemic between Qatar and Italy, we performed a proof-
of-concept analysis. Using the information provided by a cohort of COVID-19 positive
samples from Italy, to try to identify, if present, the contribution of the amount of ultra-rare
variants in those genes to the outcome of the disease (Survived/Deceased) and the severity
(Asymptomatic/Paucisymptomatic, Severe, Critical/life-threatening).

From a cohort-based perspective, we can see differences in the distribution of single-
tons in the COVID-19 positive samples regarding our study populations and their reference
populations. This outcome suggests that those three genes could play a role in the descrip-
tion of the cohort and that investigating rare genetic variations occurring in those genetic
regions could be a starting point to complete the characterization of those samples. With
a subsequent approach, we applied logistic regression analyses to investigate the impact
of the singleton burden in the three prioritized genes on the disease outcome and disease
severity. While the contribution of age and sex is explicit and expected, these analyses
suggested that the burden of singletons carried by each patient in the ABCA7 gene could
predict a worse outcome together with age. From the point of view of the disease severity,
the burden of singleton in the FLNA gene could help discriminate samples with distinct
levels of disease severity. In this case, though, our findings seem to be inconsistent since
we find that having a lower burden of singletons is a predictor of developing a severe
reaction. However, a high singleton burden is a predictor of developing a critical reaction.
This finding can be better explained by looking at the distribution of singletons in our
cohort stratified by disease severity. For the FLNA gene, all samples belonging to class
2 of severity do not carry any singleton. This feature could be introduced by one of the
limitations of this study: the sample size of the COVID-19 positive cohort. Increasing
the number of cases will undoubtedly allow us to have a better estimate of the singleton
distribution. Moreover, in our model, we didn’t include any of the risk factors that are
already linked to a diverse response to the infection.

One last limitation could be represented by the inclusion of only one cohort of COVID-
19 positive samples, for which only Whole Exome sequence data was available. We
chose to include this cohort due to the phenotypical characterization, which allowed us
to investigate our hypothesis of a genetic contribution to the disease severity prioritised
genes. Nevertheless, for all the cohorts involved, information on the COVID-19 affected
samples is already being collected. That will allow us to produce more precise results
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with further analyses.To our knowledge, this is the first study performing a whole-genome
population-level comparison between Arabian and European populations, both differently
affected by the pandemic. Recent similar studies focused only on the ACE2 receptor and
populations from the 1000Genomes Project [49] or compared allele frequencies on COVID-
19 related genes in the Brazilian population with data from the 1000Genome and gnomAD
datasets [50].

With the development of new vaccines against SARS-CoV-2 infection, we are bound
to see a decrease in adverse disease outcomes and disease severity among the immunized
populations. However, our work could be a starting point to better prioritize genes that
could be therapeutical targets in different populations. Moreover, with the increased
knowledge obtained thanks to the many studies that focused on understanding virus-host
interaction, we could extend our method to any new similar threat that should arise in
the future.

5. Conclusions

we were able to identify three candidate genes that could be further investigated for
their role in the COVID-19 infection, and we want to stress the message that harnessing
the information provided by rare genetic variants, in this still evolving context, is proving
increasingly useful to explain the different outcomes of this disease.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10
.3390/genes12111842/s1. Figure S1: Inferred ancestry. Using the king software inferred ancestry
function, we were able to correctly infer the ancestry of our target populations, matching the already
available data. Figure S2: Disease severity classification in the TOV cohort. The box plots show
that age is still a major discriminant factor related to disease severity, in the TOV cohort. Disease
severity classes are defined as (1) Asymptomatic/Paucisymptomatic, (2) Severe, (3) Critical/life-
threatening.Figure S3: Disease outcome classification in the TOV cohort. The box plots show the
clear contribution of age, in the definition of the disease outcome classes. Table S1: Initial candidate
gene list of 3617 genes curated according to the knowledge-literature base by the Ingenuity® Variant
Analysis™ software (https://www.qiagenbioinformatics.com/products/ingenuity-variant-analysis
(accessed on 15 November 2021)) from QIAGEN, Inc. (IVA) and the viral gene panel expert from
Genomics England (GEL). Table S2: List of genes recently associated with COVID-19 susceptibility
and severity. Table S3: Details of the comparisons defined between Target and Reference populations
Table S4: Summary statistics of the phenotype information available for the TOV cohort. Table S5:
Comparison between scores distribution of target populations vs. reference populations Table S6:
Enrichment tests in target populations vs. reference populations. Table S7: DSC and SSC scores
for FLNA, MUC5AC and ABCA7 in all 1000Genomes super populations. Table S8: Comparison of
Gene Singleton Density between the COVID-19 positive cohort (TOV) and other target and reference
populations. All singleton counts have been adjusted considering the sample size of each cohort. Table
S9: Comparison of Coding Singleton Density between the COVID-19 positive cohort (TOV) and other
target and reference populations. All singleton counts have been adjusted considering the sample
size of each cohort. Table S10: Multinomial analysis results, comparing classes of disease severity,
considering the burden of singletons in the whole gene. Class 1: Asymptomatic/Paucisymptomatic;
Class 2: Severe; Class 3: Critical/life-threatening. Only significant predictors are reported. Table
S11: Multinomial analysis results, comparing classes of disease severity, considering the burden of
singletons in the coding regions of each gene. Class 1: Asymptomatic/Paucisymptomatic; Class 2:
Severe; Class 3: Critical/life-threatening. Only significant predictors are reported. Table S12: Logistic
analysis results for disease outcome classification. Only significant predictors are reported. Table S13:
Logistic analysis results for disease outcome classification considering the burden of singletons in the
coding regions of each gene. Only significant predictors are reported.
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