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The emergence of new SARS-CoV-2 variants of concern (VOC) has ham-
pered international efforts to contain the COVID-19 pandemic. VOCs have
been characterized to varying degrees by higher transmissibility, worse
infection outcomes and evasion of vaccine and infection-induced immunolo-
gic memory. VOCs are hypothesized to have originated from animal
reservoirs, communities in regions with low surveillance and/or single indi-
viduals with poor immunologic control of the virus. Yet, the factors dictating
which variants ultimately predominate remain incompletely characterized.
Here we present a multi-scale model of SARS-CoV-2 dynamics that
describes population spread through individuals whose viral loads and
numbers of contacts (drawn from an over-dispersed distribution) are both
time-varying. This framework allows us to explore how super-spreader
events (SSE) (defined as greater than five secondary infections per day)
contribute to variant emergence. We find stochasticity remains a powerful
determinant of predominance. Variants that predominate are more likely
to be associated with higher infectiousness, an SSE early after variant emer-
gence and ongoing decline of the current dominant variant. Additionally,
our simulations reveal that most new highly infectious variants that infect
one or a few individuals do not achieve permanence in the population.
Consequently, interventions that reduce super-spreading may delay or
mitigate emergence of VOCs.
1. Introduction
The emergence of more infectious and lethal SARS-CoV-2 variants of concern
(VOC) has dramatically extended the COVID-19 pandemic and contributed
to multiple surges of infections and deaths across the globe. A better under-
standing of the epidemiological properties leading to the invasion and
predominance of new VOCs may allow more strategic public health strategies
to limit their future impact.

The alpha (B.1.1.7) SARS-CoV-2 variant was the first to demonstrate a
significantly higher infectivity and virulence than baseline variants [1,2]. Beta
(B.1.3.5.1) and gamma (P.1) variants also have slightly increased infectivity
and virulence [3–5] as well as the ability to partially evade vaccine- or infec-
tion-induced immunologic memory [6–8]. The delta SARS-CoV-2 variant
(B.167.2) capitalized on significantly higher transmissibility to quickly predomi-
nate in many countries including the United States [9]. The omicron variant
recently outcompeted delta in South Africa and subsequently achieved global
predominance. VOCs rapidly spread in unvaccinated groups but are also gen-
erally over-represented as ‘breakthrough’ infections of vaccinated individuals
[10]. The detection of new more-transmissible variants continues to be delayed
by sequencing limitations in many global infection hot spots.
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Figure 1. Multi-scale model schematic. We model an epidemic in which infected individuals with given variants (e.g. red) are introduced into a susceptible popu-
lation (e.g. yellow). Individual viral load trajectories are tracked, and viral load is assumed to influence infection probability as a dose–response type function.
Contacts occur stochastically over time and are drawn from a distribution in which potential SSEs (greater than five infections) are possible but not common.
As incidence increases, additional variants each with potentially different transmissibility can emerge, though the depletion of susceptible individuals may influence
these onward dynamics.
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Early during the pandemic, phylogenetic surveys identified
population sweeps with variants containing single (or a few)
point mutations [11]. Beginning in the summer of 2020, several
variants emerged with an unexpectedly high number of new
mutations (often greater than 12 in the genomic region encod-
ing the viral spike protein [1,12,13]). Within-host evolution in
immuno-compromised hosts is a plausible source for these
variants as individuals with impaired immune function can
shed virus at high viral loads formonths, in the relative absence
of selection pressure [14–17]. Some documented cases resulting
in large numbers of mutations also involved possible
incomplete selective pressure related to therapies.

Mathematicalmodels are vital tools in infectious disease epi-
demiology [18]. Population geneticmodelswithmultiple strains
and heterogeneous contact networks are extensively used to
characterize epidemics [19–21]. Modelling has demonstrated
that super-spreading events (SSEs) can play a particularly
important role in emergence and spread for certain infectious
diseases [22], particularly for coronaviruses with pandemic
potential such as SARS-CoV-1, middle eastern respiratory
syndrome epidemic (MERS) and SARS-CoV-2 [23,24]. Theore-
tical methods have been developed to characterize this
phenomenon [25].

We developed a mathematical model that incorporates
several crucial aspects of the SARS-CoV-2 pandemic: stochas-
tic viral load-dependent transmission, non-homogeneous and
time-varying contact networks for infected individuals,
and emerging viral variants with heterogeneous infectivity
(figure 1). Relative to prior models, we introduce a multi-
scale approach that includes within-host viral dynamics.
This addition serves two main purposes. First, it remains
unclear whether variants with different viral load kinetics
result in different epidemiological outcomes [26–29]. Second,
once viral loads from an emerging variant are observed,
viral properties (like infectivity on a per cell basis) can be
quantified and used to project epidemiological outcomes.
For example, it is now apparent that in vitro reductions in
vaccine-induced antibody titer correlates with protection at
an epidemiological scale [30].

While the COVID-19 pandemic has been consistently
sustained by SSEs [31], our present work focuses on the
connection between super-spreading and novel variant emer-
gence and invasion. This analysis informs retrospective
understanding of the global variant emergence patterns and
the outsized benefit of targeting SSEs.
2. Results
2.1. Multi-scale mathematical model of SARS-CoV-2

variant spread in a population of individuals with
time-varying and heterogeneous numbers of
contacts

We previously constructed and validated a model that
captures several quantitative features of SARS-CoV-2 trans-
mission dynamics including that infected individuals have
widely ranging viral loads throughout the time course of
their infection, that viral loads tend to predict transmission,
and that secondary transmission patterns are highly variable
[31–33]. Super-spreading is common for SARS-CoV-2, and
we defined super-spreading in our model by specifying
events when a single-infected individual infects five other
people within a day [34–36]. In some cases, we also applied
a more stringent definition of SSEs as 10 or 20 secondary
infections from a single-infected individual in a day.

We simulated scenarios by introducing an individual
infected with a given variant into a susceptible population.
This index case and any further cases had a viral load drawn
from realistic distribution of within-host viral load parameters.
Each case exposes a specific number of contacts during each
time interval based on stochastic draws from an over-dispersed
distribution. New variants emerge with a certain probability
and the incidence of each variant is tracked. We followed
variant incidence over time and assessed whether or which
variants went extinct, and if any further new variants emerged.
We also tracked the number of days between variant
emergence in a single person and invasion (defined as 1000
cumulative infections). Any SSE was recorded. In simulations
with co-circulating variants, we defined predominance when
any new variant exceeded the baseline variant.



Table 1. Parameter values for the multi-scale model. (The standard deviation of the random effects as estimated by a nonlinear mixed-effect model are
provided in brackets () as described in [31].)

model parameter description value and units

viral log10β viral infectivity 7.23 (0.2) virions−1 d−1

δ infected cell death rate 3.13 (0.02) d−1 cells−k

k innate immunity killing exponent 0.08 (0.02) unitless

log10π viral load corresponding to 50% infectiousness 2.59 (0.05) d−1

m viral load corresponding to 50% infectiousness 3.21 (0.33) d−1 cells−1

log10ω acquired immune recruitment rate −4.55 (0.01) d−1 cells−1

r acquired immunity saturation exponent 10 unitless

δE acquired immune removal rate 1 d−1

q precursor maturation rate 2.4 × 10−5 d−1

c viral clearance rate 15 d−1

T(0), I(0), M1(0), M2(0), E(0) host-cell initial conditions 107, 1, 0, 0, 0 cells ml−1

V(0) virus initial conditions pI(0)
c

copies ml−1

q virus load scalar for additional variability simulations 1 unitless

transmission λ viral load corresponding to 50% contagiousness/infectiousness 107 copies ml−1

α hill slope modulating contagiousness/infectiousness 107 copies ml−1

τ average time delay for a newly infected person to begin producing virus 0.5 days

contacts θ average daily contact rate for Re= 1.0 2.3 d−1

average daily contact rate for Re = 1.2 3.1 d−1

average daily contact rate for Re= 1.4 3.5 d−1

average daily contact rate for Re= 1.6 3.75 d−1

average daily contact rate for Re = 1.8 4.0 d−1

average daily contact rate for Re= 2.0 5.0 d−1

average daily contact rate for Re= 2.2 5.5 d−1

ρ dispersion parameter 40
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The main components of the multi-scale model are: (i) the
viral load model, (ii) the transmission probability model, (iii)
the exposed contact model, and (iv) the population/mutation
model. A visual schematic of the model is in figure 1 and a
complete mathematical exposition of the model is provided
in the Methods.

First, the viral load model depends on the variant and is
parameterized by several features of the within-host model
(equation (4.1)) including viral infectivity and host response.
Second, transmissibility is captured by mapping a viral load to
a transmission probability in a dose–responsemanner (equation
(4.2)). Thus, at any time t during the course of an individual’s
infection, they may have a different transmission probability
that depends on their viral load at that moment. In addition to
viral loads, the transmission probability is governed by two par-
ameters in the dose–response model including the viral loads
that corresponds to 50% transmission probability and the steep-
ness of this dose–response curve. The modulation of these
parameters is crucial to account for transmissibility differences
beyond viral load. For example, some variants might in theory
have enhanced aerosolization and/or the ability to bind the
angiotensin converting enzyme 2 (ACE2) receptor of target
cells more avidly such that lower viral loads might be compen-
sated for by these factors, rendering the variant equally
transmissible. The parameter values in the transmission
model are provided in table 1.

Third, we assumed that individuals have heterogeneous
and time-varying numbers of exposed contacts. The under-
lying probability distribution used is a gamma distribution
governed by the ‘super-spread parameter’ ρ. This value
modulates the probability of a certain infected individual
contacting with n others on any particular day (equation
(4.3)). The choice of this distribution was justified by past
epidemic data and by its inherent flexibility [22]. A low
super-spread parameter means an infected individual is
likely to transmit to the average number of secondary
cases and resembles a normal distribution with low variabil-
ity. High-contact dispersion on the other hand means that
even though the mean transmission contacts is the same
across times and individuals, most infected individuals con-
tact 0 others, and a few contact many others (a fat tailed
distribution). Previously, we estimated that the value was
low (ρ = 0.1) for infections such as influenza in which there
is low day-to-day and person-to-person variance in
number of exposure contacts, and high (ρ = 40) for SARS-
CoV-2 [31].

Fourth, we introduce infected cases into a large suscep-
tible population. As more infections occur, susceptible



Table 2. Relationship between model parameters and effective reproduction number inferred from global sensitivity analysis. (PRCC, partial rank correlation
coefficient.)

parameter description range PRCC with Re

λ viral load corresponding to 50% infectiousness [105, 108] copies ml−1 −0.27
θ average number of contacts [0.04, 40] 0.74

ρ super-spread parameter [0.4, 400] −0.02
β viral infectivity [10−9.2, 10−5.2] virions−1 day−1 0.26

δ infected cell death rate [0.31, 5.0] day−1 cells−k −0.19
π viral burst size [100.59, 106.59] virions cell−1 0.64

q viral load scalar [0.1, 100] 0.26
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individuals decrease, but prevalence is generally low enough
that later variants are not significantly hampered by this
depletion. We assume that a fixed proportion of newly
infected individuals introduce further new variants. We
used experimental data on ACE binding to estimate a distri-
bution of within-host viral fitness that is roughly
exponentially distributed [37], with an average below 1
such that most new mutations are neutral or deleterious
and only a minor proportion are advantageous. However,
because these are in vitro data focusing on simply one viral
characteristic, not necessarily accounting for transmission
probability, we also tested uniform distributions.

2.2. Global sensitivity analysis and the average effective
reproduction number

The average effective reproduction number Re is a time-vary-
ing quantity calculated by summing over all secondary cases
arising from single individual and averaging over all individ-
uals during the simulation (see Methods). We assumed
masking or other interventions that lower the transmission
probability despite exposed contact with an infected individ-
ual [33,38] impact all co-circulating variants equally such that
differences in Re between co-circulating variants are owing to
their inherent parameters.

To simulate variants with different Re, we changed input
parameters for viral variants (i.e. viral infectivity, viral
production rate and immune modulation) and population be-
haviour (i.e. average number of exposure contacts and over-
dispersion). To simplify our implementation, we sought to
identify the most sensitive parameters influencing Re and
modulate those to simulate new variants. Thus, we performed
a global sensitivity analysis (see Methods) and found that the
average number of contacts θ most strongly correlated with
the average effective reproduction number regardless of
changes in all other variables (partial rank correlation coeffi-
cient (PRCC) = 0.74, table 2). The second most influential
parameter was the viral production rate π(PRCC= 0.64,
table 2), emphasizing that the within-host model does affect
between host dynamics. Notably, the dispersion parameter
changed the variability but had little impact on the average
reproduction number (PRCC=−0.02) in agreement with
analytical calculations based on simpler models. Based on
these results, when the average reproduction number was
input into the model, it was through modification of the
average number of exposure contacts.
2.3. Frequent stochastic extinction of new SARS-CoV-2
variants

We identified that variant extinction is more likely when Re is
lower but also when the contact network is highly over-
dispersed as with SARS-CoV-2 (figure 2a). This suggests
that most highly infectious SARS-CoV-2 variants will extin-
guish when generated within a single person, even when Re

is quite high. We performed an equivalent analysis with 10
starting infections as might occur if an outbreak of a new var-
iant first spreads in a small household or work cluster. The
rate of extinction was still relatively high for low Re and
high over-dispersion scenarios but decreased with higher Re

values for a given variant. We next performed an analysis
with 100 starting infections as might occur with a larger
initial SSE or introduction of a new variant into a new
region or country via travel. The rate of extinction was low
for all Re values and assumptions regarding contact network
dispersion. Therefore, although stochastic extinction of novel
SARS-CoV-2 variants is likely to be common, once roughly
100 cases are established, a variant is likely to continue to
expand exponentially in the absence of intensification of
non-pharmaceutical interventions (NPIs) regardless of its
ability to generate SSEs.

As a check, simulation of our multi-scale model with 1
initial case and ρ = 1 were in relatively good quantitative
agreement with analytical results from epidemiology and
population genetics studies showing that the probability of
non-extinction is the inverse of the reproductive number or
the selection coefficient [18,39]. For example, Re of 2 leads
to approximately a 50% chance of burnout (figure 2a).

We next quantified the impact of peak viral load on variant
extinction (figure 2b). Assuming a single initial infection, even
variants with higher peak viral load had only a modest
(approx. 20%) chance of survival when the contact network
was highly over-dispersed, which contrasts sharply with var-
iants that had lower dispersion of susceptible contacts.
Starting with 10 or 100 initial cases again allowed for a
higher chance of survival of new variants; however, the effect
of peak viral load on the probability of extinction was much
greater as the number of starting infections increased in the
case of a highly over-dispersed virus (pink line, ρ = 40). Thus,
slight decreases in viral transmissibility, here represented by
adecrease in averagepeakviral load,would increase extinction
probability of new SARS-CoV-2 variants [40]. This suggests
that vaccines or treatments in the form of post-exposure
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Figure 2. New SARS-CoV-2 variants with high transmissibility (Re> 1) often extinguish with low initial cases, but extinction is unlikely after an early super-
spreading event. We simulated the introduction of 1 (i), 10 (ii) or 100 (iii) infected cases (columns) with a given variant into a population of 1 million susceptible
individuals and allowed for time-varying viral load, stochastic transmission and super-spreading. (a) Heatmaps illustrate the percentage of simulations that resulted
in extinction (blue: no extinction, yellow: frequent extinction) across ranges of super-spread parameter (gamma-distributed network dispersion) and variant repro-
duction number. Super-spread parameter ranges encompass low (ρ = 0.1, a realistic value for influenza) to high super-spread potential (ρ = 40, an upper estimate
of SARS-CoV-2 infection). Ranges of effective reproductive number (Re) encompass values from throughout the COVID-19 pandemic, which can be modulated by
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prophylaxis that blunt peak viral load even slightly could not
only lower the chances of the emergence of new viral strains
in the population, but also break the chain of transmission
after the variant is established in more than 10 people.

2.4. Highly variable timing of SARS-CoV-2 variant
invasion at realistic effective reproductive numbers

Wenext evaluated time from first case of a newvariant to inva-
sion (defined as 1000 cumulative infections) in simulations in
which stochastic burnout did not occur. We performed 1000
simulations under each assumed value of Re. When starting
with one infection, we observed a wide variance in time to
invasion with an increase in the median time from 23 to 40
days as Re decreased from 2.2 to 1.2 (figure 3). The variance
andmedian time (19 to 38 days) to 1000 infectionswere similar
when starting from 10 infections (figure 3b) but the median
time (7 to 17 days) and variance decreased when starting
from 100 infections (figure 3c) demonstrating that stochastic
forces are less important once 100 cumulative infections are
reached. To check that simulation size was not a factor in
results, we found similar results using two examples of low
and high Re, and 1 initial case with 10 000 simulations (elec-
tronic supplementary material, figure S2A).

2.5. Contribution of early super-spreader events to rapid
variant invasion

We next examined the timing and number of SSEs during
these simulations. SSEs were variably defined as events in
which one individual infected at least 5 (figure 4a), 10
(figure 4b) or 20 (figure 4c) others in a day. With each defi-
nition and across all assumed values of Re= 1.6 or higher,
the timing of the first SSE correlated with time to invasion.
The strength of this correlation generally increased as the
definition of a SSE became more stringent and with higher
values for Re (figure 4).

The number of SSEs prior to invasion was generally not
positively correlated with time to invasion at high Re

values, signifying that multiple small SSEs do not strongly
accelerate invasion. Exceptions were at lower values of Re

with events defined as greater than 5 or greater than 10 infec-
tions. Number of SSEs correlated negatively with time to
invasion assuming low to moderate values for Re (1.2–1.8)
and less inclusive definitions of SSEs (at least 20 secondary
infections, figure 4c). To check that this simulation size was
sufficient, we demonstrated similar results with 10 000 simu-
lations in the most stochastic regime: low and high Re, and 1
initial case (electronic supplementary material, figure 2B).

SSEs were associated strongly with variant invasion.
Simulating variants with Re= 1.2 with a single initial case,
95 out of 1000 simulations had an SSE with greater than
five infections, out of which 33 reached the invasion
threshold of 1000 cumulative infections. Across simulations
without an SSE, no invasion was observed (0 out of 905,
p < 1 × 10−16, Fisher’s exact test). The low probability of inva-
sion without an SSE was observed for all assumed values of
variant Re. While our prior results, demonstrate that high Re

is a key determinant of variant invasion (figure 1a), these
simulations with parameter assumptions compatible with
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known features of variants B.1.1.7 and B.167.2 [1] show that
early SSEs are also key drivers of variant invasion and
predominance.
2.6. Increased likelihood of variant invasion when
circulating baseline variants have an effective
reproductive number less than or equal to one

We next performed simulations testing the probability of
novel variant invasion given a circulating variant already
infecting 1000 individuals. We first assumed that novel
variants emerge probabilistically, with 1% of transmission
events resulting in novel variant introductions. We restricted
our analysis to consider scenarios with fit variants, initially
allowing effective Re for the new variant to be uniform
between 1 and 2.2 at intervals of 0.2. Figure 5a shows nine
examples of simulation trajectories. For each value of baseline
Re, we performed 100 simulations until 100 000 cumulative
infections were generated or until stochastic burnout of all
variants occurred. Additionally, figure 5b shows similar pat-
terns for a simulation performed starting with 1000 infected
individuals but tracking until 250 000 cumulative infections
and illustrates that these trajectories occur with marginal
depletion of susceptible individuals, meaning competition
is probably not a large factor in dynamics of new variant
emergence and invasion. These trajectories showed that
more infectious variants (higher Re) were more likely to
invade, though the timing of invasion can be highly variable
owing to stochasticity and super-spreading.
2.7. High-incidence outbreaks and formation of
third-generation variants

In simulations with the baseline variant Re= 1.0, new high-
incidence waves of infections with second-generation
variants were predictably associated with the emergence of
novel third-generation variants—some of which ultimately
predominated owing to higher Re (figure 5a, e.g. top
middle light blue line). This finding highlights that new var-
iant emergence and invasion might be limited by
maintaining lower incidence, though this conclusion requires
further empirical validation.
2.8. More infectious invading variants relative to
circulating variants

We explored the Re of invading variants based on different
assumptions of the distribution of new variants created by
mutation during the simulation. Assuming 1% of transmission
events result in a new variant, drawing these variants from an
exponential (mean = 1, figure 6a), uniform (figure 6b) or lognor-
mal (mean = 1, figure 6c) fitness distribution lead to slightly
different outcomes for Re of invading variants with the uniform
distribution favouring more fit viruses. When we assumed a
baseline variant with Re= 1.0 and a new variant created in 1%
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Figure 4. Relationship between timing and number of SSEs and time to invasion. Invasion is defined as 1000 cumulative infections. Scenarios assume varying
definitions of SSEs as (a) greater than 5, (b) greater than 10 and (c) greater than 20 secondary infections on any day. Each plot also varies the invading variant
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of transmission eventswith auniformdistribution,we observed
predominance of a second and third-generation variant in 98
out of 100 simulations, whereas if mutation occurred in 0.1 or
0.01% of transmission events, then variant takeover only
occurred in 44% and 6% of simulations. When variants with a
new Re were generated more often, there were more evenly
distributed values of emerging Re.

We next performed 100 simulations using amore fit baseline
variantwithRe= 1.2 and1%of transmissionevents resulting ina
new variant (figure 6d). Variant invasion only occurred in
42 out of 100 simulations and invading variants had high Re>
1.8. Simulations with a baseline variant with Re= 0.8 allowed
variant invasion in all 100 simulations (conditioned on no epi-
demic burnout, data not shown). This result helps explain
why new variant predominance is often observed when
incidence of the baseline variant is decreasing [1].
3. Discussion
Our modelling illuminates an underappreciated determinant
of novel SARS-CoV-2 variant emergence and invasion. Intui-
tively, variant invasion becomes more likely if that variant
has inherently higher transmissibility, a result supported by
our modelling. Yet, because of the stochasticity inherent in
over-dispersed contact networks, high transmissibility does
not guarantee invasion. Our results suggest that most new
highly infectious variants which emerge from infected indi-
viduals never spread substantially in the population. It also
raises the provocative hypothesis that other human corona-
viruses with pandemic potential (e.g. SARS, MERS and
SARS-CoV-2) are introduced into the human population
commonly. Pre-emptive public health efforts are justified to
mitigate as many of these events as possible.

Previousworksusing epidemiologicalmodels have studied
the balance between transmissibility and over-dispersion
[22,24]. Our results agreewith findings from classic epidemiol-
ogy, which illustrate stochastic extinction can occur in an SIR/
SIS system even given a transmissible pathogen with an
effective reproductive number (Re > 1) [18,41,42]. The over-
dispersed secondary infection rate associated with SARS-
CoV-2 only increases the likelihood of stochastic extinction
[22,43]. Some analytical works addressing the complexities of
extinction on networks with over-dispersion have been per-
formed [44]. For realistic approximation of SARS-CoV-2
transmission, viral load kinetics influence transmission prob-
ability [31,33,45,46]. Therefore, to integrate relevant biologic
and epidemiological processes, we developed a multi-scale
model that agrees with the main conclusions of past works,
while allowing for direct connections between measurable
viral dynamic properties, super-spreading and multi-variant
epidemiological dynamics such as novel variant invasion.

Among variants that emerge in a single person, our
model suggests that, in addition to viral transmissibility,
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early SSEs, particularly those involving more than 20 people
may dictate whether invasion or extinction occurs. Super-
spreading events provide a head start for a variant, bypassing
the slower early phase of exponential growth into rapid
deterministic growth [47]. SSEs later during an epidemic
growth curve are relatively less important for a variant to
achieve predominance.

From a public health perspective, our results provide yet
another reason to intensely focus NPIs on preventing large
SSEs. This policy prescription includes the prohibition of
large indoor gatherings among unvaccinated people, a
focus on adequate ventilation in indoor work environments
and schools, and enforcement of highest quality masks
(K95 or N95) in circumstances where high-risk group
exposures cannot be avoided [33]. Prevention of SSEs will
limit number of infections, lower the introduction of new
variants and decrease the probability that a single large SSE
will initiate a more rapid local epidemic as has already
been documented in Boston, South Korea and multiple
other locations during the pandemic [48,49]. As incidence
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increases during a local outbreak, the probability of a super-
spreading event continually increases, making these interven-
tions more difficult, which re-emphasizes public health
efforts to keep cases low.

Our model has important limitations. While the model’s
qualitative findings are robust,we cannot estimate the outbreak
size and viral transmissibility that combine to guarantee
new variant emergence or invasion. These quantities depend
exquisitely on specific local epidemic parameters that are not
typically known. For instance, it is not yet clear whether the
percentage of immuno-compromised hosts varies across popu-
lations, which may be based on factors such as HIV prevalence
and availability and/or use of immunosuppression for organ
transplantation and cancer treatment. The number of second-
ary infections created by a person with new variants may also
differ from that of other members of the population in ways
that are difficult to project. On the one hand, these individuals
may shed for longer and at a higher viral load [14,15]. Yet, they
alsomaybemore ill and therefore quarantined at homeor in the
hospital limiting contact exposures. Moreover, while all var-
iants are probably impacted in the same way by the
introduction of NPIs such as masking and physical distancing,
the use of these interventions varies considerably among
regions and over time. Animal reservoirs for SARS-CoV-2
have been recently detected [50], and the dynamics of
transmission between animals and humans remains unknown.

Novel variant reproductive numbers (Re) in this model are
also associated with invasion probability. Importantly here,
Re represents only enhanced transmissibility given a certain
level of population immunity rather than more complex
phenomena such as a change in asymptomatic fraction. Ana-
lyses incorporating such phenomena would require merging
our model with a detailed epidemiological model, beyond
the scope needed to illustrate the strong impact of super-
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spreading. Moreover, increased transmissibility for novel
variants was demonstrated by modelling and in vitro exper-
iments showing enhanced binding to the ACE2 receptor in
respiratory cell lines [1,5].

In summary, new variants are likely to be frequently cre-
ated and introduced into the population during large waves
of SARS-CoV-2 infection. Yet even transmissible variants
often undergo stochastic extinction and those that ultimately
invade are often associated with early SSEs. When the domi-
nant variant is decreasing, this represents a delicate period in
which new variants are more likely to take hold. However,
decreasing incidence reduces the probability of SSEs. Overall,
our work adds to powerful existing rationale to make all
efforts to reduce SSEs through mass vaccination and strategic
continued use of NPIs [23].
oc.Interface
19:20210811
4. Methods
4.1. Data-validated SARS-CoV-2 within-host model

captures viral loads over time
We used the within-host model describing the SARS-CoV-2
infection from our previous study [32]. This model assumes
that the contact of SARS-CoV-2 (V ) with susceptible cells (T )
produces infected cells at rate βVT which then generates new
virus at a per capita rate π. The model also incorporates the
death of infected cells mediated by the innate responses (mod-
elled as a density-dependent killing term: δIk) and the explicitly
modelled acquired immune response of SARS-CoV-2-specific
effector cells E(t). The Hill coefficient r allows for nonlinearity
and saturation in acquired immune killing. The parameter ϕ
defines the saturation level: the concentration of SARS-CoV-2-
specific effector cells at which the killing of infected cells
becomes half-maximal. In the model, the rise of SARS-CoV-2-
specific effector cells is described in two stages. The first stage
defines the proliferation of a precursor cell compartment (M1)
at rate ωIM1 and differentiation into a secondary precursor cell
compartment (M2) at a per capita rate q. Finally, second precursor
cells differentiate into effector cells at the same per capita rate q
and are cleared at rate δE. Other models have described within-
host viral loads differently, including by using multiple compart-
ments and without an adaptive immune response [51–53].
Against our data, this model was optimally parsimonious, so
we continue with it here. The model is expressed as a system
of ordinary differential equations with time derivative denoted
by the overdot:

_T ¼ �bVT,

_I ¼ bVT � dIkI �m
Er

Er þ fr I,

_V ¼ pI � gV,

_M1 ¼ vIM1 � qM1,

_M2 ¼ q(M1 �M2)

and _E ¼ qM2 � dEE:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð4:1Þ
4.2. Dose–response model linking viral load to
secondary infection probability

We also employed our previously developed ‘dose–response’
model to estimate both contagiousness Pcontagion (the probability
of effective exposure) and infectiousness Pinfect (the probability of
cellular infection) as functions of transmitter viral load [31]. Each
of these mechanistic processes was modelled with an identical
Hill function such we link the viral load of a transmitter V(t)
(dose) to the probability of effective exposure and/or cellular
infection (response) as

Pcontagion ¼ Pinfect ¼ V(t)a

la þ V(t)a
, ð4:2Þ

where λ is the viral load that corresponds to 50% infectiousness
and/or 50% contagiousness and α is the Hill coefficient that
controls the sharpness in each dose–response curve.

4.3. Transmission model and effective reproduction
number

As in our previous model [31], we determined the total exposed
contacts of a transmitter within a time step (Δt) using a gamma
distribution, i.e.:

hDt� G
u

r
, r

� �
Dt, ð4:3Þ

where θ and ρ represent the average daily contact rate and the
dispersion parameter, respectively. The true number of exposure
contacts (with viral airway exposure) was then obtained by mul-
tiplying the total exposed contacts and the contagiousness of the
transmitter. We modelled infectiousness as a Bernoulli event
with mean Pinfect, yielding the number of secondary infections
within a time step as

YDt ¼ Ber(Pinfect)PcontagionhDt: ð4:4Þ

Finally, we summed up the number of secondary infections
over 30 days since the time of exposure to obtain the individual
effective reproduction number, which we denote with a lower
case variable for each individual:

re(i) ¼
X
Dt

YDt: ð4:5Þ

The total effective reproduction number is then the average
of the individual reproduction number taken over all infected
individuals currently in the simulation:

Re ¼ 1
n

X
i

re(i) : ð4:6Þ

In simple steps, we followed the procedure below to
estimate Re:

1. simulate viral load V(t) of a simulated infected individual
using the within-host model;

2. for a given combination of (λ, τ, α, θ, ρ):
(a) for each time step Δt:

(i) compute Pt[V(t);λ, α];
(ii) draw hDt � G((uSt)=(rS0),r)Dt;
(iii) calculate YDt ¼ Ber(Pt)PthDt, where Pt = Pinfect;

(b) calculate Re ¼
P

Dt YDt;
3. repeat steps 1 and 2 to estimate Re for 1000 infected individ-

uals. The population level Re can then be calculated by
taking the mean of 1000 individual Re values.

4.4. Population simulation
Armed with the model for an individual, we next simulated tem-
poral transmission throughout a population. For each successful
transmission, we assumed a slight delay of τ days for the first
infected cell to produce virus. A key change was made to the pre-
viously published model to improve its realism: we allow for the
depletion of susceptibles as the simulation proceeds such that
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later variants do have a slight disadvantage even if they are
intrinsically more fit. In the procedure above, St is calculated at
each time t beginning with an initial population of 1 million sus-
ceptible individuals. We followed the procedure below to
transform our previously published transmission model into
multi-class temporal transmission model:

1. discretize the time-space of 150 days over time steps Δt of
1 day;

2. with ntc representing the number of transmitters at any time t
of variant ‘c’, we start with presumed noc transmitters at t = 0
of variant c and zero transmitters at the remaining time points
for all variants;

3. starting at t = 0, for each of the seven variants:
(a) we determine the number of transmitters (infected

individuals) at that time step of variant ‘c’ and then,
(b) for ith of ntc transmitters:

(i) simulate Vi(T ) over [t, t + 30] at daily intervals (i.e.
ΔT = 1) using the within-host model in equation (4.1);

(ii) compute Pinfect,i[Vi(T );λ, α];
(iii) draw hDT,i � GððuStÞ=ðrS0Þ, rÞDT;
(iv) calculate YΔT,i = Ber(Pt,i)Pt,iηΔT,i, where Pt,i = Pinfect,i;
(v) determine times of successful transmission (ts) as

those times ‘t’ where YΔT,i > 0 and the number of sec-
ondary transmissions at those time points as YΔT,i;

(vi) determine which strain was transmitted at times of
successful transmission using μT,i = Ber(μ). If μT,i
equals 1, then only a mutant strain is transmitted
and the class of the mutant strain is randomly
selected from seven pre-specified variants;

(vii) update ntc = ntc +YΔT;
4. repeat step 3 for t = Δt, t = 2Δt and so on over the discretized

time-space of 150 days.

Since we follow the transmission dynamics from each
infected individual and the number of secondary transmission
per day (i.e. YΔT,i), the SSE can be simply characterized by
YΔT,i > SSEthreshold, where SSEthreshold is the SSE threshold. For
example, SSEthreshold takes the value of 5, 10 and 20 secondary
transmissions in figure 4.

4.5. Global sensitivity analysis
We tested the sensitivity of the calculation of Re on seven
parameters from all parts of the multi-scale model: l, u, r,
b, d, p and q . These parameters represent 50% infectiousness,
the average number of exposure contacts, over-dispersion par-
ameter, viral infectivity, the death of infected cells mediated by
innate responses, viral production rate and increase in viral loads
for other unaccounted reasons (i.e., V(T) ¼ q V(T), respectively.
We varied λ, θ, ρ, β, δ, π and q in plausible ranges (table 2), and
using Latin hypercube sampling, we next generated 1000 par-
ameter combinations and calculated Re for each parameter
combination using the procedure described in Population simu-
lation. The PRCCswere calculated for all seven parameters, table 2.
4.6. Simulating multi-class temporal dynamics from the
transmission model

To simulate multi-variant dynamics, we assumed seven classes
of mutant strains, each with a different Re of 1.0, 1.2, 1.4, 1.6,
1.8, 2.0 and 2.2 which were modelled by adjusting θ of 2.3 d−1,
3.1 d−1, 3.5 d−1, 3.75 d−1, 4.0 d−1, 5.0 d−1 and 5.5 d−1, respectively.
In the case of Re = 0.8 (simulated with θ = 1.1 d−1), we allowed for
eight variants instead of seven.
4.7. Parameter values
For all simulations, we used parameter values from table 1. Viral
parameters taken derived from a nonlinear mixed-effect model
fitted to human viral load data as described in [31]. Some par-
ameters are changed within their standard deviation to allow
variability in the viral dynamics including the peak viral load
and the duration for which an individual maintains infectious
levels of viral loads. Transmission and contact parameters were
estimated in that work by comparison to empirically observed
individual Re and serial interval histograms as well as mean Re

across individuals (R0∈ [1.4 2.5]) and mean serial interval across
individuals (SI∈ [4.0 4.5]) early during the pandemic [34,35,54–56].
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