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Subject-specific mathematical models for prediction of physiological parameters such
as blood volume, cardiac output, and blood pressure in response to hemorrhage have
been developed. In silico studies using these models may provide an effective tool
to generate pre-clinical safety evidence for medical devices and help reduce the size
and scope of animal studies that are performed prior to initiation of human trials. To
achieve such a goal, the credibility of the mathematical model must be established
for the purpose of pre-clinical in silico testing. In this work, the credibility of a subject-
specific mathematical model of blood volume kinetics intended to predict blood volume
response to hemorrhage and fluid resuscitation during fluid therapy was evaluated.
A workflow was used in which: (i) the foundational properties of the mathematical model
such as structural identifiability were evaluated; (ii) practical identifiability was evaluated
both pre- and post-calibration, with the pre-calibration results used to determine
an optimal splitting of experimental data into calibration and validation datasets; (iii)
uncertainty in model parameters and the experimental uncertainty were quantified for
each subject; and (iv) the uncertainty was propagated through the blood volume kinetics
model and its predictive capability was evaluated via validation tests. The mathematical
model was found to be structurally identifiable. Pre-calibration identifiability analysis
led to splitting the 180 min of time series data per subject into 50 and 130 min
calibration and validation windows, respectively. The average root mean squared
error of the mathematical model was 12.6% using the calibration window of (0 min,
50 min). Practical identifiability was established post-calibration after fixing one of the
parameters to a nominal value. In the validation tests, 82 and 75% of the subject-
specific mathematical models were able to correctly predict blood volume response
when predictive capability was evaluated at 180 min and at the time when amount of
infused fluid equals fluid loss.

Keywords: subject-specific, model credibility assessment, workflow, model validation, fluid resuscitation,
mathematical model
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INTRODUCTION

Subject-specific mathematical models may be regarded as
mathematical models that can be adapted to each subject to
provide individualized predictions. Because such mathematical
models are tailored to each subject, they have the potential to
enable precision medicine particularly when they are utilized
in decision support systems applications where the therapy
decision recommendations need to be optimized based on
subject-specific physiology, as opposed to a population of
subjects (Neal and Bassingthwaighte, 2007; Marquis et al., 2018).
Additional applications of subject-specific mathematical models
beyond decision support include the design and evaluation of
autonomous therapy controllers (Bighamian et al., 2016a, 2018;
Mirinejad et al., 2019; Parvinian et al., 2019).

Subject-specific mathematical models can perform their
predictive purpose in various capacities. They have the potential
to augment clinical trials either by reducing the size of the
trial or to inform and optimize trial design (Faris and Shuren,
2017). A precursor to clinical applications of subject-specific
mathematical models is their use in pre-clinical safety evidence
generation where they can be used to build a cohort of in silico
subjects to complement and/or replace traditional animal studies
(Kovatchev et al., 2009; Jean-Quartier et al., 2018; Mirinejad
et al., 2019; Viceconti et al., 2020). They further enable rapid
prototyping and evaluation of new system designs potentially
without having to reperform animal studies. This method of
pre-clinical safety evidence generation is particularly helpful
when significant inter- or intra-subject variability is expected
but is difficult to capture in animal studies due to sample size
requirements leading to financial or ethical limitations.

The vision of replacing animal studies with in silico studies can
only be realized if the credibility of the mathematical models is
established for the particular purpose they are intended to serve.
Credibility is defined as the trust, based on all available evidence,
in the predictive capability of the mathematical model (ASME,
2018). Credibility assessment involves numerous activities
including model verification (confirming a computational model
is an accurate implementation of an underlying mathematical
model), model validation (comparison of mathematical model’s
predictions against real-world data), applicability assessment
(evaluating the relevance of validation activities for the intended
use of the mathematical model), as well as related activities
pertaining to model parameters including identifiability analysis
(for parameters calibrated to experimental data, determining if
the data is sufficient to constrain the parameters) and Uncertainty
Quantification (UQ) (determining the uncertainty in model
parameters and the resultant uncertainty in the outputs of
the mathematical model). Major challenges with demonstrating
credibility of subject-specific mathematical models include,
but are not limited to (1) ensuring the soundness of model
structure a priori, (2) reliably tuning model parameters to each
specific subject, a process known as model calibration, given
limitations in quantity and quality of experimental data, and
(3) quantifying uncertainty of mathematical model’s prediction
and experimental uncertainty to evaluate the mathematical
model’s predictive capability. Methods for overcoming these

challenges often resort to ad hoc and iterative mathematical
model development and evaluation processes which can be
inefficient. Therefore, it is desirable to utilize a systematic
workflow when evaluating subject-specific mathematical models
in the application area of interest. In this paper, we define
and apply such a workflow. The workflow focuses on activities
related to parameter identifiability, UQ, and model validation;
other credibility assessment activities such as verification and
applicability analysis are out of scope. As such, this work
includes a partial credibility assessment focused on model
validation and UQ.

One promising application of subject-specific mathematical
models focuses on fluid resuscitation therapy in response to
hemorrhage and fluid infusion, which has been investigated
extensively using animal models (Warner and Hahn, 2010;
Navarro et al., 2015; Norberg et al., 2016). However, there are
still open and important questions that need to be answered
to determine optimal fluid delivery to subjects in the case of
hemorrhage, especially in regard to the type, amount, and timing
of fluid delivery to be tailored to specific subjects (Navarro
et al., 2015). Several studies have leveraged the utility of subject-
specific mathematical models to predict physiological responses
such as change in blood volume (BV) or mean arterial pressure
(MAP) in response to fluid delivery (Bighamian et al., 2017, 2018;
Tivay et al., 2020). Furthermore, studies have been conducted
to use these mathematical models to guide autonomous therapy
of fluids (Jin et al., 2019). However, the ability to reduce or
replace animal studies hinges on the credibility of the proposed
mathematical models whose subject-specific predictions (e.g., BV
response to hemorrhage and fluid infusion) are utilized. Such
mathematical models are often demonstrated to be able to fit
the previously generated data used for parameter calibration,
but in general evidence for their overall predictive capability is
limited (Parvinian et al., 2019). In particular, it is important that
subject specific mathematical models are shown to be able to
predict physiological behavior beyond the information they are
built upon (Ljung, 2008; Batzel et al., 2013).

In this work, we define a step-by-step assessment workflow
for evaluating subject-specific mathematical models calibrated
to time-series data and apply it to investigate the credibility
of a previously introduced subject-specific BV kinetics model
(Bighamian et al., 2018). The BV kinetics model can be used for
the prediction of BV response to fluid infusion after episodes
of controlled hemorrhage in an ovine model. Table 1 overviews
the steps in our workflow with corresponding information
obtained from each step. The first step is to define the model
purpose and the question that the mathematical model should
answer. The second step is to evaluate the identifiability of
parameters a priori (i.e., global structural identifiability), that
is, whether the subject-specific parameters calibrated to data
from each subject can theoretically be uniquely determined
given the structure of the mathematical model assuming the
most informative and noise-free data. The third step involves
evaluating the quality of data to be used for calibration to
prospectively determine an optimal calibration window. This step
will determine how to split each subject’s experimental data into
calibration data and validation data, such that the calibration
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TABLE 1 | Step by step workflow followed for subject specific model
reliability assessment.

Steps Process step Question addressed by each step

1 Define the role of the model How will the model be used?

2 Global Structural
Identifiability Analysis

Can the parameters of the model
theoretically be uniquely identified
a priori using noise-free and
experimental data?

3 Pre-calibration Identifiability
Analysis

• Is the data set informative to allow
for identifiable parameters?
• Can the time series data for each

animal set be split to allow for
independent validation? If so, what
is the optimal calibration time
window?

4 Model Calibration • Is the model able to match the
experimental data when parameters
are calibrated?
• Do the calibrated parameters take

physiologically reasonable values?
• Are the confidence intervals of the

parameters within a physiologically
plausible region?

5 Post calibration
identifiability analysis and
uncertainty quantification

• Is the uncertainty in the identified
parameters bounded?
• What is the confidence interval of

the identified parameters?
• Does the confidence interval of the

parameters include values that are
physiologically plausible?

6 Experimental Data
Uncertainty Quantification

What is the uncertainty in the
experimental data to be compared with
model predictions?

7 Quantitative Validation and
Predictive Capability
Assessment

What is the predictive capability of the
model considering its purpose
accounting for model and experimental
uncertainty?

data provides sufficient information to determine subject-specific
parameters but there remains adequate data for testing the
mathematical models’ predictive capability using the validation
data. The fourth step is to proceed with model calibration and
optimize the parameters of the mathematical model for each
specific subject. The fifth step involves performing the post-
calibration identifiability analysis which enables UQ, in which
the uncertainty in the calibrated parameters is estimated. As
the penultimate step, we perform UQ on the experimental
data to enable the comparison of the mathematical model
predictions considering the propagated model uncertainty with
the experimental data that were not used in calibration—a
test of the predictive capability. For the BV kinetics model
this step is conducted at two physiologically relevant time
points in the course of fluid therapy: at the conclusion of
fluid therapy, and when the amount of fluid infused equals the
volume of fluid loss.

Overall, we introduce a cohesive process that connects
various steps of credibility assessment associated with the BV
kinetics model that are often scattered in previous published
work. For example, while UQ has been conducted for some
physiological models (Marquis et al., 2018), the non-trivial

question of structural identifiability has not been addressed in
previous studies of BV kinetics models. Furthermore, while
the performance of BV kinetics models has been evaluated
extensively using various measures of calibration fit (Parvinian
et al., 2019), to the best of our knowledge, such performance
has not been assessed on experimental data independent of the
parameter calibration process.

MATERIALS AND METHODS

Blood Volume Kinetics in Hemorrhage
and Fluid Resuscitation
In this work, we aim to evaluate the credibility of a 3-parameter
mathematical model of BV kinetics in response to hemorrhagic
blood loss and fluid infusion to serve as a case study (Equation 1):

4V̈B (t)+ Kp4V̇B (t)

=
[
U̇ (t)−V̇ (t)

]
+

Kp

1+ αu
U (t)−

Kp

1+ αv
V (t) (1)

where 4VB is the change in BV, U (t) and V (t) are fluid
infusion and hemorrhage rates, respectively, and the parameters
αu, αv, Kp are the ratio of volume gain between intravascular
and interstitial compartments, the ratio of volume loss between
intravascular and interstitial compartments, and the rate of
fluid shift between intravascular and interstitial compartments,
respectively. This mathematical model was previously published
in 3-parameter and 4 parameter variants (Bighamian et al., 2016b,
2018). In this work, we considered the 3-parameter BV kinetics
model. Furthermore, since the rate of urine output was negligible
compared to the rates of hemorrhage and fluid infusion, it was
not included as a model input for data fitting.

Animal Study Protocol
The experimental data used in this work were collected
retrospectively from 22 conscious sheep undergoing intravenous
blood loss and fluid infusion. The measurements included the
rates of hemorrhage and fluid infusion, urine output, and BV
(Figure 1). The data collection protocol was approved by the
Institutional Animal Care and Use Committee (IACUC) at the
University of Texas Medical Branch and is described in detail
elsewhere (Rafie et al., 2004). All 22 animals received lactated
Ringers (LR) solution. The duration of study for each animal
was 180 min. After the baseline data were recorded, an initial
hemorrhage (25 mL/kg) was performed over 15 min. Fluid
infusion was started 15 min after the end of the hemorrhage and
continued for 150 min. Second and third hemorrhage (5 mL/kg)
were performed 50 and 70 min after the start of the initial
hemorrhage, each of which lasted for 5 min. While hemorrhage
protocol remained constant across the subjects, fluid infusion was
varied based on predetermined rates and algorithms as described
in Rafie et al. (2004). In each animal, baseline BV was measured
via indocyanine green dye (ICG). Hematocrit, the ratio between
the red blood cell volume (RBCV) and BV, was measured before
and throughout the experiment at 5–10 min intervals and was
used to measure the fractional change in BV.
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FIGURE 1 | Model fluid input (A) and change in blood volume (B) for subjects 1 and 2.

Credibility Analysis of Mathematical
Model
As the first step, it is essential to prospectively define the role
of the mathematical model and the question it will be used to
address. In this work we have proposed to use the BV kinetics
model as a decision support tool to predict BV response to
hemorrhage and fluid infusion in animal subjects.

Pre-calibration Identifiability Analysis
Structural Identifiability Analysis
Structural identifiability analysis focuses on the soundness of
model structure independent of data quality. The goal of
structural identifiability analysis is to prove that it is theoretically
possible to identify unique model parameter values given the
planned model calibration data, assuming the data is noise
free. In this work, we leverage the Laplace transform approach
(Pronzalo and Walter, 1997) by virtue of the linearity of the BV

kinetics model and the relatively small number of parameters
involved therein.

Test of Data Quality Prior to Calibration
We used the singular value decomposition (SVD) to evaluate the
quality of the data to be used for calibration (Keesman, 2011).
The first step allowing for SVD to be leveraged was to convert the
mathematical model to linear regression form as in Equation 2:

4V̈B (t)−
[
U̇ (t)− V̇ (t)

]
=

[
Kp

1+ αu

Kp

1+ αv
Kp

]  U (t)
−V (t)
−4V̇B (t)

 , t = 1, · · · , N (2)

For each subject, the regressor matrix is a matrix with rows
corresponding to experimental measurements for U (t), V (t) and
4V̇B (t) at N distinct time instants, respectively. SVD was applied
to the regressor matrix for each subject to compute the three

Frontiers in Physiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 705222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705222 September 9, 2021 Time: 12:46 # 5

Parvinian et al. Credibility Assessment of a Subject-Specific Mathematical Model

singular values of the regressor matrix and the corresponding
principal directions as determined by the right singular vector.
If the SVD results demonstrate small singular values in the
direction of certain parameter(s) relative to the others (i.e.,
the regressor matrix is not of full rank and the estimation
problem is ill conditioned), consistently across all animals, this
indicates unidentifiability or low identifiability of the associated
parameter(s). Those parameters can then be set to physiologically
plausible constant values. In this case, we would reapply the SVD
to the new mathematical model in order to evaluate the data
quality for calibration of the remaining parameters.

Selection of Calibration Window
Next, the experimental data was split into calibration and
validation datasets based on the results of SVD analysis of the
regressor matrix. Specifically, a time Tc was identified based
on the magnitude of the singular values and their associated
principal direction as determined by the right singular vector,
and then data for the time interval [0 min, Tc] was used for
calibration, with the remaining experimental data [Tc, 180 min]
saved for model validation. It is important to select Tc with
consideration of the overall experimental protocol to enable
independent model evaluation under inputs and conditions that
were not included to the calibration process.

Model Calibration
Next, model calibration was performed, using only the data in
the range [0 min, Tc min] for each animal. The Levenberg–
Marquardt algorithm was used to solve the non-linear least
squares optimization problem in Equation 3 with a proportional
error model to account for the uncertainty associated with the BV
measurements (Aladangady et al., 2008):

P∗ =
{
α∗u, α

∗
v , K∗p

}
= arg minP

∣∣∣∣∣∣∣∣(1VB,m(P, t)−1VB,e(t)
|1VB,m(P, t)|

)∣∣∣∣∣∣∣∣
2

(3)

where4VB,m (P, t) is the model predicted change in BV at time t
using parameters P, and4VB,e (t) is the experimentally measured
change in BV at time t. The quality of fit was evaluated using the
root-mean-squared normalized error (RMSNE) as defined by:

RMSNE =
(
|4VB,e|

)−1

√∑N
i=1 (4VB,m

(
ti)−4VB,e(ti)

)2

N
(4)

Information that calibration results provide regarding model
credibility is limited. Successful calibration indicates that the
structure of the mathematical model fits the data. Calibration
does not provide information about generalizability or predictive
power for conditions other than those included in the
calibration dataset.

Post-calibration Identifiability Analysis and
Parameter Uncertainty Quantification
Identifiability of the parameters should be evaluated after
parameters have been estimated. The practical identifiability and
data quality tests in the pre-calibration step proposed in section

“Pre-calibration Identifiability Analysis”. serve as a necessary
but not sufficient condition for demonstrating parameter
identifiability. SVD only provides information regarding the
output sensitivity of subject-specific parameters but does not
discern relative from absolute identifiability.

In this step, we first visualized the cost function (see
Equation 3) contours in parameter space for each subject,
and then calculated the asymptotic 95% confidence region
of the calibrated parameters using the parameter covariance
matrix computed during the calibration stage (Pronzalo and
Walter, 1997). This enables visual determination of correlation
between parameters and the potential associated impact on
parameter identifiability. If the contour region is unbounded
in the direction of one particular parameter, resulting in an
unbounded confidence region, this indicates that that parameter
was practically unidentifiable (Raue et al., 2009), in which
case we fix it to a physiologically reasonable value and repeat
everything from Step 4.

We accounted for the uncertainty in the calibrated model
parameters by assuming the calibrated parameters for any subject
were multivariate normally distributed with covariance matrix
as calculated in Step 4. We propagated this uncertainty through
the mathematical model when running the validation simulations
(Monte Carlo with 10,000 samples). In subjects 2, 10, and
14 extremes of confidence regions resulted in physiologically
implausible Kp values (e.g., Kp = 0), These samples consisted
of 1.1, 1.7, and 3.5% of the total samples in subject 2, 10, and 14,
respectively, and were excluded from further analysis.

Experimental Uncertainty Quantification
In order for the validation results to be considered meaningful,
experimental uncertainty must be quantified and compared with
computational uncertainty. Uncertainty in the change in BV
measurements may be quantified by evaluating the standard
deviation of the baseline BV (BV0) which is based on ICG
measurement of plasma volume (PV0) and hematocrit (Hct0).
Since the animal study was not designed to have repeated
measurements of BV at multiple points during the course of
the experiment, the standard deviation of such measurements
cannot be determined based on the available data. While accuracy
of BV measurements for the ICG technique has been studied
against gold standards such as radiolabeled albumin technique
(Aladangady et al., 2008), published literature on repeatability or
reproducibility of BV measurement is scarce (Imai et al., 2000)
and few studies that have attempted it have focused on the specific
BV measurement technique used in our experimental study.
However, it is possible to extract BV measurement standard
deviation and quantify its proportionality to changes in BV
from published literature on hemodialysis studies (Aladangady
et al., 2008). Experimental uncertainty quantified based on this
reference, which utilized a method validated using the ICG
technique, yielded a proportionality constant of 0.2 between
measurements of change in BV and their standard deviation.

Model Validation
The above steps ensure that the parameters of the mathematical
model are reliable, and that their uncertainty is adequately

Frontiers in Physiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 705222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705222 September 9, 2021 Time: 12:46 # 6

Parvinian et al. Credibility Assessment of a Subject-Specific Mathematical Model

quantified, and propagated for quantitative comparison
with experimental uncertainty. We only then proceeded to
assess the predictive capability of the mathematical model
assuming the ultimate goal of the mathematical model is
to provide subject-specific prediction of changes to BV
response to hemorrhage and fluid resuscitation to support
pre-clinical safety assessment. Given this context of use, two
validation tests were formulated: (i) assessment of prediction
of responsiveness to fluid therapy at the conclusion of the
study (i.e., 180 min), in which the general responsiveness
of BV was defined by the rise of BV above normovolumia
(4VB,e = 0) in response to subject-specific fluid therapy
(i.e., irrespective of variability in fluid therapy); and (ii)
assessment of prediction of responsiveness to fluid therapy
defined by BV restoration to normovolemic state at subject-
specific time instant in response to cumulative fluid infusion
equal to cumulative hemorrhage. For each validation test, we
evaluated the probability that the mathematical model’s binary
classification of responsiveness/non-responsiveness was in
agreement with that observed experimentally.

RESULTS

Experimental Subject-Specific Results
Subject-specific experimental results are shown in Figure 1 for
two animal subjects. Subject-specific hemorrhage and infusion
protocols are shown in Figure 1A. Each subject received the same
volume of hemorrhage normalized by subject weight. However,
the input infusion profile delivered varied across subjects
depending on pre-determined experimental protocol (Rafie et al.,
2004). Figure 1B depicts the experimental measurement of
change in BV response to hemorrhage and infusion shown in
Figure 1A.

Pre-calibration Identifiability Analysis
Structural Identifiability
It can be shown using the Laplace transform method that the
mathematical model is globally structurally identifiable. The
proof is provided in Supplementary Material 1.

Pre-calibration Practical Identifiability Analysis and
Calibration Window
The main purpose of this step is to identify a calibration
window to allow for independent validation of the model and
second and to gain qualitative insight on relative order of
identifiability of the parameters. Results of the SVD analysis
are provided in Figure 2. After approximation of the right
singular vectors, the singular values’ principal directions were
generally aligned with the axes in parameter space; the first
(largest) singular value corresponded to Kp

1+αv
, the second to

Kp, and the third to Kp
1+αu

. The x-axis of the plots represents
the amount of experimental data used in constructing the
regressor matrix: t = 180 min means that the regressor
matrix used all the experimental data, t = 50 min means
that the regressor matrix used only the data up to 50 min.

Therefore, increasing data is used as t increases, which in
turn increases the singular values. The results reveal that
generally the order of identifiability of parameter is Kp

1+αv
>

Kp >
Kp

1+αu
which indicates that αv is better estimable (i.e., with

more accuracy) than αu and identifiability of Kp cannot be
directly compared with other parameters (see the “Discussion”
section for details). This is not to say which parameters are
identifiable but rather their relative identifiability. Based on
these results, we chose TC = 50 min, that is, the calibration
window as 0–50 min, because this was the smallest time
window containing both hemorrhage and fluid infusion and
having relatively large singular values for the majority of
subjects in the study. The motivation for choosing the smallest
possible time window for calibration is to leave the largest
possible time window (50–180 min) for model validation. An
alternative choice of calibration window of 0–80 min could
have been made based on the fact that singular values do
not increase substantially after 80 min. However, with this
choice there would be no hemorrhage in the validation window
(see Figure 1).

Calibration and Post-Calibration
Practical Identifiability Analysis
Table 2 lists the values of the identified parameters after
calibration to the 0–50 min data, and the corresponding RMSNE.
For all subjects except subjects 3, 13, and 16, αu was not
identifiable. This was confirmed by visualizing the cost function
contours in the neighborhood of the identified parameters
demonstrating an unbounded contour in the direction of αu (see
Figure 3A for example with subject 20) and bounded regions
containing identified values of αv and Kp (see Figure 3B).
For these subjects, the error function continues to decrease
as αu increases and no global minimum exists. For subjects
3, 13, and 16, a finite value of αu was found but αv was
found to be unidentifiable or Kp took values significantly
beyond cohort average. Since αu was unidentifiable for nearly
all subjects, it was set to 3 was calculated based on average
value of αu identified from four Ringer’s infusion protocols
reported in previous studies (Bighamian et al., 2016b). The
calibration process was then repeated for the two-parameter
model; results are provided in Table 3. With the two-parameter
model, calibrated αv and Kp within reasonable physiological
ranges and with physiological relevance were found for all
subjects except subjects 3 and 16. These subjects were considered
subjects for which the mathematical model fails (see section
“Discussion”) and were excluded from further analysis. The fitted
mathematical models closely matched the experimental data, as
seen in Figure 4 (see RMSNE column in Table 2 for quantitative
measure of fit).

Parameter Uncertainty Quantification
The 95% confidence regions for the calibrated model parameters
are plotted in Figure 5. The corresponding 95% confidence
intervals for each model parameter are listed in Table 3.
The uncertainty in each subject’s identified parameter
values varies considerably between the subjects; it is very
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FIGURE 2 | Entire cohort singular values for Kp
1+αv

, Kp, and Kp
1+αu

as determined by the approximation of the right singular matrix. Plot on the bottom right indicates
the experimental protocol used for data collection depicting timing of fluid hemorrhage and infusion. X-axis of the singular value plots relates to the amount of
experimental data under consideration, for example Tc = 50 min corresponds to considering all data between 0 and 50 min. The calibration window of 0–50 min was
selected because it was the largest time window that would allow for evaluation of model prediction in an independent data segment (i.e., 50–180 min) containing
both infusion and hemorrhage while still having relatively large singular values for majority of subjects in the study. Overall, it can be concluded that αv is more
identifiable than αu.

small for many animals, but it is considerable for others
(e.g., subject 7).

Uncertainty Propagation and Model
Validation
Figure 6 plot the results of each subject’s calibrated model
for the entire 180 min (see red dashed line), together with
the corresponding experimental data (triangles). The first
50 min corresponds to model calibration (the same data as
Figure 4), whereas the 50–180 min results represent model
validation. The parameter’s quantified uncertainty discussed
in section “Parameter Uncertainty Quantification” was also
propagated through the mathematical model using Monte
Carlo sampling (N = 10,000) to derive the uncertainty in
the model predictions. These are represented in Figure 6
as a 95% confidence interval in model output (red shaded
region) and can be compared to the 95% confidence
interval for the experimental measurements (blue shaded
region) which is based on the values discussed in section
“Model Validation”.

Finally, the results of the binary tests to evaluate the
mathematical model’s prediction of fluid responsiveness for
critical time points during therapy while accounting for the

uncertainty on both the prediction and the experiment are
presented in Table 4.

DISCUSSION

In this work, we have evaluated the credibility of a subject-specific
mathematical model of BV changes in response to hemorrhage
and fluid infusion, using a workflow that quantitatively and
systematically evaluates different aspects of the mathematical
model, including structural identifiability, calibration, and post
calibration parameter uncertainty. While it is quite common
for parameterized mathematical models to first be evaluated
qualitatively, our proposed process recommends specific pre-
and post-calibration steps for quantitative credibility assessment
of a mathematical model in a cohesive and unified workflow.
The need for this workflow arises from the importance of the
order of the steps taken toward establishing the credibility of
a mathematical model to avoid problems such as parameter
unidentifiability or absence of a validation window with sufficient
information to allow predictive capability evaluation in the latter
steps of model evaluation process. Both issues are commonly
faced in subject-specific modeling, as the experimental data used
for calibration are typically collected retrospectively and not

Frontiers in Physiology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 705222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705222 September 9, 2021 Time: 12:46 # 8

Parvinian et al. Credibility Assessment of a Subject-Specific Mathematical Model

TABLE 2 | Calibration Results for three parameter model.

Subject # αu [.] αv[.] Kp min−1 RMNSE%

1 inf 1.39 0.14 9.74

2 inf 0.53 0.11 11.26

3 −0.43 Inf 0.04 24.59

4 inf 0.86 0.13 3.93

5 inf 0.92 0.10 4.87

6 inf 2.40 0.11 25.14

7 inf 4.69 0.12 29.91

8 inf 1.71 0.07 14.55

9 inf 0.69 0.18 6.20

10 inf 0.50 0.06 10.21

11 inf 1.89 0.10 11.52

12 inf 3.14 0.06 12.93

13 0.30 1.11 0.67 22.65

14 inf 0.41 0.15 11.55

15 inf 1.08 0.11 10.00

16 2.32 0.57 0.70 5.42

17 inf 1.11 0.11 7.31

18 inf 1.97 0.17 12.15

19 inf 2.21 0.08 17.75

20 inf 1.66 0.10 9.82

21 inf 1.09 0.25 9.21

22 inf 0.96 0.12 7.33

Inf, infinity; that is, the solver failed to converge for this parameter. αu was found to
be unidentifiable for all parameters except for subject 3, 13, and 16. However, other
parameters in these subjects were calibrated to values beyond physiological range.

obtained from the protocols that were intended to inform a model
validation and credibility assessment.

As the first step toward evaluating the credibility of a subject-
specific mathematical model, the fundamental soundness of
model structure and whether it allows for unique parameter
identification should be assessed. This is because internal
structural inconsistencies may result in unidentifiable parameters
regardless of the quality of the data used for model calibration.
The test for structural soundness is known as structural or
theoretical identifiability (Pronzalo and Walter, 1997; Raue et al.,
2009). A model is structurally identifiable if for almost any P̃:

M (P) =M
(̃
P
)
⇒ P = P̃ (5)

where M denotes model structure, P and P̃ represent model
parameters. Under the assumptions that (i) the model structure
characterizes the modeled process faithfully and (ii) the
experimental data are rich, informative, and noise free, this test
asks whether model parameters calibrated with the data would be
unique (Pronzalo and Walter, 1997; Raue et al., 2009).

Global structural identifiability can be assessed using a
variety of methods including the Laplace transform, similarity
transformation, Taylor series, and state isomorphism approaches
(Chis et al., 2011). Numerical approaches can also be leveraged
for preliminary tests of local identifiability (Pronzalo and Walter,
1997). The choice of the method to demonstrate structural
identifiability largely depends on the model structure (i.e.,
linear-in-variables or parameters) and complexity. Each method

presents unique advantages and limitations. For example, the
Laplace transform approach leveraged in this work is suitable
for linear-in-variable models with small numbers of parameters
and is the least computationally intensive approach. On the
other hand, the Taylor series approach can be used for non-
linear models but often requires computationally intensive
procedures (Pronzalo and Walter, 1997). Our proof included
in Supplementary Material 1 demonstrated the mathematical
model is globally structurally identifiable, meaning it is
theoretically possible to design an experiment in such a way that
the resulting post-calibration parameters are unique and reliable.

Once the mathematical model passes the test for structural
identifiability, the quality of the experimental data for model
parameter estimation should be evaluated. This test is often
called the practical identifiability as it evaluates the influence
of data quality on the credibility of the model parameters to
be estimated. Ideally, one would design a targeted experiment
to enhance the quality of data obtained for the calibration
of a mathematical model at hand. There are methods for
experimental design criteria development based on the Fisher
information matrix (Batzel et al., 2013). In many cases, however,
practical limitations such as cost, time, and even potential
unethical conduct of these experiments prove prohibitive. It is
often desirable to utilize previously collected data as part of
clinical or animal investigations for model calibration. However,
because such data are not collected for calibration purposes,
their quality needs to be checked prior to the calibration of the
mathematical model. It is often desirable to qualify a subset of
data for reliable calibration particularly in the case of subject-
specific mathematical modeling where a portion of the data is
needed to define the parameters associated with each subject.
This enables independent assessment of the mathematical model
using the remaining data, as the ultimate test of predictive
capability of the mathematical model. Furthermore, depending
on the number of model parameters to be estimated and
the associated optimization method, model calibration can be
computationally expensive and take a long time to finish. In such
circumstances, the quality of data should be evaluated before
calibration commences, so that unidentifiable parameters can be
either eliminated (e.g., by model reduction techniques) or fixed at
appropriate values.

We leveraged SVD to gain insight on the information
content of the data specifically for the calibration and eventual
predictive capability assessment purposes. Our objective was to
optimally split time series data of a subject into a calibration
window and a validation window. The calibration window was
selected so that: (i) it would provide sufficient information to
maximize the identifiability of the model parameters; and (ii)
the remaining validation segment would include hemorrhage and
infusion inputs distinct from those included in the calibration
window to allow for evaluation of the mathematical model’s
predictive capability.

Utilization of SVD in this pre-calibration identifiability
analysis was successful in gaining such insight on relative
identifiability of parameters and selecting a suitable calibration
window. SVD was applied to the regressor matrix for the
entire duration of the experiment (T = 180 min in Figure 2).
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FIGURE 3 | Cost function visualization for the subject 20 for the three parameter model. (A) Cost function as a function of αu and αvat fixed Kp. The direction of
unbounded ellipses representing cost function contours demonstrates unidentifiability of αu. (B) Cost function as a function of Kp and αv at fixed αu values.

FIGURE 4 | Calibration results for the two parameter model.

For the duration of experiment, the singular values associated
with αv were larger than αu, indicating their relative order
of identifiability. This is potentially due to the experimental
protocol allocating the initial 15 min of the experiment to
hemorrhage only followed by 15 min of zero-input period before

infusion could start at 30 min. Identifiability of Kp could not
be directly compared with other parameters as the original
parameters involved in the SVD analysis were Kp

1+αv
,Kp, and

Kp
1+αu

. Identifiability of Kp was later confirmed as part of post
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FIGURE 5 | 95% confidence regions for the calibrated parameters using the two parameter model. Subjects 3 and 16 were excluded because calibrated
parameters were outside physiological range (see section “Discussion”).

TABLE 3 | Uncertainty Quantification of the parameters for two parameter model after fixing αu to 3.

Subject# αu[.] αv[.] Kp min−1 RMNSE% CIαv low CIαv high CI Kp low CI Kp high

1 3.00 1.40 0.14 9.73 1.05 1.75 0.07 0.22

2 3.00 0.47 0.13 12.42 0.31 0.64 0.00 0.27

3 3.00 inf 0.06 33.93 inf inf 0.01 0.11

4 3.00 0.75 0.16 5.50 0.68 0.82 0.12 0.21

5 3.00 0.81 0.13 6.00 0.71 0.91 0.08 0.17

6 3.00 1.81 0.13 25.37 1.30 2.32 0.03 0.23

7 3.00 3.20 0.16 30.78 1.52 4.89 0.00 0.32

8 3.00 1.35 0.09 15.87 1.11 1.59 0.06 0.13

9 3.00 0.68 0.19 6.27 0.56 0.81 0.07 0.31

10 3.00 0.43 0.07 10.61 0.23 0.62 0.00 0.15

11 3.00 1.76 0.11 11.71 1.17 2.35 0.05 0.18

12 3.00 2.29 0.07 15.91 2.15 2.44 0.06 0.09

13 3.00 1.44 0.18 18.41 0.99 1.90 0.02 0.34

14 3.00 0.35 0.21 13.13 0.19 0.51 0.00 0.47

15 3.00 0.94 0.12 11.31 0.75 1.14 0.06 0.19

16 3.00 0.59 0.59 5.49 0.53 0.65 0.30 0.88

17 3.00 1.05 0.12 7.80 0.81 1.30 0.06 0.18

18 3.00 1.85 0.19 12.47 1.50 2.21 0.10 0.27

19 3.00 2.10 0.10 19.12 1.04 3.16 0.02 0.17

20 3.00 1.51 0.11 10.57 1.22 1.80 0.07 0.16

21 3.00 1.03 0.27 9.86 0.86 1.21 0.10 0.44

22 3.00 0.91 0.13 7.12 0.73 1.10 0.06 0.20

The high and low values represent 95% confidence intervals for the calibrated parameters.
Subject 3 and 16 continued to have parameter values beyond reasonable physiological range.
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FIGURE 6 | Subject-specific model calibration and validation. Each figure represents a different animal (subjects 3 and 16 were excluded because parameters were
not identifiable for these subjects). Model was calibrated to experimental data between 0 and 50 min (model: green line, experiment: triangles). Model was then
simulated from 50 to 180 min (red dashed line) and can be compared against experimental measurements (triangles) (model validation). Shaded regions represent
95% confidence intervals.

calibration identifiability analysis. Based on the SVD results
and that the remaining hemorrhage inputs were at 50 and
70 min, a calibration window between 0 and 50 min was selected
and we proceeded to calibrate the mathematical model using
data in that window.

A quadratic cost function was used for non-linear least square
optimization for model calibration. This is consistent with the
choice of the cost function and optimization method for most
studies on the mathematical models for hemorrhage and fluid
resuscitation (Bighamian et al., 2016b, 2017). However, as stated
in the section “Model Calibration,” the cost function utilized in
our study assumed that the experimental noise was proportional
to the magnitude of the true change in BV. This assumption is
supported by published literature (Aladangady et al., 2008).

The resulting calibrated parameters (Table 2) demonstrate
that despite αu being associated with non-zero singular values
(i.e., the regressor matrix at 50 min having a full rank
for all subjects) this parameter is identifiable at TC = 180
(results not shown) but may be unidentifiable at TC = 50 min
for most of the subjects. Moreover, for the few subjects
for which αu was identified (subjects 3, 13, and 16), αv
was unidentifiable for subject 3 and the identified value
for Kp took values significantly beyond the cohort mean
for subjects 13 and 16. The calibration step was therefore
repeated after fixing αu to an average value of 3 based on
average value of αu identified from four Ringer’s infusion
protocols reported in previous works (Bighamian et al.,

2016b). Since subjects 3 and 16 continued to have implausible
parameter values, they were deemed as outliers and examples
of subjects for which the mathematical model fails to provide a
valid BV prediction.

We suspect that the presence of a physiological mechanism
currently unaccounted for in the mathematical model may have
resulted in its failure in these few subjects. Closer inspection of
the experimental protocol for subject 3 revealed that despite a
relatively small amount of infused fluid prior to TC = 50 min,
the BV was restored to baseline at this time. This could be
due to the activation of additional unmodeled compensatory
mechanisms responsible for fluid shift resulting in higher
sensitivity to fluid gain and lower sensitivity to fluid loss in the
vascular compartment compared with other subjects. This in
turn could have impacted the estimation of αv as by definition
this parameter is the ratio of fluid loss of intravascular and
interstitial compartments. For subject 16, the high Kp value could
be due to an unmodeled mechanism that influences fluid shift
between intravascular and interstitial compartments. In other
words, a physiological mechanism affecting balance of oncotic
and hydrostatic pressure such as lymphatic flow (Taylor, 1981;
Huxley and Scallan, 2011) could make rate of fluid loss different
than fluid gain. The Current mathematical model assumes fluid
shift between the compartments without consideration of fluid
shift direction, i.e., Kp is the same for intravascular fluid gain and
loss. As such, the model structure may not adequately estimate Kp
for this subject.

Frontiers in Physiology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 705222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705222 September 9, 2021 Time: 12:46 # 12

Parvinian et al. Credibility Assessment of a Subject-Specific Mathematical Model

TABLE 4 | Results of quantitative validation tests.

Subject Pagreement,180 T* (min) Pagreement,T* -

1 0.00 – n/a

2 1.00 96 1.00

4 1.00 – n/a

5 1.00 108 1.00

6 1.00 78 1.00

7 1.00 84 1.00

8 1.00 72 0.02

9 1.00 – n/a

10 1.00 – n/a

11 1.00 180 1.00

12 1.00 90 1.00

13 0.04 102 1.00

14 0.98 84 1.00

15 1.00 – n/a

17 1.00 174 1.00

18 0.00 174 0.00

19 0.04 177 0.04

20 1.00 – n/a

21 1.00 – n/a

22 1.00 – n/a

Pagreement,180 is the probability of the model and experiment both being greater
than 0, or both being less than 0, at t = 180 min. T* is the time at which
cumulative infusion was equal to cumulative hemorrhage (no such time exists for
some subjects). Pagreement,T * is the probability of the model and experiment both
being greater than 0, or both being less than 0, at t = T*.

Once calibrated parameters are obtained, their practical
identifiability should be further investigated to: (i) ensure post-
calibration uniqueness; and (ii) yield uncertainty in parameter
estimates. We first confirmed the identifiability of model
parameters using cost function contour plots for the three-
parameter model depicted in Figure 3, which confirms the
previous calibration and pre-calibration identifiability results by
showing unbounded contours in the direction of αu and bounded
contours for the other model parameters (i.e., αv and Kp are
identifiable). We also visualized contour plots for all subjects
using the two-parameter model, to verify they exhibited bounded
contours (results not shown).

The next set of results involves uncertainty quantification
of parameter estimates (Figure 5). The results show significant
variability in both size and direction of the asymptotic
95% confidence region amongst subjects, which is expected
considering the variability in subject-specific fluid infusion
profiles magnified by the inherent inter- and intra-subject
variabilities. Despite this variability, the identifiability results
previously stated in the pre-calibration step can be verified by
comparing the confidence intervals of the parameters (Table 3)
or the shape of the ellipsoidal region. Note that the UQ step
only involves the uncertainty in the calibrated parameters and
does not embody the complete uncertainty associated with the
model output because different sources of experimental error
such as errors in the actual blood withdrawal rate and infusion
rate were not simulated.

Propagation of uncertainty was carried out via Monte Carlo
parameter sampling based on the uncertainty quantified in the
previous step. Together with the proportionality constant of 0.2
(discussed in section “Experimental Uncertainty Quantification”)
associated with the standard deviation of the experimental
measurement, the 95% confidence intervals for both model
prediction and experimental measurements can be compared as
depicted in Figure 6. Overall, a qualitative comparison of model
prediction to experiment show varying degree of predictive
capability. Model predictions mostly aligned with experiments
in subjects who did not reach normovolumia in the course
of the therapy. There were instances of mathematical model
under predicting (subjects 1, 18, and 19) and over predicting
(subjects 13 and 14) the BV response. For quantitative validation
and predictive capability assessment, we were interested in the
segment of the time series independent of calibration, i.e., from
Tc = 50 min to T = 180 min. As such, two physiologically
relevant validation tests were developed at two critical times
within this window.

When replacement fluid is infused to subjects under
hemorrhagic shock, it is critical to avoid both under-infusion and
over-infusion with the goal of maintaining BV at an ideal level
which can be the subject’s normovolumic state (i.e., restoration to
baseline BV). As such, it is essential for the mathematical model
to be able to predict two physiologically relevant scenarios: (i)
whether fluid infusion regimen will result in the achievement
of normovolumic state at the conclusion of fluid therapy
(T = 180 min); and (ii) whether normovolumia is achieved at the
critical time when equal volume of fluid is infused compared to
blood loss. The binary validation test results indicate that model
predictions agree with the experimental results in 82% and 75%
of the subjects for scenario i and ii, respectively (Table 4).

For the first scenario, the mathematical model failed in
predicting volumetric state in 4 subjects (1, 13, 18, and
19). While for two subjects (1 and 19) the predictions were
drastically different from experimental results, the predictions
for the other two subjects (13 and 18) were very close to
the observed BV and missed the binary test by a small
margin. In fact, the small difference between predictions and
experimental results in these two subjects may not be deemed
physiologically significant.

The second scenario was evaluated in 12 subjects only, as the
rest of the subjects did not have protocols to allow for infusion
volume to ever equal the preset hemorrhage volume. In this
group, the mathematical model failed in three subjects (8, 18, and
19). For subjects 18 and 19, the time when the volume of infusion
equaled that of hemorrhage was very close to 180 min (174 and
177 min, respectively). Thus, for these subjects, this scenario does
not offer new information compared to the previous test and only
confirms the previous scenario results.

In this work, we have demonstrated the process of validating
a subject-specific BV kinetics model for the purpose of volume
status prediction and demonstrated the mathematical model’s
utility for this context of use. There are, however, a number
of limitations in our work both with regard to the individual
steps of the process as well as the overall approach, which are
discussed below.

Frontiers in Physiology | www.frontiersin.org 12 September 2021 | Volume 12 | Article 705222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-705222 September 9, 2021 Time: 12:46 # 13

Parvinian et al. Credibility Assessment of a Subject-Specific Mathematical Model

First, we evaluated the credibility of a simple subject-specific
mathematical model with few parameters. While the order of
credibility assessment steps is likely to remain the same, the
actual method used in each step may not be generalizable to
mathematical models of varying complexity and properties (e.g.,
non-linearity or time-varying behavior). Second, for some animal
subjects the study protocols did not allow for evaluation of model
performance at the time when cumulative infusion was equal
to cumulative hemorrhage. Furthermore, fluid responsiveness
in our work has been defined based on the changes in BV
measurements. In pre-clinical and clinical setting, measured
physiologic variables such as cardiac output or blood pressure are
normally used for assessment of fluid responsiveness. That said,
the clinical relevance of BV measurements and potential insight
they offer toward subject resuscitation management is well
documented (Manzone et al., 2007; Yu et al., 2011; Ramasawmy
et al., 2018). In addition, the post calibration identifiability
results may change based on the optimization scheme. While
we used a quadratic cost function, use of regularization methods
may improve practical identifiability of some of the parameters
(Tivay et al., 2020).

Lastly, the lack of experiments intended and designed for
model validation also often results in absent or incomplete
collection of information necessary for quantification of
experimental uncertainty. In addition to the neglected
accuracy specifications for instruments, data processing for
such experiments often fails to account for measurement
sensitivities for particular experimental parameters. Although
our experimental uncertainty quantification is justified
by the referenced literature which used a validated
measurement technique, we acknowledge that differences in
experimental conditions, subjects, and conduct could render
the derived proportionality constant inaccurate. Potential
mischaracterization of this value could alter the conclusions of
the validation test.

CONCLUSION AND FUTURE WORK

We have evaluated the credibility of a subject-specific
mathematical model for BV kinetics using a step-by-step
workflow. Based on this study, the mathematical model is
structurally identifiable. Practical identifiability with quantified
parametric uncertainty can be established for two model
parameters for the specific experimental protocol used for
parameter estimation. The BV kinetics model demonstrated
predictive capability in 82% and 75% of subjects at conclusion
of fluid therapy and at the time at which the amount of infused
fluid is equal to fluid loss, respectively. The broad applicability
and utility of the process followed to produce these results needs
to be evaluated on additional mathematical models of varying
complexity. In particular, future efforts should be focused on
utilizing the proposed workflow on the credibility assessment

of subject-specific mathematical models for cardiac output and
blood pressure responses to hemorrhage and fluid resuscitation
using prospectively designed animal experiments. Furthermore,
future work can be directed toward comparing the predictive
performance of the BV model with an autoregressive model
to derive insight on structural soundness of the BV model and
quantify the value of using a mechanistic modeling approach for
this application.
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