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The first officially registered case of COVID-19 in Brazil was on February 26, 2020. Since
then, the situation has worsened with more than 672, 000 confirmed cases and at least 36,
000 reported deaths by June 2020. Accurate diagnosis of patients with COVID-19 is
extremely important to offer adequate treatment, and avoid overloading the healthcare
system. Characteristics of patients such as age, comorbidities and varied clinical
symptoms can help in classifying the level of infection severity, predict the disease
outcome and the need for hospitalization. Here, we present a study to predict a poor
prognosis in positive COVID-19 patients and possible outcomes using machine learning.
The study dataset comprises information of 8, 443 patients concerning closed cases due
to cure or death. Our experimental results show the disease outcome can be predicted
with a Receiver Operating Characteristic AUC of 0.92, Sensitivity of 0.88 and Specificity of
0.82 for the best prediction model. This is a preliminary retrospective study which can be
improved with the inclusion of further data. Conclusion: Machine learning techniques fed
with demographic and clinical data alongwith comorbidities of the patients can assist in the
prognostic prediction and physician decision-making, allowing a faster response and
contributing to the non-overload of healthcare systems.
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1 INTRODUCTION

A new coronavirus with a high efficiency in infecting humans emerged in the Wuhan city (Hubei
Province, China) in December 2019. The disease, named COVID-19, is caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) being highly contagious (Jin et al., 2020; Sohrabi
et al., 2020). The virus spread quickly outside China and the World Health Organization (WHO)
recognized the outbreak as a pandemic in March 2020 (World health organization, 2020a). By June
2020, nearly seven million cases have been confirmed and more than 400, 000 deaths have been
reported from SARS-CoV-2 infection, reaching 216 countries (World health organization, 2020b).

Despite high transmissibility, the disease spectrum is diverse, ranging from asymptomatic cases to
extremely severe conditions. SARS-CoV-2 infection is characterized by fever, generalized weakness,
dry cough, headache, dyspnoea, myalgia, as well as leukopenia, lymphocytopenia, neutrophilia,
elevated levels of C-reactive protein, D-dimer, and inflammatory cytokines (Fu et al., 2020; Guan
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et al., 2020; Huang et al., 2020) and loss of smell and taste in the
early stage of infection (Menni et al., 2020). However, the status
can quickly evolve to acute respiratory distress syndrome
(ARDS), cytokine storm, coagulation dysfunction, acute
cardiac injury, acute kidney injury, and multi-organ
dysfunction if the disease is not resolved, resulting in patient
death (Li et al., 2020; Zhou et al., 2020).

Elderly people and those with comorbidities such as diabetes
and cardiovascular disease are more likely to progress to severe
conditions (Fu et al., 2020). Obesity has also been linked to an
increased likelihood of severe COVID-19 (Gao et al., 2020). In
this context, a three-stage classification system was proposed
according to the degree of severity of the disease (Siddiqi and
Mehra, 2020). The initial stage is characterized by nonspecific
clinical symptoms such as malaise, cough and fever. The
diagnosis can be made in a respiratory sample to detect the
presence of SARS-CoV-2 by RT-PCR and blood tests can reveal
lymphopenia and neutrophilia. The second stage is characterized
by viral lung disease and localized inflammation usually
associated with hypoxia, requiring hospitalization and
mechanical ventilation. However, there is a number of cases
that progress to a more severe third stage of the disease,
characterized by high levels of inflammatory biomarkers and
severe systemic inflammation. In this phase, the occurrence of
shock and generalized collapse of the organs is large and the
prognosis for recovery is poor.

So far, there is still not enough vaccine for all or even specific
therapeutic drugs for the treatment of COVID-19 (Sanders et al.,
2020). Therefore, quarantine and social distancing have been
recommended as a measure to reduce the rate of infection aiming
not to exceed the capacity of health systems to provide care.

Currently, COVID-19 is on the rise in Latin American
countries (Burki, 2020), whose health systems may not
support the care of all seriously infected people. Lack of beds,
ventilators in Intensive Care Units (ICUs) and Personal
Protective Equipment (PPE) by health care workers restrain
the treatment of severe cases. Faced with these challenges,
identifying those patients with hospitalization priority is a
crucial aspect in order to optimize care and promote a
reduction of deaths.

As of early June 2020, more than 672, 000 confirmed cases and
at least 36,000 deaths have been registered in Brazil (WHO, 2020).
Brazil has become the epicenter of the pandemic, which expands
to interior cities, most of which do not have ICUs.

The rapid spread of COVID-19 along with the slow
vaccination process and the lack of specific therapeutic
measures has accelerated the use of artificial intelligence and
machine learning on different fronts such as viral dissemination
pattern, rapid and accurate diagnosis, development of new
therapeutic approaches and identification of people most
susceptible to the disease (Alimadadi et al., 2020).

The aim of the present study is to make a prognosis or early
identification of patients at increased risk of developing severe
COVID-19 symptoms using an available database from the
Espírito Santo Brazilian State. Espírito Santo has an estimated
population of 4.06 million inhabitants (Brazilian Institute of Ge,
2020) and on May 30th, 2020 had registered 13, 690 confirmed

cases of COVID-19. Using machine learning techniques, a
classification problem can be solved aiming to predict the
disease outcome for positive COVID-19 patients, based on
individual information, in addition to comorbidities and
varied clinical symptoms. We show that it is possible to
predict the outcome of the individual’s condition with a ROC
AUC of 0.92, Sensitivity of 0.88 and Specificity of 0.82. This
process can be of great importance in helping decision-making
within hospitals, since resources are becoming limited every day.
Patients classified as having a more severe condition can be
prioritized in this case.

2 DATA AND METHODS

This is a retrospective cohort study that did not directly involve
patients and does not require approval by an ethics committee.
The database used is publicly available on the Espírito Santo state
portal (Government of the state o, 2020). Two sets of data are
used in our study, say the training cohort and the validation
cohort. The database was downloaded twice, on May 23rd, 2020
and May 30th, 2020. Information regarding 13, 690 patients who
tested positive for COVID-19 comprises the last database, along
with the outcome of each case. As the main objective of the
present work is to predict the disease outcome of patients infected
by the virus, only closed cases (due to death or cure) are used,
comprising 4, 826 and 3, 617 patients in the training cohort and
validation cohort, respectively. Additional information on
cleaning and preparing the data is provided below, followed
by the machine learning methods employed. All analyses were
performed using Python (version 3.6.8) and the machine learning
package scikit-learn (version 0.22.2.post1) along with imblearn
(version 0.4.3).

2.1 Data Cleaning and Preparation
The dataset includes individual basic information such as gender
and age range, symptoms, comorbidities and a recent travelling
history. A notification status of each entry in the database is said
to be closed or open, since the data is updated daily as new
information becomes available. Thus, only data whose status is
closed were considered, as they are those that have the outcome of
the case: cure or death. Cases whose outcome is unknown have
been disregarded.

The city of origin of the patients and the neighborhood of
residence are also available in the database. We considered that
this information would not be very relevant to the problem under
study, and we decided not to include such data in our datasets due
to its high variability in values and possible noise generation in
the experiments.

Therefore, based on the data available at the source, we end up
our datasets with the following information: confirmation
criteria, age range, gender, race/color, education, fever,
respiratory distress, cough, runny nose, sore throat, diarrhea,
headache, pulmonary comorbidity, cardiac comorbidity, kidney
comorbidity, diabetes comorbidity, smoking comorbidity, obesity
comorbidity, hospitalization, travel in Brazil and international
travel. All of these variables comprise categorical variables:
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confirmation criteria, age range, gender, race/color, education,
taking a value from a finite discrete set. On the other hand,
symptoms, comorbidities, hospitalization and travelling history

TABLE 1 | Demographic data and clinical characteristics of the study
populationTraining Dataset (Feb 29th - May 23rd).

All n (%) Cure n (%) Death n (%)

Confirmation Criteria 4,826 (100.00) 4,430 (91.79) 396 (8.21)

Laboratorial 4,676 (96.89) 4,287 (96.77) 389 (98.23)
Clinical Ep 138 (2.86) 132 (2.98) 6 (1.52)
Clinical 4 (0.08) 4 (0.09) 0 (0.00)
Unknown 8 (0.17) 7 (0.16) 1 (0.25)

Basic Information 4,826 (100.00) 4,430 (91.79) 396 (8.21)

Age range
0–4 years old 38 (0.79) 38 (0.86) 0 (0.00)
5–9 years old 22 (0.46) 22 (0.50) 0 (0.00)
10–19 years old 99 (2.05) 99 (2.23) 0 (0.00)
20–29 years old 692 (14.34) 687 (15.51) 5 (1.26)
30–39 years old 1,368 (28.35) 1,355 (30.59) 13 (3.28)
40–49 years old 1,117 (23.15) 1,088 (24.56) 29 (7.32)
50–59 years old 756 (15.67) 699 (15.78) 57 (14.39)
60–69 years old 372 (7.71) 283 (6.39) 89 (22.47)
70–79 years old 206 (4.27) 109 (2.46) 97 (24.49)
80–89 years old 112 (2.32) 35 (0.79) 77 (19.44)
90 years old or more 44 (0.91) 15 (0.34) 29 (7.32)
Gender
Male 2,232 (46.25) 2005 (45.26) 227 (57.32)
Female 2,594 (53.75) 2,425 (54.74) 169 (42.68)
Race/Color
Asian 214 (4.43) 185 (4.18) 29 (7.32)
White 1,543 (31.97) 1,438 (32.46) 105 (26.52)
Unknown 1,346 (27.89) 1,250 (28.22) 96 (24.24)
Indigenous 4 (0.08) 3 (0.07) 1 (0.25)
Brown 1,456 (30.17) 1,326 (29.93) 130 (32.83)
Black 263 (5.45) 228 (5.15) 35 (8.84)
Educationa

Illiterate 55 (1.14) 29 (0.65) 26 (6.57)
iES (1–4 grade) 134 (2.78) 98 (2.21) 36 (9.09)
cES (4 grade) 94 (1.95) 76 (1.72) 18 (4.55)
iES (5–8 grade) 168 (3.48) 128 (2.89) 40 (10.10)
cES (8 grade) 165 (3.42) 139 (3.14) 26 (6.57)
iHS 157 (3.25) 141 (3.18) 16 (4.04)
cHS 1,321 (27.37) 1,289 (29.10) 32 (8.08)
iHE 115 (2.38) 115 (2.60) 0 (0.00)
cHE 887 (18.38) 880 (19.86) 7 (1.77)
Unknown 1730 (35.85) 1,535 (34.65) 195 (49.24)

Hospitalization 4,826 (100.00) 4,430 (91.79) 396 (8.21)

Yes 479 (9.93) 249 (5.62) 230 (58.08)
No 3,249 (67.32) 3,128 (70.61) 121 (30.56)
unknown 1,098 (22.75) 1,053 (23.77) 45 (11.36)

Travelling History 4,826 (100.00) 4,430 (91.79) 396 (8.21)

Brazil
Yes 333 (6.90) 325 (7.34) 8 (2.02)
No 3,300 (68.38) 3,003 (67.79) 297 (75.00)
unknown 1,193 (24.72) 1,102 (24.88) 91 (22.98)
International
Yes 33 (0.68) 32 (0.72) 1 (0.25)
No 3,153 (65.33) 2,878 (64.97) 275 (69.44)
unknown 1,640 (33.98) 1,520 (34.31) 120 (30.30)

All n (%) Cure n (%) Death n (%)

Sympton 4,826 (100.00) 4,430 (91.79) 396 (8.21)

(Continued in next column)

TABLE 1 | (Continued) Demographic data and clinical characteristics of the study
populationTraining Dataset (Feb 29th - May 23rd).

All n (%) Cure n (%) Death n (%)

Fever
Yes 2,859 (59.24) 2,612 (58.96) 247 (62.37)
No 1867 (38.69) 1726 (38.96) 141 (35.61)

unknown 100 (2.07) 92 (2.08) 8 (2.02)
Respiratory Distress
Yes 1,243 (25.76) 966 (21.81) 277 (69.95)
No 3,492 (72.36) 3,376 (76.21) 116 (29.29)
unknown 91 (1.89) 88 (1.99) 3 (0.76)
Cough
Yes 3,104 (64.32) 2,849 (64.31) 255 (64.39)
No 1,625 (33.67) 1,492 (33.68) 133 (33.59)
unknown 97 (2.01) 89 (2.01) 8 (2.02)
Runny nose
Yes 1839 (38.11) 1768 (39.91) 71 (17.93)
No 2,890 (59.88) 2,572 (58.06) 318 (80.30)
unknown 97 (2.01) 90 (2.03) 7 (1.77)
Sore Throat
Yes 1,372 (28.43) 1,332 (30.07) 40 (10.10)
No 3,354 (69.50) 3,007 (67.88) 347 (87.63)
unknown 100 (2.07) 91 (2.05) 9 (2.27)
Diarrhea
Yes 593 (12.29) 561 (12.66) 32 (8.08)
No 4,131 (85.60) 3,777 (85.26) 354 (89.39)
unknown 102 (2.11) 92 (2.08) 10 (2.53)
Headache
Yes 2,201 (45.61) 2,136 (48.22) 65 (16.41)
No 2,523 (52.28) 2,202 (49.71) 321 (81.06)
unknown 102 (2.11) 92 (2.08) 10 (2.53)

Comorbidity 4,826 (100.00) 4,430 (91.79) 396 (8.21)

Pulmonary
Yes 214 (4.43) 166 (3.75) 48 (12.12)
No 4,509 (93.43) 4,168 (94.09) 341 (86.11)
unknown 103 (2.13) 96 (2.17) 7 (1.77)
Cardiac
Yes 895 (18.55) 683 (15.42) 212 (53.54)
No 3,831 (79.38) 3,656 (82.53) 175 (44.19)
unknown 100 (2.07) 91 (2.05) 9 (2.27)
Kidney
Yes 44 (0.91) 21 (0.47) 23 (5.81)
No 4,683 (97.04) 4,318 (97.47) 365 (92.17)
unknown 99 (2.05) 91 (2.05) 8 (2.02)
Diabetes
Yes 381 (7.89) 255 (5.76) 126 (31.82)
No 4,341 (89.95) 4,079 (92.08) 262 (66.16)
unknown 104 (2.15) 96 (2.17) 8 (2.02)
Smoking
Yes 82 (1.70) 45 (1.02) 37 (9.34)
No 4,640 (96.15) 4,290 (96.84) 350 (88.38)
unknown 104 (2.15) 95 (2.14) 9 (2.27)
Obesity
Yes 248 (5.14) 210 (4.74) 38 (9.60)
No 4,435 (91.90) 4,089 (92.30) 346 (87.37)
unknown 143 (2.96) 131 (2.96) 12 (3.03)

aiES � incomplete Elementary school; cES � complete Elementary school; iHS �
incomplete High school; cHS � complete High School; iHE � incomplete Higher
Education; cHE � complete Higher Education.
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are categorized among yes/no/unknown. Tables 1, 2 details the
dataset variables for all training and validation patients,
respectively, showing their distribution among the categories,

TABLE 2 | Demographic data and clinical characteristics of the study
populationValidation Dataset (May 24th - May 30th).

All n (%) Cure n (%) Death n (%)

Confirmation Criteria 3,617 (100.00) 3,396 (93.89) 221 (6.11)

Laboratorial 3,479 (96.18) 3,259 (95.97) 220 (99.55)
Clinical Ep 108 (2.99) 108 (3.18) 0 (0.00)
Clinical 12 (0.33) 11 (0.32) 1 (0.45)
Unknown 18 (0.50) 18 (0.53) 0 (0.00)

Basic Information 3,617 (100.00) 3,396 (93.89) 221 (6.11)

Age range
0-4 years old 30 (0.83) 29 (0.85) 1 (0.45)
5-9 years old 23 (0.64) 23 (0.68) 0 (0.00)
10-19 years old 67 (1.85) 67 (1.97) 0 (0.00)
20-29 years old 483 (13.35) 481 (14.16) 2 (0.90)
30-39 years old 943 (26.07) 937 (27.59) 6 (2.71)
40-49 years old 825 (22.81) 810 (23.85) 15 (6.79)
50-59 years old 597 (16.51) 575 (16.93) 22 (9.95)
60-69 years old 328 (9.07) 284 (8.36) 44 (19.91)
70-79 years old 181 (5.00) 130 (3.83) 51 (23.08)
80-89 years old 114 (3.15) 50 (1.47) 64 (28.96)
90 years old or more 26 (0.72) 10 (0.29) 16 (7.24)
Gender
Male 1701 (47.03) 1,580 (46.53) 121 (54.75)
Female 1916 (52.97) 1816 (53.47) 100 (45.25)
Race/Color
Asian 233 (6.44) 204 (6.01) 29 (13.12)
White 1,176 (32.51) 1,113 (32.77) 63 (28.51)
Unknown 699 (19.33) 660 (19.43) 39 (17.65)
Indigenous 5 (0.14) 5 (0.15) 0 (0.00)
Brown 1,249 (34.53) 1,176 (34.63) 73 (33.03)
Black 255 (7.05) 238 (7.01) 17 (7.69)
Educationa

Illiterate 65 (1.80) 47 (1.38) 18 (8.14)
iES (1–4 grade) 135 (3.73) 117 (3.45) 18 (8.14)
cES (4 grade) 75 (2.07) 69 (2.03) 6 (2.71)
iES (5–8 grade) 165 (4.56) 150 (4.42) 15 (6.79)
cES (8 grade) 173 (4.78) 160 (4.71) 13 (5.88)
iHS 146 (4.04) 136 (4.00) 10 (4.52)
cHS 971 (26.85) 947 (27.89) 24 (10.86)
iHE 88 (2.43) 87 (2.56) 1 (0.45)
cHE 604 (16.70) 599 (17.64) 5 (2.26)
Unknown 1,195 (33.04) 1,084 (31.92) 111 (50.23)

Hospitalization 3,617 (100.00) 3,396 (93.89) 221 (6.11)

Yes 306 (8.46) 210 (6.18) 96 (43.44)
No 2,496 (69.01) 2,388 (70.32) 108 (48.87)
unknown 815 (22.53) 798 (23.50) 17 (7.69)

Travelling History 3,617 (100.00) 3,396 (93.89) 221 (6.11)

Brazil
Yes 236 (6.52) 231 (6.80) 5 (2.26)
No 2,500 (69.12) 2,322 (68.37) 178 (80.54)
unknown 881 (24.36) 843 (24.82) 38 (17.19)
International
Yes 2 (0.06) 2 (0.06) 0 (0.00)
No 2,435 (67.32) 2,269 (66.81) 166 (75.11)
unknown 1,180 (32.62) 1,125 (33.13) 55 (24.89)

All n (%) Cure n (%) Death n (%)

Sympton 3,617 (100.00) 3,396 (93.89) 221 (6.11)

(Continued in next column)

TABLE 2 | (Continued) Demographic data and clinical characteristics of the study
populationValidation Dataset (May 24th - May 30th).

All n (%) Cure n (%) Death n (%)

Fever
Yes 2077 (57.42) 1928 (56.77) 149 (67.42)
No 1,478 (40.86) 1,406 (41.40) 72 (32.58)
unknown 62 (1.71) 62 (1.83) 0 (0.00)
Respiratory Distress
Yes 956 (26.43) 814 (23.97) 142 (64.25)
No 2,601 (71.91) 2,522 (74.26) 79 (35.75)
unknown 60 (1.66) 60 (1.77) 0 (0.00)
Cough
Yes 2,237 (61.85) 2096 (61.72) 141 (63.80)
No 1,317 (36.41) 1,238 (36.45) 79 (35.75)
unknown 63 (1.74) 62 (1.83) 1 (0.45)
Runny nose
Yes 1,249 (34.53) 1,212 (35.69) 37 (16.74)
No 2,305 (63.73) 2,122 (62.49) 183 (82.81)
unknown 63 (1.74) 62 (1.83) 1 (0.45)
Sore Throat
Yes 975 (26.96) 955 (28.12) 20 (9.05)
No 2,578 (71.27) 2,378 (70.02) 200 (90.50)
unknown 64 (1.77) 63 (1.86) 1 (0.45)
Diarrhea
Yes 465 (12.86) 450 (13.25) 15 (6.79)
No 3,087 (85.35) 2,882 (84.86) 205 (92.76)
unknown 65 (1.80) 64 (1.88) 1 (0.45)
Headache
Yes 1,628 (45.01) 1,588 (46.76) 40 (18.10)
No 1925 (53.22) 1745 (51.38) 180 (81.45)
unknown 64 (1.77) 63 (1.86) 1 (0.45)

Comorbidity 3,617 (100.00) 3,396 (93.89) 221 (6.11)

Pulmonary
Yes 168 (4.64) 145 (4.27) 23 (10.41)
No 3,385 (93.59) 3,189 (93.90) 196 (88.69)
unknown 64 (1.77) 62 (1.83) 2 (0.90)
Cardiac
Yes 726 (20.07) 602 (17.73) 124 (56.11)
No 2,830 (78.24) 2,734 (80.51) 96 (43.44)
unknown 61 (1.69) 60 (1.77) 1 (0.45)
Kidney
Yes 43 (1.19) 28 (0.82) 15 (6.79)
No 3,511 (97.07) 3,306 (97.35) 205 (92.76)
unknown 63 (1.74) 62 (1.83) 1 (0.45)
Diabetes
Yes 345 (9.54) 276 (8.13) 69 (31.22)
No 3,209 (88.72) 3,058 (90.05) 151 (68.33)
unknown 63 (1.74) 62 (1.83) 1 (0.45)
Smoking
Yes 60 (1.66) 50 (1.47) 10 (4.52)
No 3,491 (96.52) 3,281 (96.61) 210 (95.02)
unknown 66 (1.82) 65 (1.91) 1 (0.45)
Obesity
Yes 156 (4.31) 141 (4.15) 15 (6.79)
No 3,378 (93.39) 3,174 (93.46) 204 (92.31)
unknown 83 (2.29) 81 (2.39) 2 (0.90)

aiES � incomplete Elementary school; cES � complete Elementary school; iHS �
incomplete High school; cHS � complete High School; iHE � incomplete Higher
Education; cHE � complete Higher Education.
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as well as separated by the outcome (target variable), i.e., cure
or death.

Some of the variables have unknown values due to lack of
information. Instances with such a characteristic were kept in the
dataset as an unknown category, as there was no decrease in the
performance of the models due to their presence.

According to recent studies related to COVID-19, older age
and the presence of comorbidities are aggravating factors that can
contribute to the disease severity. In addition, the presence of two
or more clinical symptoms was considered important in the
COVID-19 severity (Wang et al., 2020a). Thus, in order to
add more knowledge to the dataset, additional variables were
developed, namely: 1) sum of the comorbidities presented by the
patient, 2) sum of the symptoms presented by the patient and 3)
indicative if the patient has more than 60 years old. These new
variables provide information that can contribute to predict the
outcome of a new COVID-19 patient. They are calculated based
on already existing variables from Tables 1, 2. Our final datasets
contains 24 independent variables and the target variable,
represented by the disease outcome1: cure or death.

Tables 1, 2 also present the distribution of the two classes, i.e., cure
and death. It can be seen that we have imbalanced data, as the number
of deaths corresponds only to 8.21 and 6.11% of the samples in the
training and validation datasets, respectively. This difference can be a
problem for machine learning models, making it difficult to predict
samples of the minority class. Strategies to deal with this situation are
often used, such as weighting and resampling (Santos et al., 2018).We
employed an oversampling strategy, increasing the number of death
samples in order to obtain a balanced dataset. A simple procedure
based on randomly picking samples with replacement was performed.

Figure 1 shows the correlation heatmap for the training
dataset variables. It can be observed in the last line that some
of the variables have a high correlation with the target variable,

i.e., the disease outcome. They include age, respiratory distress,
sum of commorbidities, hospitalization and age greater equal
60 years old. Similar correlations were found by Pourhomayoun
and Shakibi (2020) regarding age and chronic diseases.

2.2 Machine Learning Models
Machine Learning (Mitchell, 1997) is a research area which is
concerned with the question of how to construct computer
programs that automatically improve with experience.
Recently, many successful machine learning applications have
been developed. Machine learning algorithms have proven to be
of great practical value in a variety of application domains such as
medical domain. They are especially useful in problems where
databases may contain valuable implicit regularities that can be
discovered automatically, e.g., to analyze outcomes of medical
treatments from patient databases. A classification problem
consists of identifying to which of a set of categories a new
instance belongs, given a historical data used for training, which
contains instances whose category membership is known. This
type of problem is solved through supervised learning. In this
paper, some supervised machine learning algorithms have been
applied to a dataset having information from patients who tested
positive for COVID-19 aiming to create computational models
able to predict their disease outcome.

2.2.1 Logistic Regression (LR)
Logistic Regression (also called Logit Regression) is commonly
used to estimate the probability that an instance belongs to a
certain class. If the estimated probability is greater than 50%, then
the model predicts that the instance belongs to that class (positive
class), or else it does not (negative class). This turns LRmodel into
a binary classifier, however it can be generalized to support
multiple classes (Géron, 2017). A LR model calculates a
weighted sum of the input features (plus a polarization term),
but instead of generating the result directly, a sigmoid (or logistic)
function is applied. The sigmoid function (S-format) shows a
number between 0 and 1. Once the LR model has estimated the
probability that instance x belongs to the positive class, it can
easily make its prediction.

2.2.2 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis is a technique for calculating a
linear transformation. It takes into account class information for
calculating the transformation so that the separation between
classes is maximum in the new coordinate space. LDA is also
known as Fisher’s Linear Discriminant (Duda et al., 2000), due to
the work of R. Fisher. The transformation of LDA is calculated so
that the new coordinate system produces data with maximum
variance between classes and minimum intraclass variance. LDA
can be very effective in identifying large linearly separable
problems.

2.2.3 Naive Bayes (NB)
The Naive Bayes is an example of an induced classifier based on
strong and unrealistic assumption: all the variables are considered
to be conditionally independent given the value of the class
variable. Consequently, a NB classifier is automatically

FIGURE 1 | Variables correlation.

1The disease outcome is also referred to as a “class” throughout this text.
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achieved by only inducing the numerical parameters of the
model. To this end, only information about the variables and
their corresponding values are needed to estimate probabilities,
leading to a computational time complexity that is linear with
respect to the amount of training instances. NB is also space
efficient, requiring only the information provided by two-
dimensional tables, in which each entry corresponds to a
probability estimated for a given value of a particular variable.
According to Friedman et al. (1997), NB has provided good
results on several domains.

2.2.4 K-Nearest Neighbors (KNN)
The K-Nearest Neighbors algorithm is based on the concept of
neighborhood, in which the neighbors are similar. Thus, it is
possible to classify the elements of an n-dimensional space into K
sets. This parameter K represents the number of neighbors and it
is defined by the user in order to obtain a better classification.
Classification is calculated based on a vote of the K-neighbors
closest to each point (each instance of data or training example is
viewed as points in space). According to Peter Norvig (2013), the
classifier can get good results when there is lot of data in a low
dimension (domains with few variables). However, in large
dimensional spaces, usually the closest neighbors are distant.

2.2.5 Decision Trees (DT)
Classification and Regression Tree (CART) is an algorithm to train
Decision Trees (DT) (Géron, 2017). A decision tree returns a
response after executing a test sequence and it is considered one
of the most successful methods of machine learning (Peter Norvig,
2013). The CART algorithm works by first splitting the training set
into two subsets using a single feature k and a threshold tk. It searches
for the pair (k, tk) that produces the purest subsets (weighted by their
size). Once the CART algorithm has successfully split the training set
in two, it splits the subsets using the same logic, then the sub-subsets,
and so on, recursively. It stops recursing once it reaches the
maximum depth or if it cannot find a split that will reduce impurity.

2.2.6 XGBOOST (XGB)
XGBoost (eXtreme Gradient Boosting) is an implementation of
stochastic gradient boosting. This implementation is
computationally efficient with many options and is available as
a package for the main data science software languages (Bruce
and Bruce, 2017). The XGB library implements the gradient
boosting decision tree algorithm. It was designed to be highly
efficient, flexible and portable. Gradient boosting is an approach
where new models are created that predict the residuals or errors
of prior models and then added together to make the final
prediction. It is called gradient boosting because it uses a
gradient descent algorithm to minimize the loss when adding
new models. XGB provides a parallel tree boosting that solves
many data science problems in a fast and accurate way. This
approach supports both regression and classification predictive
modeling problems.

2.2.7 Support Vector Machine (SVM)
Support Vector Machine (SVM) is a supervised learning method
which became popular in some years ago for solving problems in

classification, regression, and novelty detection (Bishop,
2006). The SVM approaches the problem of finding one
solution that separate the classes exactly from the training
data set through the concept of the margin, which is defined to
be the smallest distance between the decision boundary and
any of the samples. SVM constructs a decision boundary
(maximum margin separator) with the greatest possible
distance to example points. The idea of SVM is to focus on
points more important than others that lead to the best
generalization. For this, a linear separation in hyperplane is
created, even if the data are not separable linearly in the
original input space, because they can incorporate the data
in a space of superior dimension, using kernel trick. The linear
dimension separator is actually nonlinear in the original space.

2.3 Evaluation Metrics
In this study, we evaluate the performance of each of the learning
models in terms of accuracy, Receiver Operating Characteristic
curve and area under the curve, precision, recall, Precision-Recall
curve and area under the curve, F1-score and finally the confusion
matrix. These metrics are detailed in the following.
1) Confusion Matrix: in a binary classification, the result on a test

set is often displayed as a two-dimensional confusion matrix
with a row and column for each class. Each matrix element
shows the number of test examples for which the actual class is
the row and the predicted class is the column. Good results
correspond to large numbers down the main diagonal and
small, ideally zero, off-diagonal elements (Witten et al., 2011).
The scheme of a confusion matrix is illustrated below.

TN � true negative, FP � false positive.
FN � false negative, TP � true positive

2) Accuracy: it is the ratio of the number of correct predictions to
the total number of samples. It works well when there are
equal number of samples belonging to each class. However,
accuracy is misleading for skewed class distribution since
correct predictions for the minority class can fully ignored.
It can be given by:

accuracy � TN + TP
TN + FP + TP + FN

(1)

3) Precision: also known as the positive predictive value,
precision is defined as the proportion of positive examples
that are truly positive. A precise model will only predict the
positive class in cases very likely to be positive. This metric can
be calculated by following formula:

precision � TP
TP + FP

(2)

predicted class
Cure Death

actual class Cure TN FP
death FN TP
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4) Recall: also known as sensitivity, is a measure of how complete
the results are. A model with high recall captures a large
portion of the positives examples, meaning that it has wide
breadth. It is calculated as:

recall � TP
TP + FN

(3)

5) F1-score: this metric seeks a balance between precision and
recall and represents an interesting metric when there is an
uneven class distribution. It is given by the harmonic mean of
precision and recall:

F1 � 2 × precision × recall
precision + recall

(4)

6) Receiver Operating Characteristic (ROC) curve: ROC curves
are a graphical technique for evaluating the performance of a
binary classifier at different classification thresholds. These
curves depict the performance of a classifier without regard to
class distribution or error costs. They plot the TP rate on the
vertical axis against the FP rate on the horizontal axis.

7) Precision-Recall (PR) curve: a precision-recall curve shows the
relationship between precision (positive predictive value) and
recall (sensitivity) for every possible cut-off. It represents an
alternative to a ROC curve and shows a good choice to
compare models when facing imbalanced datasets. The
main difference between ROC curves and PR curves is that
the number of TN results is not used to make a PR curve.

8) Area Under the Curve (AUC): AUC measures the entire two
dimensional area underneath an entire curve. Therefore, it
gives an aggregate measure of performance in a single value.
AUC ranges from 0.0 to 1.0; a model with predictions 100%
correct has an AUC of 1.0 while one whose predictions are

100%wrong gives an AUC of 0.0. We use AUC values for ROC
and PR curves in our experiments.

3 RESULTS

Our experimental design involves two main parts. The first,
named Experiment 1, consists of a series of repeated tests
using the training dataset, while the second, Experiment 2,
performs a final test by using both the training and validation
datasets.

The first experiment includes 4, 826 patients (46.25%male and
53.75% female), distributed in different age groups, educational
level, race/color, hospitalization and travelling history. Of the
total number of patients, 91.79% cured and 8.21% deceased.
Table 1 shows seven symptoms and six comorbidities present/
absent among those who cured or died. The second experiment
includes a new dataset containing 3, 617 patients (47.03% male
and 52.97% female) of which 93.89% cured and 6.11% died
(Table 2).

Both datasets present similar distributions among the different
variables’ categories. However, it is possible to observe the increase in
the number of confirmed (closed) cases, since the validation dataset
comprises only 7 days and has only 25% fewer samples than the
training dataset that corresponds to a period of 75 days. These
numbers reflect the rapid progress of cases in Brazil.

3.1 Experiment 1
Experiment 1 is developed to evaluate the performance of the
different prediction models under a series of repeated tests using
different partitions of the training dataset (Table 1). The idea
underlying this experiment is illustrated in Figure 2. A 70-30 split
is performed in the dataset through a random, but stratified
procedure. The 70-part is used for training by a 10-fold cross

FIGURE 2 | Experiment 1.
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validation, with oversampling applied only in the training folds (9
of them), generating the training results, i.e., an estimate of the
performance of the models. Once we have the trained models, the
30-part is used for validation, leading to the test results. This
procedure is repeated 33 times and the results are reported in
Figures 3, 4. Grid search was used in order to find the best hyper-
parameters for the models.

Figure 3 shows summarized training results for the seven
prediction models regarding accuracy, ROC AUC and PR AUC
metrics. A higher performance for the three metrics is achieved by
LR, LDA, XBG and SVMmodels, with ROC AUCmean values of
0.95, 0.95, 0.96 and 0.95, respectively (Figure 3B). On the other
hand, models KNN, DT and NB present a ROC AUC of 0.92, 0.91
and 0.91, respectively. In Figure 3C, we present the precision-
recall AUC, which does not consider the true negative results,
giving a higher importance to the minority class. The PR AUC
mean value is around 0.7 for the best models (LR � 0.70, LDA �
0.70, XGB � 0.72 and SVM � 0.70), while models KNN, DT and
NB have 0.58, 0.55 and 0.48 mean values. As mentioned before, in
this study the accuracy is not the best metric to compare the
different models. According to Figure 3A, LR, LDA, XBG and
SVM models achieve accuracy mean values of 0.89, 0.90, 0.91,
0.89, while for KNN, DT and NB we have 0.88, 0.87 and 0.86,
respectively. As we can see, although the accuracy values do not
present significant differences among the models, the other two
metrics (ROC AUC and PR AUC) make performance differences
more evident. The DT model has a lower robustness due to a
higher dispersion while the NB model presents the worse
performance.

In Figure 4, we show the summarized test results using the 30-
part from the split and the trained models. This evaluation aims
to check whether the models were able to learn from the data and
achieve good predictions with unseen data. A similar behavior is
observed for all metrics, keeping LR, LDA, XGB and SVM as the
best models. The accuracy remains high, with mean values above
0.89 for these models (Figure 4A), while the ROC AUC is around
0.95 (Figure 4B). A PR AUC of 0.7 (Figure 4C) on average is also
achieved by the test results. These results verify the learning
capacity of the models and the absence of overfitting, as there was
no significant drop in performance in the test results.

FIGURE 3 | Training results - algorithms comparison.

FIGURE 4 | Test results - algorithms comparison.

FIGURE 5 | Experiment 2.
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3.2 Experiment 2
The second part of our experimental design concerns a validation
test using new data from Table 2. For that, algorithms were
trained using all data from the training dataset, i.e., closed cases
included in the database until May 23rd, 2020 while prediction
was performed for the validation dataset. The main difference of
experiments 1 and 2 rely on the validation data being sequential
samples for Experiment 2, while in Experiment 1 validation sets

correspond to samples randomly selected from the whole dataset.
This temporal aspect may show importance since future
predictions will be made for new patients (sequential samples)
being tested positive for COVID-19.

The general conception of Experiment 2 is shown in Figure 5.
A training step is performed using the whole training dataset
through 10-fold cross validation and oversampling, producing
the training results. With the trained models in hands, a

TABLE 3 | Experiment 2 TrainingModels performance.

Model Accuracy ROC AUC PR AUC Precision Recall F1

LR 0.88 0.96 0.73 0.46 0.88 0.59
LDA 0.89 0.96 0.74 0.47 0.87 0.59
KNN 0.87 0.92 0.58 0.41 0.83 0.54
DT 0.80 0.93 0.59 0.38 0.90 0.52
NB 0.85 0.92 0.52 0.39 0.83 0.51
XGB 0.81 0.95 0.69 0.39 0.90 0.52
SVM 0.88 0.96 0.74 0.45 0.89 0.58

FIGURE 6 | Test results - algorithms comparison.

FIGURE 7 | Test results - confusion matrices.

TABLE 4 | Experiment 2 TestModels performance.

Model Accuracy ROC AUC PR AUC Precision Recall F1

LR 0.86 0.92 0.50 0.28 0.86 0.42
LDA 0.86 0.92 0.51 0.28 0.85 0.43
KNN 0.85 0.88 0.45 0.27 0.80 0.40
DT 0.82 0.90 0.50 0.24 0.87 0.38
NB 0.82 0.89 0.32 0.23 0.82 0.37
XGB 0.82 0.92 0.51 0.24 0.88 0.38
SVM 0.85 0.92 0.50 0.27 0.85 0.41
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validation step is developed, making predictions for the whole
validation dataset and leading to the final test results. Training
results are reported on Table 3 while final tests results are shown
through Figures 6, 7. Again, grid search was used in order to find
the best hyper-parameters for the models.

The training results of Experiment 2 are detailed in Table 3,
presenting the following metrics: accuracy, ROC AUC, PR AUC,
Precision, Recall and F1-score. All metric results are consistent
with the training results of the former experiment. Again, the best
models regarding ROCAUC and PRAUC are LR, LDA, XBG and
SVM. It is important to mention that the minority class has high
importance in our application, leaving the accuracy as a
secondary metric. One can note that although KNN and NB
models have high accuracy values, they present the worst recall
values.

On the analysis of the test results, it can be seen in Figure 6
the representation of the ROC curve (Figure 6A) and PR curve
(Figure 6B). Detailed results for the whole set of metrics are
shown in Table 4. Table 5 presents the best parameters used in
these final experiments. Comparing the ROC AUC values from
Table 3 and Figure 6A, a slight drop in values can be noted for
all models, with a decrease of 0.037 on average. This behaviour is
expected since we are using completely new data, but no
significant difference that indicates overfitting or a poor
learning step. Most of the models have a very close
performance, making it difficult to select one as the best
model. From Figure 6B, a greater difference among the
models can be noted for the PR AUC metric. Models KNN
and NB show a clearly underperformance compared to the other
models. In general, this metric shows an inferior performance in
the tests in relation to the training step for all models. This can
be due to the difference on the number of samples in the
minority class. While the training dataset has 8.21% of the
samples in death class, the validation dataset is even more
imbalanced, with only 6.11% of the samples belonging to
that class.

Moreover, it is important to mention that unlike ROC AUC,
whose baseline is 0.5 (random guess classifier), in PR AUC the
baseline is dependent on the application itself. In the case of this
work, a random estimator would have a PR AUC of 0.06 (6.11%
in death class, see the horizontal line in Figure 6B) and therefore,
values around 0.5 are definitely a substantial increase.

From Table 4 and Figure 6B, we can observe that although
the results show a high recall, they present a relatively low
precision. This means the minority class (death) is well detected
but the model also include points of the other class (cure) in it.
This fact is confirmed by the confusion matrices introduced in
Figure 7. We can note an expressive amount of false positives
samples, represented in the upper right corner. False positives
concern patients who cured but were wrongly classified as
deaths by the models. It is possible to note that all models
present a similar behavior regarding this wrong prediction.
Aiming to find an explanation for this behavior, we decided
to analyse the characteristics of these samples looking for
similarities.

Analysis of the characteristics of false positive patients shows
that such patients had at least one of the following critical
situations: > 60 years old, respiratory distress, some
comorbidity and hospitalization (see Table 6). In an attempt
to show that such patients may have been critical cases, Table 6
shows the percentage of patients who have the characteristics
most related to the chance of death according to the calculation of
odds ratio from Tables 7, 8.

Table 7 shows that the death chance is greater among
COVID-19 patients over 60 years old. Respiratory distress
and comorbidities such as kidney disease, diabetes, cardiac
disease and obesity, as well as smoking, increase the
likelihood of death from COVID-19. On the other hand,
runny nose, sore throat, diarrhea and headache were less
likely to occur in patients who deceased. The validation
cohort (Table 8) showed similar results, with the exception
of the fever symptom, which was more likely to occur among
patients who died compared to those who cured.

A brief review of other literature works is presented in the next
section along with a discussion on how this work can help in the
current scenario of COVID-19 in Brazil.

4 DISCUSSION

Prediction models of the prognosis for a given disease have the
main objective of supporting the physician’s decision-making
about what is the best measure of patient referral, assisting in the

TABLE 5 | Hyperparameter tuning in validation tests.

Model Parameters

LR C � 100, penalty � l2, solver � liblinear, multi_class � ovr
LDA solver � svd
KNN n_neighbors � 19, weights � distance, metric � euclidean
DT max_depth � 3
NB -
XGB max_depth � 3, n_estimators � 100, learning_rate � 0.01, subsample � 1
SVM kernel � rbf, C � 10, gamma � 0.0001

TABLE 6 | Critical conditions present in false positive patients.

Condition LR LDA KNN DT NB XGB SVM AVG

>60 years old 64.05 74.36 61.95 78.22 55.84 76.82 70.30 68.79
Respiratory Distress 59.30 51.69 54.68 36.30 35.70 37.44 51.49 46.66
Comorbidity 60.74 61.23 62.16 52.48 75.30 53.32 59.41 60.66
Hospitalization 34.30 33.05 29.94 34.65 20.64 34.04 34.46 31.58
At least one condition 100.00 100.00 98.34 100.00 90.52 100.00 100.00 98.41
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screening of patients at high risk of progressing to severe disease.
Artificial intelligence models aiming to identify risk factors for
prognostic prediction of severe COVID-19 have been developed
using age, clinical characteristics, laboratory tests and chest
imaging (Wang et al., 2020b; Chen et al., 2020; Gong et al.,
2020; Jiang et al., 2020; Xie et al., 2020; Yan et al., 2020).

A study using age, hypertension history and coronary heart
disease showed good discriminatory power (AUC � 0.83)
between COVID-19 surviving and non-surviving patients. The
inclusion of biochemical data increased (AUC � 0.88) the
discriminatory power (Wang et al., 2020b). Those results refer
to the validation cohort consisting of 44 patients.

Blood parameters were also used to select predictive
biomarkers of mortality through machine learning. Lactate
dehydrogenase (LDH), lymphocytes and high-sensitivity
C-reactive protein (hsCRP) proved to be good indicators for
early predicting the degree of COVID-19 severity, with >90%
accuracy (Yan et al., 2020).

A machine learning study involving a cohort of 214 non-
severe and 148 severe patients with COVID-19 found >90%
prediction accuracy for disease severity using symptom/

comorbidities data. The addition of biochemical data to
symptoms/comorbidities achieved >99% predictive accuracy.
Therefore, it was suggested that symptoms and comorbidities
can be used in an initial screening and the biochemical data
inclusion could predict the severity degree and assist in the
development of treatment plans (Chen et al., 2020).

Importantly, in relation to our study, the sample size in the
aforementioned studies was limited, since they were carried out
with data of the beginning of the pandemic. In fact, the sample
size can influence the robustness of the models performance.
Larger datasets provide a better training stage, potentially leading
to better performance in prediction.

Although some studies have pointed out changes in blood
parameters such as lymphopenia, neutrophilia and increased
lactate dehydrogenase concentration (Huang et al., 2020;
Kermali et al., 2020), as well as changes in the chest images
(Shi et al., 2020) as good indicators of the disease severity, these
data are not publicly available and were not included in our study
due to lack of access. In future studies we intend to include such
data and check if there is an improvement in models
performance. In view of the costs and difficulties of
performing laboratory and chest imaging exams for an
alarmingly increasing number of patients, our study proves to
be important in that it is able to differentiate those critically ill
patients who need ICU care using less complex approaches, that
is, age, symptoms and comorbidities at the time of screening.

Moreover, the deeper analysis of the characteristics of false
positive patients shows that such patients had at least one critical
condition related to a more severe disease. It is tempting to
speculate that, in a way, this percentage of patients predicted in
the model could be those with the most critical condition, but that
due to early and effective care were cured. This could even be a
positive aspect of the prediction models, since it is important to
identify severe cases which deserve special care. Unfortunately, it
is not possible to confirm such a hypothesis since the database
does not provide information to differentiate mild and severe
cases from those who have been cured. Additionally, odds ratio
results are similar to those reported by Chen et al. (2020) in severe
COVID-19 patients compared to non-severe patients,
emphasizing a high probability of complication in patients
with comorbidities.

Brazil has an unified health system, namely Sistema Único de
Saúde (SUS), that allows for almost universal health coverage across
the country, despite regional inequalities.With the growing number of
COVID-19 cases, the TeleSUS system (Ministry of Health Minist,
2020) was implemented onMay 2020 as a strategy to perform remote
preclinical health care and avoid unnecessary travel and the
exhaustion of on-site health services. In this context, our study
could also assist in screening those who may need early care or
hospitalization solely through reports of personal data, symptoms and
comorbidities. This model can be applied in other localities that have
overloaded healthcare systems. Moreover, this model can also help in
understanding the upcoming demand for ICU beds, staff and other
critical resources.

Finally, it is important to highlight that this study was based only
on a database from a State (Espírito Santo) of Brazil, requiring
application in other States, since regional variations can occur in a

TABLE 7 | Odds ratio for training dataset.

Condition OR 95% CI p

>60 years old 25.30 (19.83–32.34) <0.0001
Fever 1.16 (0.93–1.14) � 0.1835
Respiratory Distress 8.34 (6.64–10.48) <0.0001
Cough 1.00 (0.81–1.25) � 0.9710
Runny nose 0.27 (0.21–0.35) <0.0001
Sore Throat 0.26 0.18–0.36 () <0.0001
Diarrhea 0.61 (0.41–0.88) � 0.0090
Headache 0.21 (0.16–0.27) <0.0001
Pulmonary Disease 3.53 (2.51–4.96) <0.0001
Cardiac Disease 6.48 (5.22–8.05) <0.0001
Kidney 12.96 (7.10–23.60) <0.0001
Diabetes 7.70 (6.01–9.85) <0.0001
Smoking 10.08 (6.40–15.80) <0.0001
Obesity 2.14 (1.49–3.07) <0.0001
Hospitalization 23.88 (18.50–30.82) <0.0001

TABLE 8 | Odds ratio for validation dataset.

Condition OR 95% CI p

>60 years old 23.45 (16.71–32.91) <0.0001
Fever 1.51 (1.13–2.02) � 0.0053
Respiratory Distress 5.57 (4.18–7.41) <0.0001
Cough 1.05 (0.79–1.40) � 0.7159
Runny nose 0.35 (0.25–0.51) < 0.0001
Sore Throat 0.25 (0.16–0.40) < 0.0001
Diarrhea 0.47 (0.27–0.80) � 0.0054
Headache 0.24 (0.17–0.35) < 0.0001
Pulmonary Disease 2.58 (1.62–4.10) � 0.0001
Cardiac Disease 5.87 (4.43–7.77) < 0.0001
Kidney 8.63 (4.54–16.43) < 0.0001
Diabetes 5.06 (3.71–6.90) < 0.0001
Smoking 3.12 (1.56–6.25) � 0.0013
Obesity 1.65 (0.95–2.87) � 0.0730
Hospitalization 10.11 (7.42–13.77) < 0.0001
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country with continental characteristics such as Brazil. As future
works, we intend to evaluate other machine learning models such as
deep learning and other ensemble learning methods.
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