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Abstract

Background: Repeat elements are important components of most eukaryotic genomes. Most existing tools for
repeat analysis rely either on high quality reference genomes or existing repeat libraries. Thus, it is still challenging to
do repeat analysis for species with highly repetitive or complex genomes which often do not have good reference
genomes or annotated repeat libraries. Recently we developed a computational method called REPdenovo that
constructs consensus repeat sequences directly from short sequence reads, which outperforms an existing tool called
RepARK. One major issue with REPdenovo is that it doesn’t perform well for repeats with relatively high divergence
rates or low copy numbers. In this paper, we present an improved approach for constructing consensus repeats
directly from short reads. Comparing with the original REPdenovo, the improved approach uses more repeat-related
k-mers and improves repeat assembly quality using a consensus-based k-mer processing method.

Results: We compare the performance of the new method with REPdenovo and RepARK on Human, Arabidopsis
thaliana and Drosophila melanogaster short sequencing data. And the new method fully constructs more repeats in
Repbase than the original REPdenovo and RepARK, especially for repeats of higher divergence rates and lower copy
number. We also apply our new method on Hummingbird data which doesn’t have a known repeat library, and it
constructs many repeat elements that can be validated using PacBio long reads.

Conclusion: We propose an improved method for reconstructing repeat elements directly from short sequence
reads. The results show that our new method can assemble more complete repeats than REPdenovo (and also
RepARK). Our new approach has been implemented as part of the REPdenovo software package, which is available for
download at https://github.com/Reedwarbler/REPdenovo.
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Background
A repeat is one segment of DNA that appears multiple
times in the genome in identical or near-identical form.
There are many types of repeats such as transposable ele-
ments (TEs), tandem repeats, satellite repeats, and simple
repeats [1, 2]. Among these, TEs are perhaps the most
well-known. TEs can amplify themselves in the genome
using various mechanisms, typically involving RNA inter-
mediates. TEs are believed to constitute 25% to 40% of
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most mammalian genomes [1, 2]. In humans, the most
common TEs are Long Interspersed Elements (LINE-1s
or L1s), Short Interspersed Element (SINEs), and Long
Terminal Repeats (LTRs), comprising approximately 17%,
11% and 8% of the human genome, respectively. While
most of the TEs in humans are inactive now, some includ-
ing Alus, SVA, L1, and possibly HERV-K are believed to
be still active [3].

Many computational approaches have been developed
for repeat analysis. The most commonly used tools are
those based on curated repeat libraries such as Repbase
[4] and Dfam [5]. RepeatMasker [6] is the most widely
used tool of this type. It aligns genomic sequences to
known consensus repeat sequences to mask or annotate
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the genomic sequences. There are also tools designed
for constructing repeat libraries from reference genomes.
RepeatScout [7], PILER[8] and phRAIDER [9] all belong
to this type. One limitation of these tools is that they
all either require the reference genome or an existing
repeat library to call or analyze repeats. However, for
complex (e.g. highly repetitive) genomes or genomes
from some recently sequenced species, there are only
low quality assembled genomes available and often no
existing annotated repeat libraries. Thus, it is useful to
develop tools for analyzing repeats directly from short
reads, without the need for either reference genomes
or repeat library. RepARK [10] is one such tool. It first
runs k-mer counting and isolates highly frequent k-
mers. It then assembles the highly frequent k-mers to
construct the repeats. RepARK has been used to con-
struct repeats in recent publications (see e.g. [11]). One
major disadvantage of RepARK is that most constructed
repeats are fragmented or just pieces of the whole repeats.
Recently, we developed REPdenovo [12], a computa-
tional approach for constructing repeats directly from
short sequence reads. Comparing to RepARK, REPden-
ovo not only constructs more repeats, but also generates
more complete (i.e. longer) repeats. However, REPden-
ovo doesn’t work well for highly divergent or low copy
number repeats.

In the paper, we propose an improved method for recon-
structing repeat elements from short reads. Similar to
the original REPdenovo, our new method also finds and
assembles these highly frequent k-mers to form consensus
repeat sequences. Here are the two main improvements
over the original REPdenovo:

• Our new method uses more repeat-related k-mers
than the original REPdenovo for repeat assembly, and
can assemble longer consensus repeats.

• Our new method runs a randomized algorithm to
generate more accurate consensus k-mers than the
original REPdenovo. This improves the quality of the
assembled repeats.

Comparing to the original REPdenovo and RepARK, our
new method can construct more fully assembled repeats
in Repbase on both Human, Arabidopsis and Drosophila
data, especially for higher divergent, lower copy number
and longer repeats. We also apply the new method on
Hummingbird data, which has no existing repeat library.
Most of the repeats constructed by our new method
for Hummingbird can be fully aligned to PacBio long
reads. Many of these repeats are long. More than half of
the Hummingbird repeats are masked by RepeatMasker,
which suggests that our assembly works well. Moreover,
many of the assembled repeats are likely to be novel
because there are no matches in RepBase, which suggests

these may be present in only Hummingbird or its close
related species.

Method
Similar to the original REPdenovo, our new method
assembles consensus repeats directly from sequence
reads. The high-level procedure is shown in Fig. 1. In the
following, we first provide a brief description on the repeat
assembly procedure with frequent k-mers that is used by
the original REPdenovo. We then illustrate the key techni-
cal problems that make the original REPdenovo perform
poorly on highly divergent and low copy number repeats.
We present two approaches that are implemented by our
new method. These approaches allow better construction
of highly divergent or low copy number repeats.

Repeat assembly from frequent k-mers
For completeness, we provide a brief introduction on
repeat assembly from frequent k-mers. Repeats usually
have many copies in the genome. For low divergent and
high copy number repeats, k-mers generated from copies
of the same repeat at the same position will be identi-
cal with high probability. Thus the frequencies of such
k-mers will be higher than those of k-mers from non-
repetitive regions. Thus, with given cutoff (say n times
of the average k-mer frequency, where n can be viewed
as the copy number), these highly frequent k-mers from
repeats can be identified, while the less frequent k-mers
will be discarded since they are unlikely to come from
repeats. Now if we view the repeats as “genomes” and the
frequent k-mers are the “reads” as in genome assembly,
the repeats can be assembled from these frequent k-mers
using standard genome assembly tools such as Velvet [13].
This is the key observation of RepARK and the origi-
nal REPdenovo. However, in practice complete consensus
repeat sequences can rarely be assembled in this way. This
is because the variations on repeat copies and also read
errors make the repeat copies divergent from the consen-
sus. As the result, even for low divergent repeats, usually
only short contigs can be directly assembled. Figure 2b
shows one such situation. The improvement made by the
original REPdenovo is that it performs a second-round
assembly: it tries to assemble short contigs to form longer
consensus repeats based on reliable prefix-suffix matches
of the contigs. Refer to [12] for more details.

The difficulty of assembling highly divergent repeat
regions
The main problem with the original REPdenovo is that
it cannot fully assemble highly divergent or low copy
repeats. Even when a long repeat is overall of low diver-
gence, there may still be regions with high divergence
rate. In this case, the original REPdenovo also cannot
assemble the high divergent regions within a repeat. There
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Fig. 1 High-level procedure of improved repeat construction. Thick bars: genomic sequences. Yellow thick bars: repeat copies. Colored squares
within thick bars: mutations (substitutions and indels) within repeats. Thin bars: k-mers. There are six main steps. a K-mer counting for the reads. b
Find the highly frequent k-mers and k-mers with intermediate frequencies according to a user-specified cutoff on k-mer frequency. c Find
repeat-related k-mers by aligning those k-mers of intermediate frequencies to highly frequent k-mers. d Improve k-mer quality with a
consensus-based approach. e Assemble the improved k-mers. f Merge contigs that have reliable prefix-suffix overlap

are two reasons. First, when the repeat divergence rate
is high or the copy number is low for a region, k-mers
originated from the this region will likely be of low fre-
quency and thus are discarded. As a result, when repeat
assembly is performed, only fragments of repeats will be
obtained since k-mers from the highly divergent regions
are missing. Moreover, even though some k-mers from
highly divergent regions are present in repeat assembly,
it is still challenging to assemble whole repeats. This

is because contigs may break at regions with sequence
variations. In Fig. 2 we show two examples to illustrate
these two issues. First, we obtain highly frequent (at 10
times of the average k-mer frequency) 30-mers from real
reads of one human individual NA19239. Then we align
these 30-mers to the human consensus repeats released
in Repbase. Two alignment cases on repeats “LTR2B” and
“LTR10C” are shown in Fig. 2 through IGV [14]. The left
alignment is for “LTR2B” with length 490bp. Apparently,

Fig. 2 Illustration of two example repeats that are not fully constructed by the original REPdenovo. Highly frequent 30-mers of one human
individual NA19230 are aligned to the human consensus repeats in Repbase. The left part (a) shows the alignments on repeat “LTR2B”. Two gaps are
formed when 30-mers originated from highly divergent regions have low frequencies due to repeat copy divergence. The right part (b) shows the
alignments on repeat “LTR10C”. The colored bars are variations on copies. The assembled contigs are fragmented because the 30-mers are of highly
divergence
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there are two gaps with very low or no k-mer mapped,
which will cause the assembly of this repeat to have at
least 3 segments. The right alignment is for “LTR10C”
which has more variations (the colored bars). When there
are variations, genome assemblers e.g. Velvet [13] usually
construct contigs that are short and fragmented.

In order to assemble repeats with higher divergence
rates, we need to find more repeat-related k-mers that
originate from highly divergent repeat regions. In the fol-
lowing, we first describe a new method for finding such
less frequent repeat-related k-mers. We then use these
repeat-related k-mers to improve the quality of the assem-
bled repeats.

Mapping-based alignment for finding more repeat-related
k-mers
We now focus on assembling repeats that have higher
divergences and/or lower copy numbers than those con-
structed by the original REPdenovo. Many k-mers from
highly divergent regions may have relatively low fre-
quencies. These k-mers are then discarded and are not
included for repeat assembly. A main observation is that
these discarded repeat-related k-mers usually have high
sequence identity with some repeat-related k-mers with
high-frequency. Recall that k-mers with high frequencies
are likely to come from some repeats. Thus, if a k-mer is
similar to some highly frequent k-mer, this is an indication
that this k-mer is also related to some repeat. Therefore,
we can compare the sequences of all the discarded k-
mers with the highly frequent k-mers. If a discarded k-mer
has reliable prefix-suffix match with some highly frequent
k-mer, this k-mer should be kept for repeat assembly.
However, direct comparison of all pairs of lower frequency
and high-frequent k-mers using dynamic programming is
infeasible empirically. This is because the number of lower
frequency k-mers can be very large (usually in millions),
and there can also be many highly frequent k-mers.

To develop a practical method, we take the following
“mapping-based alignment” approach. The key idea is cre-
ating a “reference k-mer genome” by concatenating all
the high-frequent k-mers. We then view the less frequent
k-mers as “reads”. The reads mapping tool BWA [15] is
used to align these “reads” to the reference k-mer genome.
The mapped k-mers are kept for repeat assembly. This is
shown in step (c) of Fig. 1. This approach works because
we only want to find k-mers that have high sequence sim-
ilarity with some high-frequent k-mers. Our experience
shows that reads mapping tools work well for this purpose.
The main benefit of mapping-based alignment is that it
allows small insertions and deletions, and thus can find
more repeat-related k-mers. We only consider the lower
frequency k-mers that are of intermediate frequency (by
default three times or more over the read depth). This
not only speeds up the computation and also reduces false

positives. This is because k-mers from highly divergent
parts of repeats still tend to have frequencies higher than
average. BWA “mem” is used with option “-T” to set the
minimum score for the alignments. Since we want to avoid
false positives, we use no penalty for mismatch, gap open,
gap extension and mismatch, and set k − 5 as the min-
imum score by default for reads mapping. This step can
be performed iteratively if users want to construct more
fully constructed repeats. Note that this step may intro-
duce some unrelated k-mers and lead to false positives in
repeat assembly. Thus, there is a trade-off in determining
how many times this step is run. The mapped k-mers are
merged with the highly frequent k-mers and are used as
input of the next step.

K-mer polishing
As illustrated in Fig. 2b, k-mers from repeat copies with
variations can often only be assembled to form short con-
tigs. If there are only mismatches on the two k-mers from
the same position of two repeat copies, most positions
of the two k-mers are still the same. We call these two
k-mers “end-to-end” matched. Now suppose there is a sin-
gle inserted (or deleted) base at the beginning of a k-mer.
Then k-mers started from the insertion (or deletion) will
be “end-to-end” matched with the k-mer from the other
copy that is one base left (or right). “End-to-end” match
can be used to generate the consensus k-mers. Consensus
k-mers can be more reliable to use for repeat assembly for
highly divergent repeats.

Given the merged k-mers (highly frequent and also
the mapped intermediate frequent k-mers) generated by
mapping-based alignment, a randomized algorithm is
used to generate the “end-to-end” matches. For two k-
mers with length k, we randomly pick h bases from the
same positions of the two k-mers. If the chosen h-mers
are the same, then the two k-mers will be considered as
“end-to-end” matched. This procedure runs for n times
to guarantee the two “end-to-end” matched k-mers are
grouped together. Here, we require at least one match
between the two h-mers out of n times to group the two k-
mers. Given the values for n, k, h, the probability p of two
k-mers being grouped is:

p = 1 − (1 −
(k−e

h
)

(k
h
) )n

Here e is the allowed edit distance between two “end-to-
end” matched k-mers. By default, the value of e is set to
1, that is, we allow one mismatch, insertion or deletion in
one k-mer. This is reasonable because usually k is not large
(less than 100).

When matched k-mers are found, we use a weighted
voting method for constructing the consensus k-mer. For



Chu et al. BMC Genomics 2018, 19(Suppl 6):566 Page 13 of 97

each position, each k-mer votes for one of the four pos-
sible bases with weight f, where f is the frequency of the
k-mer. The base with maximum votes is chosen as the base
at that position. The maximum vote out of all positions is
considered as the final frequency of the consensus k-mer.
This step is implemented in the popular map-reduce way
for efficient processing: first we partition the k-mer file
into several parts, and then run the polishing step for each
part. Finally we merge the results of each partition.

Results and discussion
To evaluate the performance of the new method,
we compare it against the original REPdenovo and
RepARK on Human, Arabidopsis thaliana, and Drosophila
melanogaster data. These thress species are well studied
and have good quality of annotation, which can pro-
vide benchmark for our comparison. We use the repeat
libraries of these three species released in Repbase [4] as
the benchmark. Short sequence reads of one human indi-
vidual NA19239 from the 1000 Genomes Project [16] is
used. The read depth is around 6X with read length 100bp.
For Arabidopsis thaliana, the F1 sample released in [17] is
used with read depth 10X and read length 250bp. And the
Drosophila melanogaster data is downloaded from NCBI
(accession number SRR3939094) with read length 151bp
and read depth 120X. We compare the divergence rate,
copy number and repeat length of the constructed repeat
elements. To get the divergence rate and copy number
of repeats, we use UCSC annotations [18], which utilizes
copy numbers generated by RepeatMasker. We also apply
the new method to infer the repeat elements of Humming-
bird. There is no existing repeat library for Hummingbird,
but there are recently sequenced PacBio long reads [19]
which can be used to validate the constructed repeats.
For Hummingbird, we use the short sequence reads
released in the GeneBank (accession number SRR943146),
where the average coverage is around 20X with read
length 101bp.

Comparison with Human, Arabidopsis thaliana and
Drosaphila melanogaster data
We evaluate the performance of the two versions of REP-
denovo and RepARK by comparing the assembled repeats
from these tools with the consensus repeats released
in Repbase. There are 1,119, 525 and 238 consensus
repeats for Human, Arabidopsis thaliana and Drosaphila
melanogaster respectively. In the following, “hits” refers to
constructed repeats that are present in Repbase. We use
the following metrics previously used in[12] to compare
the two versions of REPdenovo to RepARK:

1. The number of Repbase hits with > 85% sequence
identity across the length of the Repbase consensus
repeat sequence.

2. Average Repbase coverage. For a Repbase hit, this is
the average fraction of the Repbase repeat covered by
the assembled sequence. We use the set of
non-overlapping assembled repeats that achieve the
largest coverage.

3. Average Repbase coverage by the longest assembled
repeat. One repeat in Repbase may be covered by
several constructed repeats. When calculating the
average coverage, we choose the longest one.

In Table 1 we show the detailed comparison of the three
methods on Human, Arabidopsis thaliana and Drosaphila
melanogaster data. Besides the three metrics, we also
show the number of repeats in Repbase that are par-
tially (no identity threshold requirement) constructed.
The results show that both versions of REPdenovo out-
perform RepARK on both the number of hit Repbase
repeats and the average covered repeat length. In com-
parison, the original REPdenovo fully constructs 89 (out
of the 220 hits), 11 (out of the 68 hits) and 32 (out of the
133 hits) repeats in Repbase for human, Arabidopsis and
Drosaphila respectively. And the new version of REPden-
ovo fully reconstructs 108 (out of the 332 hits), 24 (out of
the 102 hits) and 69 (out of the 177 hits) repeats in Rep-
base for Human, Arabidopsis and Drosaphila respectively.
Therefore, our new method significantly outperforms the
original REPdenovo in terms of the number of fully con-
structed repeats.

Note that for Human and Arabidopsis results, the Cavg
and Cm values for the original REPdenovo are slightly
larger than the improved version. This is mainly because
the new method reports much more repeats than the
original REPdenovo. Our experience shows that the new
method tends to construct copies of the same repeat with

Table 1 Comparison between the two versions of REPdenovo
and RepARK on Human, Arabidopsis thaliana, and Drosophila
melanogaster data

Species Methods N Nh N0 Cavg Cm

REPdenovo* 6192 108 332 0.61 0.49

REPdenovo 4648 89 220 0.66 0.55

Human RepARK 2046 1 168 0.34 0.21

REPdenovo* 808 24 102 0.42 0.31

REPdenovo 508 11 68 0.46 0.34

Arabidopsis RepARK 632 8 59 0.33 0.21

REPdenovo* 3644 69 177 0.83 0.61

REPdenovo 3031 33 133 0.67 0.49

Drosophila RepARK 2,787 26 133 0.66 0.44

REPdenovo*: the new method. N: the total number of repeats constructed. Nh and
N0 are the number of hit Repbase repeats with at least 85% and 0% similarity
respectively. Cavg : the average Repbase coverage which indicates the average
percent of a repeat in Repbase is covered by the constructed repeats. Cm : the
average Repbase coverage by the longest assembled repeat
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different variations and thus construct more repeats in
general than the original REPdenovo. We provide more
information in the Conclusions section.

Comparison between the two versions of REPdenovo
In Section “Method” we show the new method can find
more k-mers originated from the repeat regions than
the original REPdenovo. As a result, it can construct
not only higher diverged regions, but also less frequent
repeat elements than the original REPdenovo. As shown
in Fig. 3, there are a number of low divergent but low
copy number repeats that are only constructed by our
new method.

In Fig. 3, we show the comparison between the two ver-
sions of REPdenovo on the divergence rate and copy num-
ber of the constructed repeats. The bullet circle points
are the repeats constructed by both versions, while the
empty circle points are the repeats only constructed by
the new method. Note that 211 repeats (out of the 332
repeats) are shown in the figure. This is because out of
the 332 repeats only 211 can find the divergence rate and
copy number information from the UCSC annotations
(mainly because the IDs do not match between Repbase
and RepeatMasker). The results show that most of the
repeats only constructed by the new method have higher
divergence rates and are less frequent.

Repeat elements construction for Hummingbird
Our new method can be used to construct repeat ele-
ments for species that have no existing repeat libraries
or no high quality reference genomes. We apply our new
method on the Hummingbird data. 2406 repeats are con-
structed. Because there is no existing repeat library of
Hummingbird to compare with, we cannot directly val-
idate the constructed repeats. Generally, long reads are
long enough to cover most of the repeats which provides
a way to check whether the assembled repeats are real.
Thus, we run NCIB Blast on the constructed repeats to
the error-corrected PacBio long reads of Hummingbird.
Out of the 2406 repeats, 1617 are almost fully aligned
(with similarity larger than 85%). Among these, 1406 are
perfectly fully aligned. This indicates that most of the con-
structed repeats are likely to be real. In Fig. 4 we show
the length distribution of the 1617 constructed repeats.
Most of the repeats are shorter than 1500bp. There are 64
repeats longer than 2000bp.

To further analyze the constructed repeats, we run
RepeatMasker on the 1,617 repeats. In general, Repeat-
Masker relies on an external repeat library to mask the
repeats, which means it will not work for Hummingbird
which has no existing repeat library. However, homolo-
gous copies of repeats usually exist in multiple species.
In this study, we use the “Vertebrate (Other than below)”

Fig. 3 Comparison of the fully constructed repeats in Repbase for the two version of REPdenovo. Bullet circles: hit Repbase repeats constructed by
both versions of REPdenovo. Empty circles: hit Repbase repeats constructed only by the new version. Figure in the right-up corner is zoomed in the
red rectangle region. There are 154(out of all the 220) bullet circles and 57 empty circles. Most of these 57 ones fall in higher divergent and lower
copy number regions (the regions of blue rectangles)
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Fig. 4 Length distribution of the selected constructed Hummingbird repeats

from RepeatMasker as the DNA source to mask the con-
structed repeats. Out of the 1,617 repeats 928 are masked
and the rest 628 ones are unmasked. Detailed informa-
tion are shown in Table 2. Note that one repeat may
have several regions and the regions may be of differ-
ent repeat families. Thus one repeat may be reported for
several times with different regions and repeat families.
For the statistic in Table 2, the row marked as “Unique”
only counts those repeats with one unique masked repeat
family, while the row marked as “Dup.” allows one repeat
counted for more than once. Many of the repeats are
masked as “LINE”, which is supported by the known fact
that “LINE” repeats widely exist in vertebrate. We believe
the 628 unmasked repeats are possibly Hummingbird-
only or its close relatives, because they are of high fre-
quency and fully aligned to long reads but have no hits on
the “Vertebrate” general library.

Conclusion
In this paper, we propose an improved method for recon-
structing repeat elements directly from short sequence
reads. Our new method is able to collect more repeat-
related k-mers. Results on both Human, Arabidopsis and
Drosaphila data show that the new method can fully
construct more repeats in Repbase than the original REP-
denovo and RepARK, especially for repeats of higher

divergence rates and lower copy number. In Fig. 5, we
show the comparison of the two versions of REPden-
ovo on constructing one sample repeat “LTR2B”, which
is mentioned in section 3. The original REPdenovo gen-
erates three pieces of the repeat, while the new version
constructs the whole repeat.

We also apply the new method on Hummingbird
data and assemble 1,619 repeats that can be validated
from PacBio long reads. Many of these repeats are
likely to be novel (i.e. previously not present in Rep-
Base). We note that long sequence reads (e.g. PacBio
reads) may provide new data for repeat analysis. We
believe that our method can still be useful for repeat
analysis especially for longer repeats even when long
reads are available. For example, our method assem-
bles 64 Hummingbird repeats that are longer than
2,000 bp, which can be difficult to analyze even with
long reads.

The new method reports more repeats than the original
REPdenovo. There are two main reasons for this increase.
First, many repeats are of high divergence rate and many
constructed contigs are just fragments of one repeat. As
more repeat-related k-mers are used in assembly, many
previously uncovered regions are constructed, although
many are just fragments of the repeat. The other source
of more repeats by the new method is that many repeats

Table 2 Masking information of the 1617 long reads validated Hummingbird repeats

Category LINE SINE LTR Retroposon Satellite Simple_repeat Low_complexity rRNA Other

Unique 371 0 139 0 10 98 31 0 5

Dup. 557 6 244 0 19 216 52 1 81

For one repeat, RepeatMasker may report several hits depending on whether the repeat is composed of regions of different repeat types. “Unique” only counts those repeats
with one unique masked repeat family, while “Dup.” allows one repeat counted more than once
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Fig. 5 Comparison between the two versions of REPdenovo on constructing one sample repeat “LTR2B”. The old version generates three pieces of
the repeat, while the new version constructs the whole repeat

are just copies of the same repeat consensus. To eval-
uate how many constructed repeats are from the same
repeat consensus, we design the following copy cluster
algorithm: First, we check the pairwise similarity between
each two repeats, and if the similarity is larger then thresh-
old (by default 0.85), we view the two repeats are of the
same group. Then a union find set algorithm is used
to cluster the repeats. We apply the clustering on the
6,192 constructed repeats of human individual NA19239,
and 3,196 groups are reported. Therefore, the number of
constructed repeats can be greatly reduced when related
copies are removed.
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