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Transcriptional Regulation by Nrf2
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Abstract

Significance: Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that coordinates the basal and
stress-inducible activation of a vast array of cytoprotective genes. Understanding the regulation of Nrf2 activity
and downstream pathways has major implications for human health.
Recent Advances: Nrf2 regulates the transcription of components of the glutathione and thioredoxin antioxidant
systems, as well as enzymes involved in phase I and phase II detoxification of exogenous and endogenous
products, NADPH regeneration, and heme metabolism. It therefore represents a crucial regulator of the cellular
defense mechanisms against xenobiotic and oxidative stress. In addition to antioxidant responses, Nrf2 is
involved in other cellular processes, such as autophagy, intermediary metabolism, stem cell quiescence, and
unfolded protein response. Given the wide range of processes that Nrf2 controls, its activity is tightly regulated
at multiple levels. Here, we review the different modes of regulation of Nrf2 activity and the current knowledge
of Nrf2-mediated transcriptional control.
Critical Issues: It is now clear that Nrf2 lies at the center of a complex regulatory network. A full comprehension
of the Nrf2 program will require an integrated consideration of all the different factors determining Nrf2 activity.
Future Directions: Additional computational and experimental studies are needed to obtain a more dynamic
global view of Nrf2-mediated gene regulation. In particular, studies comparing how the Nrf2-dependent net-
work changes from a physiological to a pathological condition can provide insight into mechanisms of disease
and instruct new treatment strategies. Antioxid. Redox Signal. 29, 1727–1745.
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Introduction

In our everyday lives, we are continuously exposed to
various chemical and physical insults, including drugs,

environmental pollutants, food additives, ultraviolet and
ionizing radiation. In addition to these external stresses, free
radicals and reactive oxygen species (ROS) are produced as
byproducts of both physiological and pathological cellular
processes occurring in the mitochondria, peroxisomes, and
endoplasmic reticulum (ER). At high levels, these toxicants
can cause damage to cellular components, including pro-
teins, lipids, and DNA (133). Cells normally counteract
the detrimental effects of ROS and electrophiles through
the activation of nuclear factor E2-related factor 2 (Nrf2;

Nfe2l2 gene name) (42). Initially identified through cloning
experiments as a factor that is able to bind the nuclear factor,
erythroid-derived 2/activator protein 1 (NF-E2/AP1) repeat
of the beta-globin gene, Nrf2 soon became the subject
of extensive research for its role in regulating the expres-
sion of many antioxidant and detoxification enzymes (58,
108, 164). Nrf2 activity and abundance are tightly regulated
at the transcriptional, post-transcriptional, and post-
translational level (49). In response to different activating
stimuli, Nrf2 is stabilized and translocates to the nucleus,
where it activates the transcription of its downstream targets
(49, 117). In this review, we discuss the different modes of
regulation of the Nrf2 network and highlight new emerging
aspects.

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
2Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York.

ª Claudia Tonelli et al., 2017; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the
Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

ANTIOXIDANTS & REDOX SIGNALING
Volume 29, Number 17, 2018
Mary Ann Liebert, Inc.
DOI: 10.1089/ars.2017.7342

1727



The Nrf2 Regulatory Network

Structure of the Nrf2 protein

Nrf2 (59, 108) belongs to the cap ‘‘n’’ collar (CNC) sub-
family of basic-region leucine zipper (bZIP) transcription
factors together with Nrf1 (18), Nrf3 (79), NF-E2 p45 subunit
(7), as well as the more distantly related factors BTB domain
and CNC homolog 1 and 2 (Bach1 and Bach2) (127). Nrf2 is
a modular protein with seven Nrf2-ECH homology domains
(Neh1–7), each of which fulfills distinct functions (Fig. 1) (49).
The Neh1 domain comprises the CNC-bZIP region that is
necessary for DNA binding and association with Nrf2 dimer-
ization partners, the small masculoaponeurotic fibrosarcoma
(sMaf) proteins (110). Of note, the amino acid sequence of this
domain, in particular the basic region, is highly conserved across
a wide range of species, underlining how crucial the transcrip-
tional activity is for Nrf2 function (38). The Neh2 domain
contains two highly conserved amino acid stretches, the DLG
and ETGE motifs, which mediate the interaction with Nrf2
negative regulator Kelch-like ECH-associated protein 1
(Keap1) and seven lysine residues targeted for ubiquitylation
and subsequent proteasomal degradation of Nrf2 (60, 102, 166).
The C-terminal Neh3 domain harbors transactivation activity
and functions in concert with the Neh4 and Neh5 domains to
activate transcription of Nrf2 target genes (71, 120, 143). The
Neh6 domain is a serine-rich region that is involved in the
negative regulation of Nrf2 stability independent of Keap1. It
contains two conserved peptide motifs, DSGIS and DSAPGS,
which are recognized by b-transducing repeat-containing pro-
tein (b-TrCP) (24). b-TrCP binds more efficiently to the Neh6
domain after glycogen synthase kinase-3b (Gsk-3b)-mediated
phosphorylation of the DSGIS motif and promotes the recruit-
ment of Skp1-Cul1-F-box protein (SCF) ubiquitin ligase com-
plex and consequent proteasomal degradation of Nrf2 (131, 132,
158, 183). The Neh7 domain is involved in the repression of
Nrf2 transcriptional activity by the retinoid X receptor a through
a physical association between the two proteins (175).

The Nrf2-Keap1-ARE stress–response pathway

Nrf2 abundance within the cell is tightly regulated by
Keap1, a redox-sensitive E3 ubiquitin ligase substrate adap-
tor (60). Keap1 was initially identified in a yeast two-hybrid
screen by using the Neh2 domain of Nrf2 as bait and was
confirmed as an Nrf2 repressor by showing that mouse em-

bryonic fibroblasts (MEFs) and livers from Keap1 knockout
mice express constitutively high levels of Nrf2 and Nrf2
target genes (60, 171). Under homeostatic conditions, two
molecules of Keap1 are bound to the Neh2 domain of Nrf2 at
the ETGE and DLG motifs (via their Kelch-repeat domain)
(Fig. 2) (166). Keap1 functions as an adaptor protein for the
Cul3 E3 ubiquitin ligase, which is responsible for the con-
tinuous ubiquitylation and degradation of Nrf2 (28, 37, 80,
192). Under unperturbed conditions, Nrf2 has a short half-
life of approximately 10–30 min; therefore, Keap1-mediated
high turnover of Nrf2 keeps Nrf2 basal levels extremely low
(118, 156). In response to oxidative stress, Keap1 is oxidized
at reactive cysteine residues, resulting in Keap1 inactivation,
Nrf2 stabilization and translocation into the nucleus (10, 32,
61, 92). Here, Nrf2 heterodimerizes with members of the
sMaf protein family (MafF, MafG, and MafK) (112). Genetic
evidence for the essential role of sMaf proteins as Nrf2
binding partners came from crossing sMaf knockout mice to
Keap1 knockout mice. Keap1-null animals show postnatal
lethality due to hyperactivation of Nrf2, which results in
aberrant proliferation of keratinocytes in the esophagus and
forestomach (171). This phenotype is reversed not only by
the concomitant disruption of Nfe2l2 (171) but also by the
simultaneous deletion of both MafG and MafF, thus identi-
fying the sMafs as essential Nrf2 dimerization partners (110).

The Nrf2-sMaf complex binds, in a sequence-specific
manner, to the antioxidant response element (ARE 5¢-
TGACXXXGC-3¢) in the promoter region of Nrf2 target
genes. The AREs were initially identified as cis-regulatory
elements for NADPH quinone dehydrogenase 1 (Nqo1) and
glutathione S-transferase (Gst) genes (36, 136, 161). Sub-
sequent studies expanded the list of proteins that are encoded
by the ARE gene battery including genes involved in drug
detoxification, antioxidant responses, NADPH regeneration
and regulation of metabolism (49). Nfe2l2 knockout mice
provided in vivo evidence that Nrf2 regulates the expression
of these antioxidant and cytoprotective genes (58, 164).

Nrf2-mediated response to xenobiotic
and oxidative stress

Nrf2 controls the expression of key components of the
glutathione (GSH) and thioredoxin (TXN) antioxidant sys-
tem, as well as enzymes involved in NADPH regeneration,
ROS and xenobiotic detoxification, heme metabolism, thus
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FIG. 1. Structure of the human Nrf2 protein. The Nrf2 protein comprises seven Neh domains. The Neh1 CNC-bZIP domain
is responsible for DNA binding and dimerization with the small Maf proteins; the Neh2 domain mediates the interaction with
Keap1 through the DLG and ETGE motifs and contains seven lysine residues that are targets of ubiquitylation; the Neh3, Neh4
and Neh5 domains are transactivation domains; the Neh6 domain is a serine-rich region that regulates Nrf2 stability; and the
Neh7 domain is involved in RXRa binding. bZIP, basic-region leucine zipper; CNC, cap ‘‘n’’ collar; Keap1, Kelch-like ECH-
associated protein 1; Neh, Nrf2-ECH homology; Nrf2, nuclear factor E2-related factor 2; RXRa, retinoid X receptor a.
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playing a fundamental role in maintaining the redox ho-
meostasis of the cell (Fig. 3) (42). Nrf2 tightly regulates GSH
levels by directly controlling the expression of the two sub-
units that constitute the glutamate-cysteine ligase (Gcl)
complex: the catalytic subunit (Gclc) and the modifier sub-
unit (Gclm) (109, 180). Gcl catalyzes the reaction of gluta-
mate with cysteine, the rate-limiting step in the synthesis of
GSH. Cysteine is generated from the reduction of cystine,
which is imported into the cell by the system xc

- (11, 22).
Nrf2 increases the supply of cysteine by directly activating
Slc7a11, the gene encoding the xCT subunit of system xc

-

(141). In addition to GSH synthesis, Nrf2 plays a role in GSH
maintenance. Nrf2 regulates the transcription of numerous
ROS-detoxifying enzymes such as glutathione peroxidase 2
(Gpx2) and several glutathione S-transferases (Gsts) (Gsta1,
Gsta2, Gsta3, Gsta5, Gstm1, Gstm2, Gstm3 and Gstp1) (19,

164). These enzymes use GSH to inactivate ROS, generating
oxidized glutathione (GSSG). GSSG is reduced back to GSH
by glutathione reductase 1 (Gsr1), another Nrf2 target, in an
NADPH-dependent manner (46). Through the coordinated
activation of GSH production, utilization, and regeneration,
Nrf2 ensures that intracellular levels of reduced GSH are
maintained. In addition to the regulation of GSH levels within
the cells, Nrf2 controls the thioredoxin (TXN)-based anti-
oxidant system. Nrf2 regulates the expression of TXN (48),
thioredoxin reductase 1 (Txnrd1) (139, 170), and sulfiredoxin
(Srxn1) (1), which are essential for the reduction of oxidized
protein thiols (48).

NADPH is an obligatory cofactor for many drug-
metabolizing enzymes and antioxidant systems, such as cy-
tochromes p450 (Cyp) enzymes and the Nrf2 target Nqo1
(49). Nrf2 supports NADPH production through the positive

FIG. 2. The classical view of Nrf2 acti-
vation and response. Under unstressed
conditions, Nrf2 is bound to Keap1, con-
stantly ubiquitylated by the Cul3 E3 ubi-
quitin ligase and subsequently degraded by
the proteasome. In response to stress, Keap1
is inactivated, resulting in Nrf2 stabilization.
Nrf2 translocates to the nucleus where it
heterodimerizes with the small Maf proteins,
binds to the ARE and activates the tran-
scription of its target genes. ARE, antioxi-
dant response element.

FIG. 3. The Nrf2-regulated cytoprotective defense system. Through the coordinated regulation of GSH and TXN
production, utilization and regeneration, NADPH regeneration, heme and iron metabolism, ROS and xenobiotic detoxifi-
cation, Nrf2 provides the main cytoprotective defense system in the cell. GSH, glutathione; HMOX1, heme oxygenase 1;
Idh1, isocitrate dehydrogenase 1; NAPDH, nicotinamide adenine dinucleotide phosphate; Nqo1, NADPH quinone dehy-
drogenase 1; Pgd, 6-phosphogluconate dehydrogenase; ROS, reactive oxygen species; TXN, thioredoxin.
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regulation of the principal NADPH-generating enzymes:
glucose-6-phosphate dehydrogenase (G6pd), 6-phosphogluconate
dehydrogenase (Pgd), isocitrate dehydrogenase 1 (Idh1), and
malic enzyme 1 (Me1), as shown in primary cortical astro-
cytes (91), lung cancer cells (107), mouse small intestine
(164), and mouse liver (184). Another important cytopro-
tective enzyme regulated by Nrf2 is heme oxygenase
(Hmox1), which catalyzes the breakdown of heme molecules
(5). Heme degradation results in the release of free Fe2+. Fe2+

catalyzes the Fenton reaction, which describes the conver-
sion of H2O2 to the highly damaging OH� radical (43). To
prevent OH� formation, in conjunction with Hmox1 upre-
gulation, Nrf2 induces the expression of the genes encoding
the components of the ferritin complex: the ferritin light
polypeptides (Ftl) and heavy polypeptides (Fth) (23, 184).
The ferritin complex oxidizes Fe2+ to Fe3+ and stores it within
its own structure, thus making it unavailable for the Fenton
reaction (126). Additionally, Nrf2 can also influence cellular
elimination of xenobiotics by controlling the expression of
many phase I and phase II drug-metabolizing enzymes (49),
as well as the multi-drug-resistance-associated transporters
(Mrps) (99, 188). In summary, Nrf2 increases the cellular
defense mechanisms against xenobiotic and oxidative stress
through the coordinated expression of numerous antioxidant
and detoxification genes. The Nrf2 cytoprotective response
has been elucidated in various mammalian tissues and cul-
tured cells. In addition, other model organisms, such as Da-
nio rerio, Drosophila melanogaster, and Caenorhabditis
elegans, have been shown to possess similar anti-stress sys-
tems to mammals, suggesting that the Nrf2 antioxidant
system represents an evolutionary conserved defense mech-
anism (38). Of note, C. elegans does not have an authentic
ortholog of Keap1 (14). Skinhead-1 (Skn-1), the Nrf2 or-
tholog, seems to be regulated at the protein level; however,
the mechanism is unclear (38). This suggests that the redox-
sensing function of Keap1 might have been acquired later
during evolution.

Emerging functions of Nrf2

In recent years, additional functions of Nrf2 have been
discovered that go beyond the classical view of Nrf2 as a
master regulator of antioxidant responses. For example, Nrf2
has been shown to regulate mitochondrial bioenergetics (54).
In murine neurons and embryonic fibroblasts, loss of Nrf2
decreases the mitochondrial membrane potential, ATP pro-
duction and respiration (54). In agreement with this obser-
vation, mitochondrial oxidation of the long-chain palmitic
acid and the short-chain hexanoic acid is diminished in
Nfe2l2 knockout MEFs (96). In addition, Nrf2 has been
shown to be involved in the unfolded protein response (UPR),
which is triggered by the accumulation of misfolded proteins
in the ER lumen (104, 176). In the absence of Nrf2, several
UPR-associated proteins show reduced expression in the li-
ver of mice on a high-fat diet (104). Furthermore, Nrf2 can
promote the removal of damaged or misfolded proteins by
regulating proteasome activity (69, 87, 88). Multiple pro-
teasome subunits are upregulated after treatment with Nrf2
inducers both in mouse tissues and in human fibroblasts (69,
87, 88). Nrf2 can therefore prevent the accumulation of
abnormal proteins that might otherwise interfere with cellular
functions (69, 87, 88, 104).

Moreover, Nrf2 has been shown to regulate intermediary
metabolism (29, 107). In human lung cancer cells, NRF2
regulates serine biosynthesis via activating transcription
factor 4 (ATF4) and phosphoglycerate dehydrogenase
(PHGDH) to support GSH and nucleotide production and
coordinately activates the pentose phosphate pathway (PPP)
to supply ribose for nucleic acid biosynthesis (29, 107). In
proliferating cells, the oxidative PPP and serine-driven one-
carbon metabolism are the main contributors to cytosolic
NADPH production (35). By controlling the PPP and thus the
fluctuations in NADPH levels that affect the oxidation of
peroxiredoxin, Nrf2 has been shown to influence the tran-
scriptional oscillations of the circadian genes in human cells,
mouse tissues and living flies (134). This provides an ex-
ample of how Nrf2 can influence other cellular processes
indirectly, through the regulation of redox homeostasis. In
normal stem cells, Nrf2-mediated redox control plays an
important role in maintaining stem cell quiescence (53, 63,
130, 167). In Drosophila intestinal stem cells (ISCs), con-
stitutive activation of cap ‘n’ collar isoform C (CncC), a
homolog of Nrf2, sustains quiescence by maintaining low
intracellular ROS levels (53). In response to paraquat-
induced stress, Keap1-mediated repression of CncC results in
the accumulation of ROS that promotes ISCs proliferation
and accelerates age-related degeneration of the intestinal
epithelium (53). In ISCs, the regulation of CncC works in the
opposite way compared to differentiated cells: CncC activity
is inhibited in response to stress in ISCs, whereas it is induced
in differentiated cells. The mechanism of CncC repression
in ISCs is still unclear, but it involves Keap1 (53). Similar
to ISCs, low intracellular ROS levels are required for the
maintenance of quiescence in mouse and human airway basal
stem cells (ABSCs) (130). After polidocanol-mediated injury
of the mouse tracheobronchial epithelium, changes in ROS
levels from low to moderate activate Nrf2, which induces the
Notch pathway to stimulate stem cell self-renewal and pro-
liferation for repair (130). In parallel, Nrf2 induces antioxi-
dant genes that return overall ROS levels to a low state and
this inhibits ABSCs proliferation, thus preventing hyperproli-
feration that would be detrimental for the repairing tissue (130).
Nrf2 also regulates proliferation and differentiation of mouse
hematopoietic stem cells under physiological conditions (167).
Nrf2 controls the expansion of the stem and progenitor cells and
supports their efficient homing by positively regulating C-X-C
chemokine receptor type 4 (Cxcr4) (167). In addition to stem
cell self-renewal, NRF2 participates in human embryonic stem
cells differentiation into neuroectoderm (63). These studies
provide examples of how redox control by Nrf2 can affect
different physiological processes through the regulation of
ROS levels. It is however unclear which are the targets of ROS
cytotoxicity that would explain the observed phenotypes. In
this regard, some light has been shed in pancreatic cancer,
where Nrf2 antioxidant activity is known to be important for
tumor initiation and progression (30). Cysteine residues con-
tain highly reactive thiol groups that render them sensitive to
changes in intracellular ROS levels. Alterations in the cellular
redox levels are therefore likely to affect the oxidation status
of reactive cysteine-containing proteins. The development of a
highly sensitive proteomic method to quantify changes in the
cysteine proteome showed that Nrf2-antioxidant activity pro-
motes pancreatic tumor maintenance by preventing cysteine
oxidation of the mRNA translational machinery to support
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efficient protein synthesis (21). This cysteine proteomic ap-
proach can now be applied to investigate the impact of changes
in ROS levels on additional cellular processes.

Modes of Regulation of Nrf2 Activity

Given the vast array of stimuli that activate Nrf2 and the
diverse cellular processes that it controls, the regulation of
Nrf2 activity is complex and multifactorial. Indeed, Nrf2
activation can be controlled at the transcriptional and post-
transcriptional level, through the regulation of protein sta-
bility, post-transcriptional modifications, and the availability
of binding partners (Fig. 4).

Transcription-associated regulation of Nrf2

Nfe2l2 transcription is regulated by several transcription
factors. Nrf2 is induced by aryl hydrocarbon receptor (AhR) in
response to polycyclic aromatic hydrocarbon exposure (106).
AhR binds as a heterodimer with AhR nuclear translocator
(Arnt) to the xenobiotic response element-like sequences in the
promoter of Nfe2l2 and transactivates its transcription (106).
Thus, xenobiotic ligands are able to activate the Nrf2 pathway by
inducing AhR. In addition, the NFE2L2 promoter contains a
binding site for nuclear factor (NF)-jB, which allows it to be
induced by inflammatory stimuli (138). NFE2L2 transcription is
indeed activated by lipopolysaccharide (LPS) treatment in hu-
man monocytes (137). High basal NRF2 activity in acute my-

eloid leukemia (AML) has been attributed to constitutive NF-
jB-mediated upregulation of the NFE2L2 gene and is believed
to be one cause of resistance to chemotherapy in AML cells
(138). In addition, NFE2L2 is induced by breast cancer sus-
ceptibility 1 (BRCA1) in human MCF10A mammary epithelial
cells on xenobiotic stress (67). Oncogenic Kras and B-Raf, Myc
(30), the phosphoinositide 3-kinase (PI3K)-Akt pathway (107),
and the Notch signaling pathway (173) have also been reported
to augment Nfe2l2 transcription, thus suggesting a possible
mechanism for the increased expression of Nrf2 in tumor cells.
Of note, the Nfe2l2 gene promoter contains ARE-like sequences,
providing a positive feedback mechanism to amplify Nrf2 ef-
fects (86). Indeed, in murine keratinocytes, Nrf2 has been shown
to bind these sequences and overexpression of the wild-type but
not a truncated form of Nrf2 lacking the N-terminal region
(amino acids 1–368, including the transactivation domains) in-
duces the activity of the isolated promoter-proximal region of
the Nfe2l2 gene in a luciferase reporter assay (86). Additional
evidence for the transcriptional regulation of Nrf2 came from
the observation that modifications of the Nfe2l2 promoter region
such as hypermethylation or single nucleotide polymorphisms
(SNPs) result in decreased Nrf2 expression; however, the sig-
nificance of these alterations awaits further study (101, 159, 191).

Post-transcriptional regulation of Nrf2

microRNAs (miRNAs) are short (20–22 nucleotides
long), single-stranded, noncoding RNAs that regulate gene
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FIG. 4. Mechanisms of regulation of Nrf2 activity. The mechanisms of modulation of Nrf2 activity include the
regulation of transcription, mRNA processing, translation, subcellular localization, protein stability, and availability of
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expression by sequence-specific binding with mRNA mole-
cules and consequent inhibition of translation or degradation
of the targets (181). miR-144 was the first miRNA identified
as an NRF2 negative regulator in reticulocytes of patients
with homozygous sickle cell disease (HbSS) (140). A subset
of HbSS patients with more severe anemia shows higher
erythrocytic miR-144 expression. Increased miR-144 is asso-
ciated with reduced NRF2 levels, decreased GSH regeneration
and impaired oxidative stress tolerance, thereby providing a
possible mechanism for the increased anemia severity seen in
these patients (140). Subsequently, other miRNAs have been
identified to control Nrf2 levels in the cell. Ectopic expression
of miR-28 in human MCF7 breast cancer cells (187); miR-27a,
miR142-5p, miR-144, and miR-153 in human SH-SY5Y
neuroblastoma cells (116); and miR-93 in human MCF10A
mammary epithelial cells and T47D breast cancer cells de-
creased NRF2 mRNA and protein levels (151). However,
validation in physiological conditions is still lacking.

Nrf2 can also be regulated through alternative splicing. In
lung and head and neck cancers, aberrant NFE2L2 transcript
variants missing exon 2, or exons 2 and 3, have been observed
(40). The NRF2 protein isoforms encoded by these splice
variants lack the KEAP1 interaction domain, thus resulting in
NRF2 stabilization and induction of the NRF2 program (40).
The impact of NFE2L2 exon skipping on tumorigenesis re-
mains to be evaluated. However, silencing of NRF2 in a
hepatocellular carcinoma cell line with heterozygous skip of
NFE2L2 exon 2 results in decreased cell viability (40).

Regulation of Nrf2 protein stability

Under unstressed conditions, Nrf2 is constantly targeted
for proteasomal degradation by the Keap1/Cul3 E3 ubiquitin
ligase complex (37, 60, 80, 192). The high turnover of Nrf2
provides a readily available pool of newly translated protein
that can be rapidly stabilized in response to stress by in-
hibiting ubiquitylation and proteasomal degradation. A de-
crease in the amount of Keap1 results in Nrf2 accumulation,
as evidenced by deletion of Keap1 in the mouse and knock-
down of Keap1 in human cells (31, 171). Epigenetic silencing
of KEAP1 by hypermethylation of its promoter causes an
increase in Nrf2 expression levels in lung (114, 177), prostate
(194), colorectal cancers (45) and gliomas (113), conferring a
growth advantage to the cancer cells. In addition, KEAP1 is
negatively regulated by miR-200a in breast cancer cells,
leading to increased NRF2 stabilization (33).

The interaction between NRF2 and KEAP1 can also be
disrupted by somatic mutations of the NFE2L2 and KEAP1
genes, as observed in carcinomas of the lung (123, 147,
150, 153, 190), gallbladder (146), ovary (84), breast (119,
152), stomach, liver (190), skin, larynx, and esophagus (77).
Moreover, several cytoplasmic proteins that interfere with
Keap1-Nrf2 interaction have been identified. These include
p62, also known as sequestosome 1 (SQSTM1), a ubiquitin-
binding protein that targets protein aggregates for degrada-
tion via the autophagic pathway (26, 76, 83, 90). The STGE
motif of p62 is similar to the ETGE motif of Nrf2 and
therefore p62 competes with Nrf2 for the binding with
Keap1. When autophagy is impaired, p62 levels are elevated,
leading to degradation of Keap1 and consequent Nrf2 stabi-
lization (26, 83, 90). Of note, p62 is an Nrf2 target gene, thus
creating another positive feedback loop (62). In addition to

p62, other proteins that bind Keap1 and interfere with Keap1-
Nrf2 interaction include partner and localizer of Brca2
(PALB2) (97), phosphoglycerate mutase 5 (PGAM5) (95),
dipeptidyl-peptidase 3 (DPP3) (47), and Wilms tumor gene
on X chromosome (WTX) (16), among others. Competing
proteins that disrupt the Keap1-Nrf2 association by physi-
cally interacting with Nrf2 have also been identified. The
cyclin-dependent kinase inhibitor p21 is induced by p53 in
response to oxidative stress and competes with Keap1 for the
binding to the DLG motif of Nrf2, thus compromising Nrf2
ubiquitylation and promoting the Nrf2-dependent antioxidant
response (20, 34). The DNA repair protein Brca1 can also
induce Nrf2 stabilization by binding Nrf2 and preventing
Keap1-mediated inhibition (41). Loss of Brca1 in mouse
premalignant mammary epithelial cells results in reduced
expression of Nrf2 and Nrf2-regulated antioxidant enzymes,
leading to accumulation of ROS (41).

Additionally, Keap1-mediated regulation of Nrf2 activity
can be modulated by post-translational modifications of Nrf2.
Protein kinase C (PKC) phosphorylates Ser40 in the Neh2
domain of NRF2, disrupting KEAP1-NRF2 association and
thus promoting NRF2 activation (55). This allows Nrf2 ac-
tivity to be induced by signals that induce PKC, such as
oxidative stress (155).

Keap1 is not the only negative regulator of Nrf2. Keap1-
independent degradation of Nrf2 was first noted when it was
observed that deletion of the ETGE and/or DLG motifs in the
Neh2 domain results only in a modest increase in its stability
under unstressed conditions (103). Further examination of the
Nrf2 protein sequence led to the identification of two highly
conserved regions within the Neh6 domain of Nrf2, deletion
of either of which increases the half-life of Nrf2 mutants that
lack the Neh2 domain in Keap1-null MEFs (24). These re-
gions contain two peptide sequences, the DSGIS and the
DSAPGS motifs, which are recognized by b-TrCP. b-TrCP
binding to Nrf2 follows Gsk-3b-mediated phosphorylation of
the Neh6 domain of Nrf2. b-TrCP functions as an adaptor for
the SCF E3 ubiquitin ligase complex to regulate proteasomal
degradation of Nrf2 (131, 132). Thus, Nrf2 activity could
potentially be enhanced by some kinases, such as extracel-
lular signal-regulated kinase (ERK), p38 MAP kinase
(MAPK), PI3K and PKC, through the inhibition of Gsk-3b
(66). Another ubiquitin-dependent system responsible for
Nrf2 degradation involves the E3 ubiquitin ligase synoviolin
(Hrd1) (185). During ER stress in the context of liver cir-
rhosis induced experimentally by administration of CCl4, the
Nrf2 antioxidant activity is repressed by Hrd1. Hrd1 interacts
with the Neh4 and Neh5 domains of Nrf2 though its C-
terminal domain and causes Nrf2 ubiquitylation and subse-
quent degradation. Hrd1-mediated regulation of Nrf2 is in-
dependent of both Keap1 and b-TrCP and prevents Nrf2 from
activating the antioxidant response and therefore counter-
acting the high levels of ROS produced during cirrhosis. Thus,
pharmacological inhibition of Hrd1 may represent a potential
therapeutic strategy for mitigating liver cirrhosis (185).

Regulation of Nrf2 subcellular localization

Hutchinson-Gilford progeria syndrome (HGPS) is a rare,
invariably fatal genetic condition characterized by premature
aging beginning in childhood (169). The disease is caused by
constitutive production of progerin, a mutant form of the
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nuclear architectural protein lamin A (39). HGPS cells
present a variety of cellular defects including nuclear dis-
tortion, loss of heterochromatin structure, altered patterns of
histone modifications and increased levels of persistent DNA
damage (39). Until a few years ago, the mechanism through
which progerin caused these morphological and epigenetic
alterations was unclear. Recently, it was shown that progerin
traps NRF2 at the nuclear periphery, thus impairing its ac-
tivity (85). NRF2 sequestration by progerin results in chronic
oxidative stress and contributes to HGPS aging defects,
which can be reverted by the reactivation of NRF2. Thus,
impairment of NRF2 activity is a driver mechanism of HGPS
and restoration of its function may represent a therapeutic
opportunity for HGPS patients (85).

Small Maf proteins

The regulation of Nrf2 activity is not limited to the control
of its abundance but can also be modulated by the availability
of its binding partners. As mentioned earlier, Nrf2 forms
heterodimers with the sMaf proteins and recognizes the
AREs in the genome (72). The sMafs (MafF, MafG and
MafK) are members of the bZIP family of transcription
factors: the basic domain binds DNA, whereas the leucine
zipper mediates homo- or hetero-dimerization with CNC
proteins and Bach proteins (68). The CNC and Bach proteins
cannot bind DNA on their own and require sMafs as oblig-
atory dimerization partners to exert their role as transcrip-
tional regulators (112, 127). The sMaf proteins lack the
transactivation domain and sMaf homodimers have been
shown to act as transcriptional repressors in overexpression
experiments (56, 78, 115). Thus, the sMaf proteins and their
binding partners form a complex network of interacting
transcription factors. Changes in the abundance or activity of
the participant molecules of the network can lead to major
changes in the regulation of gene expression (111).

sMaf genes expression is detected in various tissues, but
each sMaf gene has a distinct expression profile (124, 165). In
human adult tissues, MAFK mRNA levels are high in heart,
skeletal muscle, and placenta; whereas MAFG mRNA is
abundant in skeletal muscle and is moderately expressed in
heart and brain. Both are expressed in all hematopoietic cell
lines, including erythroid and megakaryocytic lineages (165).
In the mouse, MafK and MafG are expressed in most tissues,
albeit at different levels, whereas MafF gene expression is
restricted to the lung (124). The sMaf proteins show a high
degree of conservation among vertebrates, including human,
mouse, rat, chicken, and zebrafish, and a significant similarity
in the primary structure to each other (68, 74). The high
degree of similarity suggests that the sMaf proteins have
redundant activity and that the specificity is determined by
their expression pattern.

To dissect in vivo the specific functions of the different
sMafs, MafF, MafG, and MafK knockout mice were gener-
ated by deleting the entire coding sequence (124, 125, 145).
Gene targeting of MafF and MafK does not cause any
apparent phenotype (124, 125), while MafG-null mice ex-
hibit abnormal megakaryocyte differentiation and thrombo-
cytopenia accompanied by a late-onset neurological disorder
(145). MafK and MafG double knockout mice survive em-
bryogenesis, but they die postnatally (125). These mutant
mice develop more severe deficiencies in megakaryopoiesis

compared with MafG-null mice, specifically in proplatelet
formation, resulting in profound thrombocytopenia (125). In
addition, they present severe anemia accompanied by ab-
normal erythrocyte morphology and develop severe neuro-
logical disorders (73, 125). These observations indicate that
MafG and MafK have redundant functions, although MafG is
preponderant (73, 125). Mice deficient for Nfe2, another
member of the CNC subfamily of bZIP transcription factors
(7), exhibit impaired megakaryopoiesis, suggesting that the
NF-E2 p45-sMafG heterodimer is necessary for the produc-
tion of platelets from megakaryocytes (149). Mice carrying a
central nervous system-specific deletion of Nfe2l1, the gene
encoding Nrf1, display similar neurological disorders as the
ones observed in sMaf-deficient mice, indicating that Nrf1
and the sMaf proteins likely collaborate in maintaining
neuronal homeostasis (81).

MafF, MafG, and MafK triple knockout embryos develop
normally until embryonic day 9.5 (E9.5), then show severe
growth retardation and liver hypoplasia and die around
E13.5 (186). Basal expression of ARE-dependent genes is
unaffected in E10.5 triple knockout embryos compared to
wild-type embryos but is significantly reduced in the livers of
E13.5 mutant embryos in concomitance with the severe liver
hypoplasia observed in these embryos (186). Importantly, the
embryonic lethality and liver hypoplasia could be completely
rescued by transgenic expression of exogenous MafG (186).
Basal expression of cytoprotective genes is severely com-
promised in sMaf triple knockout fibroblasts prepared from
E11 or E13.5 embryos, confirming that the sMafs are es-
sential for the expression of ARE-regulated genes (72). MafG
is sufficient to rescue the inducible expression of cytopro-
tective genes in MEFs (72).

In summary, the investigation of sMaf knockout mice
showed that the sMaf proteins are functionally redundant and
indispensable for supporting Nrf2-mediated transcriptional
activity (72, 186).

Mechanisms of Nrf2-Mediated Gene Transactivation

Nrf2 activity is tightly regulated (160). Once Nrf2 is ac-
tivated, it translocates to the nucleus where it binds to target
sequences in association with the sMaf proteins (Fig. 5) (49).
The investigation of Nrf2-DNA interactions in a genome-
wide manner through chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-Seq) in MEFs from Keap1-null
mice showed that the ARE is strongly enriched within Nrf2
binding sites (100). Subsequent ChIP-Seq analyses of Nrf2
binding sites in human lymphoblastoid cells treated with the
dietary isothiocyanate sulforaphane (SFN) and in the mouse
hepatoma cell line Hepa1c1c7 treated with the electrophilic
agent diethyl maleate (DEM) showed preferential binding
of Nrf2-sMaf heterodimer to 5¢-TGACTCAGC-3¢ (23, 52).
In addition, these studies showed that a small fraction of
Nrf2 binding sites did not contain an ARE, indicating that
Nrf2 probably interacts with other DNA-binding proteins
(23, 52, 100). However, the functional relevance of ARE-
independent binding requires further investigation.

The extent of Nrf2 transactivation depends on the levels of
Nrf2 protein, as shown in a gene dose response study ana-
lyzing expression changes in livers from Nfe2l2-null, wild-
type, Keap1 knockdown and Keap1 knockout mice (184).
Genes involved in the antioxidant response, GSH and
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xenobiotic metabolism show a graded activation by Nrf2,
suggesting that the Nrf2-regulated cytoprotective response
can be tuned to the intensity of the stress by varying Nrf2
levels (184).

The integrated analysis of Nrf2 binding and transcription
profiles showed that not all genes in the vicinity of bound
Nrf2 are transcriptionally regulated as a result of Nrf2
binding (23, 52, 100). These genes may require the recruit-
ment of specific cofactors for a complete activation. Motif
analysis of Nrf2 binding sites identified the consensus motifs
for other transcription factors, such as Fos, Mafb, Lhx3 and
MEF2A; however, further experiments are required to eval-

uate their cooperation with Nrf2 to induce gene transactiva-
tion (100). In addition, ARE-like sequences are recognized
by other CNC transcription factors and the members of the
AP1 complex, such as Jun, Fos, Atf and Maf proteins in
electrophoretic mobility shift assays (4) and NRF2 was re-
ported to form heterodimers with ATF4 (50). Full under-
standing of Nrf2-mediated gene transactivation requires
taking into account the cooperation or competition with other
transcription factors at the available binding sites.

Once the decision to activate a gene is made, Nrf2 recruits
co-activators and components of the transcription machinery
through protein–protein interactions to initiate transcription.
One of the first co-activator identified to interact with Nrf2
is CREB binding protein (CBP) (25, 71). Nrf2 binds CBP
through its Neh4 and Neh5 domains and together they acti-
vate transcription via the AREs (71). CBP can stimulate gene
transcription through its histone acetyltransferase activity or
by functioning as a scaffold to stabilize additional compo-
nents of the general transcriptional machinery (12, 17).
However, the precise mechanism of how Nrf2 and CBP co-
operate to transduce the ARE gene battery remains to be
elucidated (71). In addition to CBP, NRF2 interacts with its
close homologue p300 (143). As CBP, p300 acetylates his-
tones to facilitate chromatin decondensation and the re-
cruitment of the transcription machinery (122). In addition,
p300/CBP have been reported to associate with NRF2 in
response to arsenite-induced stress and acetylate a number of
lysine residues within the Neh1 DNA binding domain of
NRF2 (157). Mutation of 18 lysine sites to arginine does not
affect NRF2 protein stability but does compromise the DNA-
binding ability of NRF2 and consequently the transcription
of NQO1, TXNRD1 and GCLM, but not HMOX1 in HCT116
cells (157). Together with histone-modifying enzymes, Nrf2
recruits Mediator, a multi-subunit protein complex that
communicates the activation signals from a DNA-bound
transcription factor to RNA polymerase II (Pol II) (6, 143).
The subunit composition of Mediator can change: subunits
can be lost or added to affect its biological function (6). NRF2
has been shown to interact directly with the MED16 subunit
of Mediator though the Neh1, Neh4, and Neh5 domains
(143). MED16 bridges the interaction between NRF2 and the
Mediator complex and its depletion specifically reduces
the transcription of several NRF2 target genes in response
to electrophilic stress, without affecting hypoxia-induced
gene expression. MED16 knockout does not impact cell
proliferation but renders the cells more sensitive to cytotox-
icity induced by menadione (143). In addition to histone-
modifying enzymes and the Mediator complex, NRF2
recruits ATP-dependent nucleosome-remodeling complexes.
BRG1, the central ATPase subunit of the SWI/SNF chromatin-
remodeling complex, has been shown to interact with NRF2
and to selectively influence the transcription of NRF2 target
genes with Z-DNA formation (193). Moreover, NRF2 asso-
ciates with other co-activators of the transcription machinery,
such as chromodomain helicase DNA-binding protein 6
(CHD6) (120), receptor-associated co-activator 3 (RAC3)
(75), and NAD+-dependent histone deacetylase sirtuin 6
(SIRT6) (128). However, the functional significance of these
interactions has not been extensively elucidated.

Together, co-activators and chromatin remodelers pro-
mote the recruitment of Pol II and the components of the
general transcription machinery to form the pre-initiation
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in Pol II CTD transcription starts. CTD, carboxy-terminal
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complex (PIC) at the promoters of target genes. Following
PIC assembly, the carboxy-terminal domain (CTD) of Pol II
has to be phosphorylated at Ser5 to initiate transcription of the
gene and subsequently at Ser2 to promote productive tran-
scription elongation (179). In Drosophila, cyclin-dependent
kinase 12 (Cdk12) has been identified as the Pol II kinase
responsible for the phosphorylation of Ser2 in Pol II CTD at
Nrf2 target genes on exposure to oxidative stress. Under
unstressed conditions, knockdown of Cdk12 in cell culture
and in vivo does not affect cell viability or the expression of
genes involved in basic housekeeping processes; however, in
response to the oxidative stress inducer paraquat, it specifi-
cally impairs the expression of Nrf2 target genes and de-
creases the survival of the flies (93). In human cells, CDK12
has been identified as an essential regulator for the tran-
scription of various DNA damage response and DNA repair
genes, increasing the interest in the development of phar-
macological inhibitors of CDK12 to act as sensitizers to
chemotherapeutic agents (64, 94). If Cdk12 gene selectivity
for Nrf2 antioxidant targets is conserved in humans, the
mechanism of action of Cdk12 inhibitors may not be limited
to the repression of the DNA damage response and DNA
repair pathway, but may also involve the suppression of Nrf2
cytoprotective response.

Deciphering the Nrf2-Regulated Network

Mapping of the Nrf2 transcriptional program

Continuous efforts have been made to identify the genes
regulated by Nrf2 and thus the function of Nrf2 in a given
cellular context. These studies have utilized pharmacological
activation of Nrf2, Nfe2l2-deficient or Keap1-deficient mice
to define the Nrf2 responsive genes. The first of these studies
performed gene expression profiling by microarray of the
small intestine from wild-type and Nfe2l2 knockout mice
treated with vehicle or the Nrf2 inducer SFN and identified
that the basal and inducible expression of several genes in-
volved in ROS detoxification, GSH synthesis and NADPH
regeneration is dependent on Nrf2 (164).

Transcriptional profiles of Nfe2l2 knockout mice showed
that Nrf2 is not just involved in inducible gene expression in
response to an activating agent but also involved in the
constitutive expression of several antioxidant and detoxifi-
cation genes in the absence of external stresses (13, 100, 164).
Under normal conditions, Nrf2 is a very unstable protein with
a short half-life; therefore, it was surprising to observe Nrf2-
mediated regulation of gene expression in the absence of
exogenous stress stimuli (118, 156). Since ROS and other
endogenous reactive molecules are constantly generated
from physiological cellular processes, it is possible that
Keap1 activity is slightly impaired under unperturbed con-
ditions. As discussed above, Nrf2 can also be regulated at the
transcriptional level (49). Moderate Nrf2 activation in the
absence of external stresses is likely the result of equilibrium
between Nfe2l2 transcription and protein stability.

These gene expression analyses were performed in several
tissues and used different agents to induce Nrf2, including
naturally occurring chemopreventive drugs, such as SFN, soy
isoflavone and triterpenoids, and toxicants, such as hypo-
chlorous acid and inorganic arsenite, and showed that Nrf2
regulates a common set of genes irrespective of the type of
stimulus and the cellular context (13, 27, 164, 182, 188). This

‘‘default Nrf2 program’’ includes genes such as Nqo1, Gclc,
Gclm, and Txnrd1 and is in part conserved from Drosophila
to humans, constituting an ancient Nrf2 regulatory network
(89). Together with the ‘‘default Nrf2 program,’’ Nrf2 se-
lectively activates other genes that are specific to the cell type
and the nature of the inducing agent (2, 13, 82, 89, 107, 164,
182, 188).

The current studies of the Nrf2-dependent program are
limited to the investigation of the response to pharmacolog-
ical activation of Nrf2 or to the deletion of either Keap1 or
Nfe2l2 in different cellular contexts. Studies comparing how
the Nrf2-dependent network changes from a physiological to
a pathological condition are still lacking. The only exception
is represented by a work on the mechanism of Nrf2-mediated
oncogenicity in lung cancer (142). Transcriptional profile in
normal lung tissue and urethane-induced tumors from wild-
type and Nfe2l2 knockout mice showed induced expression
of genes involved in cell growth and proliferation, Wnt/b-
catenin signaling, and Notch signaling in an Nrf2-dependent
manner, suggesting a possible mechanism for the contribu-
tion of Nrf2 to cancer progression (142).

Nrf2-mediated gene repression

These large-scale studies indicated that Nrf2 not only ac-
tivates but also suppresses the expression of a wide range of
targets. However, the mechanisms underlying transcriptional
repression by Nrf2 are still unclear. Gene expression profiling
by microarray in mouse liver identified genes that were re-
pressed by H-1,2-dithiole-3-thione (D3T) in wild-type mice,
but not in Nfe2l2-knockout mice, compared with vehicle-
treated wild-type mice. Of note, these downregulated genes
were not detected at the early time point (6 h) but only at the
late time point (24 h), suggesting that the repression observed
might be indirect (88). In line with this observation, the in-
tegrated analysis of ChIP-Seq and RNA-Seq data showed that
the majority of Nrf2 direct targets are upregulated rather than
repressed, indicating that Nrf2 is primarily an activator and
blocks gene expression indirectly (23, 52) (C.T., I.I.C.C. and
D.A.T. unpublished observations). These data contradicted
previous studies, which reported that several transcription
factors could form inhibitory complexes with Nrf2 and bind
the promoters of Nrf2 target genes, thus causing their tran-
scriptional repression (8, 15, 57). Nrf2 may repress transcrip-
tion indirectly by inducing the expression of transcriptional
repressors or miRNAs (144). NRF2 ChIP-Seq in lympho-
blastoid cell lines identified several NRF2 binding sites in
the vicinity of multiple miRNAs, the most notable being the
miR-365-1/miR-193b cluster and miR-29b-1, which were
previously linked to cancer progression and oxidative stress,
respectively (23). An additional example of Nrf2-controlled
miRNA is miR-125-b1, which is upregulated after activation
of Nrf2 in the kidney of mice treated with oltipraz (65).

Nrf2 distal binding sites

The global mapping of Nrf2 binding sites indicated that the
majority of Nrf2 binding sites lie outside the promoter-
proximal region (23, 52). Nrf2 function at distal genomic
sites is still unclear. Some of these binding sites could be
located in the promoter region of long non-coding RNAs
(lncRNAs), which were beginning to be annotated when
Nrf2 binding sites were first profiled (44). To date, few
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Nrf2-regulated lncRNAs have been described. NRF2 was
shown to activate SCAL1 lncRNA in response to cigarette
smoke in lung cancer cell lines (162) and to repress the
pluripotency lncRNA ROR in human MCF10A mammary
epithelial cells (195). Furthermore, a recent study identified
additional NRF2-regulated lncRNAs by transcriptomic
analysis of tumors with activating mutations in NFE2L2 and
validated LINC00942 as a new Nrf2 direct target involved in
modulating GCLC expression through an unclear mechanism
(9). The profiling of Nrf2-dependent genes has been mainly
performed by microarray analysis, which usually does not
allow the detection of lncRNAs. With the transition to deep
sequencing approaches for measuring gene expression, the
list of Nrf2-regulated lncRNAs will continue to grow.

In addition, distal Nrf2 binding sites could be located at
enhancers. Enhancers are genomic domains that regulate
transcription by functioning as binding platforms for tran-
scription factors and are characterized by specific chromatin
signatures of histone methylation and acetylation (135). The
generation of chromatin state maps by profiling combinations
of epigenetic marks, in addition to Nrf2 in a given cell type
will allow the identification of noncoding regulatory ele-
ments bound by Nrf2 and provide unique insights into Nrf2-
mediated transcriptional regulation. The investigation of the
relationship between Nrf2 binding and the dynamics of the
local chromatin environment will also inform on Nrf2 ac-
tivity at those sites.

The systematic characterization of NRF2-bound regula-
tory elements becomes particularly relevant in light of evi-
dence for positive selection of SNPs at specific NRF2 binding
sites that could influence gene expression and, ultimately,
disease risk (105, 178).

Crosstalk between Nrf2 and other signaling pathways

Analyses of transcriptional responses have revealed complex
interactions between the Nrf2 regulatory network and other
signaling cascades. As previously discussed, Nrf2 activity can
be modulated in multiple ways by several signaling pathways,
thereby affecting the expression of Nrf2 target genes. Con-
versely, Nrf2 can both positively and negatively influence the
downstream pathways of other transcription factors and these
interconnections can occur in various forms. For example, Nrf2
can regulate the expression or the stability of other transcrip-
tional regulators. Gene expression microarray analyses com-
paring Nfe2l2-null and wild-type MEFs showed that expression
of Notch1 and AhR, as well as their target genes, is decreased in
Nfe2l2-depleted cells (148, 172). In addition, a study on Nfe2l2-
null MEFs revealed enhanced IjB kinase b activity, which
phosphorylates IjB, the negative regulator of NF-jB, thus in-
ducing IjB degradation and NF-jB activation (163).

Moreover, several Nrf2 inducing agents can concomitantly
trigger the activation of other transcriptional regulators, thus
creating complex interconnections between their signaling
pathways (3, 51, 70, 154). For example, Nrf2 and AhR have
been shown to collaborate to mediate the response to 2,3,7,8-
tetrachlorodibenzo-p-dioxin, 3-methylchoranthrene, butylated
hydroxyanisole, and phenobarbital (98, 121, 189). In addition,
disruption of Nrf2 delayed liver regeneration after partial
hepatectomy and this phenotype was rescued by expression of
the Notch1 intracellular domain, suggesting a functional
crosstalk between the Nrf2 and Notch1 pathways (172). It is
noteworthy that AhR, Notch, and NF-jB can regulate Nrf2
expression, indicating bidirectional interactions between these
pathways (138, 148, 173).
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Finally, Nrf2 activity can be modulated through cross-
binding with other transcription factors. In cancer cells,
mutant p53 has been shown to piggyback on NRF2 to regu-
late the expression of proteasome genes, leading to resistance
to the proteasome inhibitor carfilzomib (174).

A more comprehensive elucidation of the crosstalk be-
tween Nrf2 and other signaling pathways will help to deci-
pher the complexity of Nrf2-driven cellular processes. In
an attempt to dissect the Nrf2 interactome and regulome,
Korcsmáros and colleagues developed NRF2-ome, an inte-
grated web resource containing information on Nrf2 inter-
acting factors, target genes, regulating transcription factors,
and miRNAs (129, 168). It will be important to extend the
current computational and experimental approaches to obtain
a more dynamic global view of Nrf2-mediated gene regula-
tion that integrates all the factors that influence the final
transcriptional output.

Conclusions and Perspectives

Since the discovery of Nrf2 in 1994 (108), our under-
standing of its biology has continued to grow. Nrf2 has been
implicated in different cellular processes, such as the re-
sponse to oxidative and xenobiotic stress, mitochondrial
respiration, stem cell quiescence, mRNA translation, auto-
phagy and UPR. Significant advances have been made in
understanding the regulation of Nrf2 activity, downstream
pathways and implications for the development of disease. It
is now clear that Nrf2 lies at the center of a complex regu-
latory network. Nrf2-mediated transcriptional regulation is
determined by the cellular context, the activating stimulus,
the recognition of the ARE, the availability of binding part-
ners, the competition or cooperation with other activators and
repressors, the crosstalk with other signaling pathways and
the epigenetic landscape of the target gene promoters, among
others (Fig. 6). A complete appreciation of the Nrf2 program
will require an integrated consideration of all these factors,
which will allow these efforts to have the most profound
benefits to human health.
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Abbreviations Used

b-TrCP¼ b-transducing repeat-containing protein
ABSC¼ airway basal stem cell

AhR¼ aryl hydrocarbon receptor
AML¼ acute myeloid leukemia
AP1¼ activator protein 1
ARE¼ antioxidant response element

ATF4¼ activating transcription factor 4
Bach1¼BTB domain and CNC homolog 1
Bach2¼BTB domain and CNC homolog 2

bZIP¼ basic-region leucine zipper
BRCA1¼ breast cancer susceptibility 1

CBP¼CREB binding protein
Cdk¼ cyclin-dependent kinase

ChIP-Seq¼ chromatin immunoprecipitation
followed by sequencing

CNC¼ cap ‘n’ collar
CncC¼ cap ‘n’ collar isoform C
CTD¼ carboxy-terminal domain

ER¼ endoplasmic reticulum
Gcl¼ glutamate-cysteine ligase

Gclc¼ glutamate-cysteine ligase catalytic subunit
Gclm¼ glutamate-cysteine ligase modifier subunit
Gpx2¼ glutathione peroxidase 2
GSH¼ glutathione

Gsk-3b¼ glycogen synthase kinase-3b
GSSG¼ oxidized glutathione

Gst¼ glutathione S-transferase
HbSS¼ homozygous sickle cell disease
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HGPS¼Hutchinson-Gilford progeria syndrome
Hmox1¼ heme oxygenase 1

Hrd1¼ synoviolin
Idh1¼ isocitrate dehydrogenase 1
ISC¼ intestinal stem cell

Keap1¼Kelch-like ECH-associated protein 1
lncRNAs¼ long non-coding RNAs

MEF¼mouse embryonic fibroblast
miRNA¼microRNA

NADPH¼ nicotinamide adenine dinucleotide
phosphate

Neh¼Nrf2-ECH homology
NF-E2¼ nuclear factor, erythroid-derived 2
NF-jB¼ nuclear factor-jB

Nqo1¼NADPH quinone dehydrogenase 1

Nrf2¼ nuclear factor E2-related factor 2
Pgd¼ 6-phosphogluconate dehydrogenase

PI3K¼ phosphoinositide 3-kinase
PIC¼ pre-initiation complex

PKC¼ protein kinase C
Pol II¼RNA polymerase II

PPP¼ pentose phosphate pathway
ROS¼ reactive oxygen species

RXRa¼ retinoid X receptor a
SCF¼ Skp1-Cul1-F-box
SFN¼ sulforaphane
sMaf¼ small masculoaponeurotic fibrosarcoma
SNP¼ single nucleotide polymorphism
TXN¼ thioredoxin

Txnrd1¼ thioredoxin reductase 1
UPR¼ unfolded protein response
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