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Published online: 20 June 2019 This paper examines the effects that electromagnetic fields from microwave radiation have in
enzymatic reactions. Hydrolysis of proteins in beef (in vivo case) and casein (in vitro case) by the
papain enzyme, a major industrial enzyme, is used herein as a model reaction to assess, under highly
controlled conditions, the various parameters of microwave radiation (electric field, magnetic field,
pulsed microwave irradiation, continuous microwave irradiation) as they might influence these in vivo
and in vitro enzymatic reactions. The effect(s) of the microwaves’ electromagnetic fields was clearly
evidenced in the in vivo case, contrary to the in vitro case where no such effect was observed, likely
due to the nature of the hydrolysis reaction and to the autolysis (self-digestion) of the papain enzyme.
Additionally, the effect of pulsed versus continuous microwave irradiation was further assessed by
examining the catalase-assisted decomposition of hydrogen peroxide.

The interaction of electromagnetic fields with various life processes has intrigued scientists since the 1800s. Of
current interest are the electromagnetic fields present in microwave radiation, which spans a frequency from
300 GHz to 300 MHz (i.e., from a wavelength of 1 mm to 1 m). Microwaves are used widely in communications
and in heating, particularly in the heating of foodstuffs. This non-ionizing electromagnetic radiation is absorbed
at the molecular level causing changes in the vibrational energy of the molecules; it also manifests itself as heat'.
Identifying and evaluating biological effects of microwaves have been rather complex and controversial. In this
regard, enzymatic reactions involving microwaves have been the object of active investigations in the latter half of
the 20 century, with the first such study reported in the early 1970s. For instance, microwave radiation to inac-
tivate the enzymes in the brain of animals has been used widely since Stavinoha and coworkers first introduced it
in 19707 Inactivating the enzymes makes it possible to sample and measure many enzymatically destroyed brain
neurochemicals thereby reducing the influence of postmortem changes®. Usage of microwaves has succeeded in
stopping enzymatic activity selectively with minimal damage to other cells and/or proteins under in vivo condi-
tions, for which equipment is commercially available.

Recent years have also witnessed investigations into the promoting effect of microwaves in enzymatic activity
of in vitro systems at the molecular level*. In this regard, Young et al.’ reported that hyperthermophilic enzymes
can be activated at temperatures far below their optimal temperature, presumably through a microwave-induced
conformational flexibility. This finding offered the prospect of using hyperthermophilic enzymes at ambient tem-
peratures to catalyze reactions with thermally labile substrates and products. Additionally, microwaves could
be used to regulate biocatalytic rates of enzymes at very low temperatures from less thermophilic sources®.
Parenthetically, Damm and coworkers® critically evaluated microwave-assisted proteomic protocols. Upon
examining microwave heating versus conventional heating, these authors® asserted that non-thermal effects
(i.e., microwave specific effects) had no influence on the structure and on the enzymatic digestion of proteins.
Although there are various practical examples in the industry, discussion continues on the effects of the micro-
waves’ electromagnetic fields at the laboratory level.

Whether or not the microwaves’ electromagnetic fields affect enzymatic reactions necessitates the following
basics to discuss appropriately this question: (i) no exchange of data exists between in vivo and in vitro cases, and
(ii) while many of the discussions dealt with the nature of the samples, parameters pertaining to the microwave
radiation have been largely ignored. For this reason, unless the effects of microwave radiation (e.g., electric field,
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magnetic field, continuous microwaves, pulsed microwaves) and the like are examined, it is highly unlikely
that the data can be reproduced whenever the apparatus is changed. In most studies, it was difficult to discuss
microwave-induced phenomena because microwave devices with precise control of the microwaves were not
used, even if specialized equipment for microwave chemistry were available’. Additionally, even if a commercially
available chemical reactor were available, problems would have arisen nevertheless at the time because of the use
of magnetrons’.

In our research strategy, we aimed to clarify the electromagnetic wave effect(s) of microwaves on enzymatic
reactions through the use of a prototype device that could accurately control the incident microwaves, a device
consisting of a semiconductor microwave generator, a power sensor and a fiber optic thermometer to measure
temperatures in a single-mode applicator. In such a case, if a result appeared different from ordinary heating
(acceleration or deceleration of the enzyme reaction), it would be a phenomenon attributable to an electromag-
netic wave effect(s) unique to microwaves; obviously, a similar phenomenon would not be obtained with con-
ventional heating. Furthermore, if the enzyme were selectively heated and exposed to a temperature field higher
than in aqueous media, the rate of the enzymatic reaction would decrease, and in some cases the enzyme would
be inactivated. With this strategy, the effects of the microwaves’ electromagnetic energy were examined from two
different approaches: (1) the in vivo hydrolysis of the protein(s) in beef samples by the papain enzyme, and (2) the
in vitro hydrolysis of the casein protein(s) by the papain enzyme used as a model reaction after being subjected to
microwave radiation emitted from a semiconductor microwave generator. For comparison, reactions were also
carried out under the more conventional heating methods (electric furnace and/or water bath). To the extent
that the microwaves’ electromagnetic fields might affect directly only the enzyme molecule, we also examined
the possible occurrence of the self-digestion of papain. The effects of pulsed-wave versus continuous microwave
irradiation were also assessed by an examination of the decomposition of H,O, with another enzyme: the catalase
enzyme.

The papain enzyme, used herein as a model enzyme, is a cysteine protease enzyme largely used as a meat ten-
derizer via the breakdown of tough meat fibers, thereby rendering the meat easier to cook. This enzyme is used
extensively in the textile, pharmaceutical, and cosmetic industries. The pharmaceutical applications of papain
include tooth whitening, cleaning dead tissues in chronic wounds, and cell dissociation in cell culture techniques.
The leather industry also uses papain for the tanning of leather. Increases in health awareness, rise in demands for
meat tenderizers, and surge in demands for natural enzymes have driven the growth of the papain powder mar-
ket®. Promoting the activity of this enzyme is a field of much attention. If the enzymatic activity of papain could be
enhanced by the microwaves’ electromagnetic fields, it would lead to significant industrial benefits.

Results and Discussion

Evaluation of papain’s activity in an in vivo microwaved process. Possible changes in the degree of
enzymatic activity in the papain-assisted hydrolysis of proteins present in beef samples were examined by com-
paring microwave heating relative to conventional heating. The hydrolysis in beef samples whose surface was cov-
ered with the papain enzyme was used as the model of an in vivo process. Most of the beef samples were cut into
20 x 20 x 50 mm rectangularly-shaped specimens as illustrated in Fig. la-i,a-ii that display the initial papain-free
beef sample. Changes in the condition of the surface subsequent to treatment of the beef samples with the papain
enzyme (Fig. 1b-i,c-i,d-1) and the decomposition of the beef’s protein(s), as revealed by their response to gravity
(Fig. 1b-ii,c-ii,d-ii), were examined in comparison with the untreated beef specimen of Fig. 1a that was subjected
to the same gravitational condition.

The papain-treated beef samples were subjected to pulsed microwave irradiation (PMI; 20-millisecond
pulses; Fig. 1b-i) and to continuous-wave microwave irradiation (CMI; Fig. 1¢-i). Under microwave heating,
the papain-treated samples of Fig. 1b-i,c-i softened in a manner suggestive of liquefied jelly when compared
to the non-irradiated papain-free initial sample (Fig. la-i). That is, it shows that exposing the papain-coated
beef specimens to microwave heating enhanced the decomposition of the protein(s) on the beef surface. We
also observed that the degree of softness of the beef surface under PMI conditions was, to some extent, greater
than under CMI. By contrast, upon being subjected to heating in an electric furnace at 45 °C for 10 min, the
papain-treated beef sample of Fig. 1d-i softened much less than under microwave irradiation. Moreover, after the
conventional heat treatment, the specimen’s surface was unlike the jelly-like surface displayed by the samples of
Fig. 1b,c. Experiments were also conducted at 50 °C (+5°C) and 40 °C (—5°C) in the electric furnace to examine
whether errors in temperature measurements could explain this difference. There were no differences at both
these temperatures. Accordingly, despite the same temperature conditions (45 °C), the microwaves promoted the
activity of papain on the beef surface that we attribute to the microwaves’ electromagnetic fields.

A closer look at the photographs in Fig. 1a-i,b-i,c-i,d-i shows that the sizes of the samples differed after their
treatment. After microwave heating (Fig. 1b-i,c-i) and electric furnace heating (Fig. 1d-i), their longitudinal and
lateral sizes were longer and narrower relative to the untreated beef specimen (Fig. 1a-i). The two beef specimens
exposed to PMI and CMI irradiation were longer by about 2 cm, while the specimen heated in the electric furnace
was ca. 1 cm longer than the untreated beef. These changes are due to the papain-assisted hydrolysis that cleaved
the beef’s internal protein chains with the efficiency expected to increase under the microwaves’ electromagnetic
fields relative to conventional heating. To confirm the cleavage of the internal protein chains, we examined the
effect that gravity had on the heated and non-heated samples. To do so, we placed all four samples at the center of
a vertical yellow plastic plate (5 mm thick and 10 mm wide) in a manner reminiscent of a seesaw.

The papain-free untreated beef sample remained firm to gravity as illustrated in Fig. la-ii; that is, there was no
change in shape even though the sample was left standing for 5min in this state. By comparison, it is clear from
Fig. 1b-ii,c-ii that the papain-treated beef specimens subjected to microwave irradiation were unable to counter
the gravity as they drooped down considerably compared to the untreated specimen of Fig. 1a-ii. It became also
clear that they could not keep their initial flattened shape for more than 20 seconds, which confirms the cleavage
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Figure 1. Observations of the surface changes (i) and the degree of softening (ii) of beef samples after applying
papain to the beef: (a) control experiment with no papain used on the beef, (b) papain-treated beef sample after
heating with pulsed microwave irradiation (PMI) and maintaining it at 45 °C for 10 min (c) papain-treated beef
sample subjected to continuous microwave irradiation (CMI) under otherwise identical conditions as in (b),
and (d) papain-treated beef sample subjected to heating in an electric furnace at 45°C for 10 min.

of the protein chains inside the beef (softening) by the papain enzyme. A comparison of the extent of drooping in
Fig. 1b-ii,c-ii shows that the hydrolysis of the beef protein was somewhat greater when the sample was subjected
to PMI hydrolysis than with CMI. These experiments were repeated no less than four times, and in every instance
the hydrolysis reaction was more pronounced under PMI than under CMI conditions. Upon being subjected to
heating in an electric furnace at 45 °C for 10 min, the papain-treated beef sample softened somewhat, but signifi-
cantly less than the microwaved specimens by the electromagnetic fields as evident from comparing the specimen
of Fig. 1d-ii with the specimens of Fig. 1bc-ii after 5 min standing in that state.

The results afford two possible mechanistic considerations. In the first instance, the hydrolysis of the beef
protein(s) by the papain enzyme was enhanced under PMI compared to CMI conditions, as the microwaves
applied power for PMI was 1.8 times higher than that of CMI (11 W). Evidently, the microwave power level
influences the papain’s activity and, not to be precluded, by the instantaneous electric field and magnetic field
enhancement under microwave pulsed irradiation. In the second instance, microwave heating occurred first in
the inner core of the beef samples, and to the extent that the surface temperature was that of the surrounding
atmosphere, thus cooler than within the inner core, a temperature gradient was established under microwave
heating’. Consequently, some of the moisture contained within the bulk moved to the surface, thus causing the
enzymatic hydrolysis reaction to occur mostly at the specimens’ surface, as the extent of diffusion of the papain
enzyme into the beef was limited. Thus, migration of the water in the bulk of the specimens to the surface had
little consequence on any reaction occurring in the bulk. For the conventionally heated specimen, because the
temperature inside the electric furnace was high, any moisture on the surface of the beef sample tended to evap-
orate, thereby causing the hydrolysis reaction at the surface to be inhibited, as evidenced by the results shown in
Fig. 1d-ii relative to Fig. 1bc-ii. In summary, compared to conventional heating, microwave heating presents cer-
tain features that promote the activity of the papain enzyme in the in vivo case that we attribute to the accelerating
effect of the electromagnetic fields of the microwave radiation.

In other experiments we observed that after applying the papain enzyme to the surface of the beef samples,
and then allowing them to stand at ambient temperature for 10 min; they displayed nearly the same features
as the specimen used in the electric furnace heating experiment. On the other hand, as shown in Fig. 1b,c,
microwave-irradiated beef not coated with papain displayed no observable softening. Therefore, it was expected
that the microwaves alone were not capable of softening the beef. In addition to these confirmatory experiments,
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Figure 2. Hydrolysis of casein by the papain enzyme monitored by the UV absorption at 275 nm after 5, 15
and 30 min heating (C) against 0 min (Cy); the reactor was located at the maximal position of the electric field
density (E-field), at the maximal position of the magnetic field density (H-field), by water-bath heating (WB),
by electric-/magnetic-field heating (E/H-field) under continuous microwave (CMI) or pulsed microwave (PMI;
20-millisecond pulse) irradiation, and by E/H-field heating under cooling conditions (E/H-field-cooling);
temperature was in all cases 60 °C. Note that * and **: Student’s t-test significant at p < 0.05 and p <0.01,
respectively, compared to WB.

we also conducted similar experiments on beef sold at supermarkets (Angus beef; imported from the USA).
Results were similar to the trends illustrated in Fig. 1. Softening of beef specimens accompanying the enhance-
ment of the activity of the papain enzyme by microwaves does not appear to be a phenomenon caused by the state
of beef.

Evaluation of papain’s activity in an in vitro microwave-assisted enzymatic reaction. To evalu-
ate the possible microwaves’ electromagnetic field effects in an in vitro case, we examined the hydrolysis of casein
(a model protein) in the presence of the papain enzyme performed with microwave elements otherwise the same
as those used in the previous in vivo system. Casein consists of a family of related phosphoproteins (aS1, aS2, 3,
k) that is commonly found in mammalian milk. It contains a high number of non-interacting proline residues
and no disulfide bridges so that it has relatively little tertiary structure; it is relatively hydrophobic making it
poorly soluble in water, although it can be dispersed in dilute alkaline media and in salt solutions.

The increase in the efficiency of the papain-assisted hydrolysis of casein was followed by monitoring the UV
absorption band at 275 nm after 5, 15 and 30 min heating against 0 min (Fig. 2) for each heating method, namely
(a) E-field and H-field microwave heating, (b) water-bath heating (WB), (c) E/H-field heating under continuous
microwave irradiation (CMI) and pulsed microwave irradiation (PMI; 20-millisecond pulses), and (d) E/H-field
heating under cooling conditions (E/H-field-cooling) at 60 °C.

In the first case, we looked at the effects that the microwaves electric-field (E-field) and magnetic-field
(H-field) heating might have on such an in vitro process. As evident in Fig. 2, there was no significant difference
in the rate of hydrolysis of casein at all three heating times by E-field heating, H-field heating and by water-bath
heating. The only significant difference by the t-test was 5min of E-field. (see Table S2 in the Supplementary
Information). Moreover, within experimental error, no enhancement of the hydrolysis of casein was seen in the
presence of the papain enzyme under microwave and conventional heating. In addition, a comparison between
E/H-field (CMI) and E/H-field (PMI) conditions, as done for the in vivo case, shows that the efficiency of the
hydrolytic process is greater under PMI than WB heating. However, the efficiency of the papain enzymatic reac-
tion under PMI conditions did not increase dramatically (The only significant difference by the t-test was 15 and
30min of E/H-field). Under CMI conditions the efficiency was below that of WB heating.

The hydrolysis of casein by the papain enzyme, carried out under microwave heating while cooling the solu-
tion using the GPC-1000 microwave chemical equipment with an aluminum cooling block, permitted using
more microwave input power (43 Watts) to irradiate the solution while keeping the temperature constant at
60°C. Under the latter conditions, no change in casein hydrolysis efficiency was observed even when the addi-
tional 3-Watt microwaves were used to irradiate while cooling the sample. In all microwave-heating instances, it
is somewhat curious that the effects of the microwaves’ electromagnetic fields did not manifest themselves more
clearly in the in vitro reactions.

As the efficiency of the hydrolysis of casein by the papain enzyme displayed little if any changes
under both microwave heating and conventional heating, the focus next shifted to investigate whether
the effect of the microwaves’ electromagnetic fields could be observed in the papain-assisted hydrol-
ysis of substrates other than casein. Accordingly, we examined the fate of the amino acid trimers
t-butyloxycarbonyl-L-phenylalanyl-L-seryl-L-arginine-4-methyl-coumaryl-7-amide (Boc-Phe-Ser-Arg- MCA)
and the t-butyloxycarbonyl-L-valyl-L-leucyl-L-lysine-4-methylcoumaryl-7-amide (Boc-Val- Leu-Lys-MCA). The
papain enzyme preferentially cleaves the bond between the Arg and MCA entities and between the Lys and MCA
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Figure 3. Increase in the intensity of the fluorescence spectral band at 393.8 nm following the papain- assisted
hydrolysis of Arg: t-butyloxycarbonyl-L-phenylalanyl-L-seryl-L-arginine-4-methylcoumaryl-7-amide (Boc-
Phe- Ser-Arg-MCA) and Lys: t-butyloxycarbonyl-L-valyl-L-leucyl-L-lysine 4-methylcoumaryl-7-amide (Boc-
Val-Leu- Lys-MCA) after 2 min by the microwaves’ electric field heating (E-field), magnetic field heating (H-
field), water-bath heating (WB), and pulsed microwave irradiation (PMI; 20-millisecond pulses). Note that *
and **: Student’s t-test significant at p < 0.05 and p < 0.01, respectively, compared to WB.

entities. Results of the hydrolysis of the amino acid trimers in aqueous media containing the papain enzyme using
four heating methods are displayed in Fig. 3. Beyond experimental errors and except perhaps the PMI condi-
tion for Lys, there were no dramatic differences between the heating methods employed on the efficiency of the
hydrolysis reaction of the two amino acid trimers.

Possible reasons why the microwaves’ electromagnetic field effects are not evident in the in
vitro enzymatic reaction. Coating beef samples with the papain enzyme (in vivo case) clearly promoted
the hydrolysis of the meat protein(s) by microwave heating. However, in the in vitro case, a similar outcome was
not seen in the hydrolysis of the casein protein. A comparison between in vivo and in vitro conditions shows
a non-insignificant gap of reaction conditions. Germane to the present study, our previous study'® may prove
helpful in understanding the lack of influence of the microwave radiation on the hydrolysis of casein by the
papain enzyme. In that study, we reported on the acid hydrolysis of cellulose to produce glucose in the pres-
ence of AC-SO;H catalyst particles (AC, activated carbon) subjected to microwave heating and conventional
heating. Results showed that microwave heating promoted the selective overheating of the AC-SO;H cata-
lyst and thus the rapid hydrolysis of cellulose was expected under microwave selective heating of the catalyst.
However, even though selective heating of the catalyst occurred, we found no difference in reaction efficiency
in the acid-catalysed acid hydrolysis of cellulose whether the reactants were heated by microwave heating or by
conventional heating. We concluded that the hydrolysis of cellulose did not take place near the catalyst active site,
but rather occurred in the solution bulk such that the effect of the microwaves was diminished. Following this
reasoning, in the in vitro papain-assisted hydrolysis of the casein protein, the enzyme acted merely as a trigger for
the hydrolysis. The process occurred in aqueous media with the rate-limiting factor being the heat in the aqueous
solution, so that the microwaves’ electromagnetic field effects appear relatively inconsequential, although the
results did not preclude a slight pulsed microwave effect.

Influence of the self-digestion (autolysis) of the papain enzyme during the hydrolysis. Other
than heat, do microwaves have any other influence on enzymatic reactions? To resolve this issue, we next focused
on events that may occur within the enzyme itself. Protease enzymes such as papain typically hydrolyze proteins,
yet at the same time papain seems to be an atypical enzyme as it may undergo self-digestion (autolysis) as evi-
denced by the quantity of enzyme remaining in solution that decreased with reaction time.

The heating of aqueous solutions containing only the papain enzyme (without the casein) at 60 °C was car-
ried out using each of the heat sources reported in Fig. 4, which also displays the extent of self-digestion of the
enzyme monitored by absorption spectra recorded at 0, 5, 15 and 30 min. A comparison between the microwaves’
E-field and H-field heating reveals that the self-digestion of the enzyme is suppressed under E-field heating; in
fact, changes in absorption in the spectra were hardly observed under the latter condition. Under H-field heating
conditions, however, the extent of self-digestion increased with heating time. Most significant, under water-bath
heating, the extent of self-digestion of papain was significantly greater vis-a-vis microwave heating and remained
unchanged with heating time.

Results from the self-digestion experiments of aqueous solutions of papain (no casein) subjected to microwave
E/H-field irradiation under CMI and PMI conditions showed that the self-digestion of this enzyme under PMI
was significantly inhibited relative to CMI. Since an apparent pulsed microwave effect was observed at 60 °C, we
consider that suppression of the self-digestion of papain was affected by an electromagnetic field (In all exper-
imental data, the t test showed a significant difference of less than 0.01). Performing microwave heating while
cooling using the GPC-1000 microwave chemical equipment with an aluminum cooling block, more microwave
input power (43 Watts) was used in causing the self-digestion of papain also at 60 °C. Yet even with cooling,

SCIENTIFIC REPORTS | (2019) 9:8945 | https://doi.org/10.1038/s41598-019-45152-9 5


https://doi.org/10.1038/s41598-019-45152-9

www.nature.com/scientificreports/

14 -
X ]
~ 12 ] we
£ 1
© ] E/H-field
g 104 (cm)
Q 1
w 81
o ] E/H-field
8 6 ] (PMI) *%
D ] Hfied E/H-field ot 7
g 4 (Cooling) e we
° E-field
q_l_ 2 l sk | %
[0}
)] 01 2 * % % * ol %

5 15 30

Heating time / min

Figure 4. Percent self-digestion of papain monitored by the UV absorption at 245 nm for 5, 15 and 30 min
heating against 0 min; the reactor was located at the maximal position of the electric field density (E-field), at the
maximal position of the magnetic field density (H-field), by water-bath heating (WB), by electric/magnetic-field
heating (E/H-field) under continuous microwave (CMI) or pulsed microwave (PMI; 20-millisecond pulses)
irradiation, and under E/H-field heating with cooling conditions (Cooling) at 60 °C. Note that * and

**: Student’s t-test significant at p < 0.05 and p < 0.01, respectively, compared to WB.

inhibition of the self-digestion of papain was remarkably absent compared with E/H fields with CMI. For the
in vitro case, although the microwaves’ electromagnetic fields had no influence in the hydrolysis of casein by
the papain enzyme, they likely did play a role in the attenuation/inhibition of the self-digestion of this protease
enzyme. This can be taken to mean that the self-digestion of papain is not an aqueous media event, but rather it
is an intramolecular event within the enzyme. More importantly, the effect of pulsed microwave radiation was
significant as demonstrated in Fig. 4.

Effect of pulsed microwave irradiation on the catalase-assisted degradation of hydrogen
peroxide. The issue of whether or not there is an effect of the microwaves’ electromagnetic fields in enzymatic
reactions was examined using three different approaches: (i) the extent of softening of beef specimens coated with the
papain enzyme (in vivo case); (ii) the hydrolysis of casein in the presence of papain in homogeneous aqueous media
(in vitro case); and (iii) the self-digestion of papain (in vitro case). All these approaches revealed a commonality,
namely the effect of pulsed microwave irradiation (PMI).

In a previous study"!, we demonstrated the advantage of using microwave heating against water-bath heat-
ing in the decomposition of hydrogen peroxide (2H,0, — 2H,0 + O,) in the presence of the metalloenzyme
catalase. Consequently, we elected to investigate also the effects of microwave radiation pulses using this
catalase-assisted reaction. Results displayed in Fig. 5 clearly demonstrate that pulsed microwave irradiation pro-
moted the activity of the catalase enzyme. On the other hand, in CMI, the decomposition rate decreased after
3 min. Our previous study (using CMI) showed that using microwaves in catalase reaction can only accelerate the
initial degradation rate!!. This clarified that local heating in the enzyme molecule was increased by the effect of
the microwaves, thereby causing the deactivation of the enzyme. To confirm this hypothesis, we further clarified
that by allowing the enzyme to react at 25 °C (optimal reaction temperature: 37 °C), the reaction promoting effect
by the microwaves was maintained'!. Partial heating field can be suppressed by using PMI because the cooling of
the enzyme progresses when the microwaves are turned OFF with respect to microwave heating. As a result, the
promoting effect of the enzyme reaction by the microwaves was sustained.

Although not well documented, microwave apparatuses for chemical syntheses that utilize a microwave oven
or an AC transformer power source emit microsecond-level pulses, even though the microwaves oscillate contin-
uously. In our previous studies, many of the organic chemical reactions could not benefit from the microwaves’
electromagnetic fields because the reactions were driven mostly by thermal energy’. On the other hand, in pho-
tocatalytic organic synthesis reactions that involved Pt as the catalyst, the pulsed microwave effect was clearly
demonstrated’. In enzymatic reactions, however, the existence of an effect of pulsed microwaves’ electromagnetic
fields seems to depend on the nature of the reaction. Therefore, the dependence on the microwave apparatus
is likely to be a relevant factor in taking full advantage of the microwaves’ electromagnetic fields in enzymatic
reactions.

Final Remarks

In the in vivo case, wherein the papain enzyme was directly adsorbed/absorbed on the surface of the beef samples,
the enzyme-assisted hydrolysis of the beef protein(s) is a solid/solid reaction. As such, the influence of the micro-
waves on the hydrolytic process by the papain enzyme was accentuated relative to the case where the hydroly-
sis might occur by heating the liquid medium. No doubt, the microwaves stimulated the interactions between
the papain enzyme and the meat protein(s). These results are quite instructive. When carrying out industrial
applications of microwave radiation, an initial examination of the reaction system may prove useful in establish-
ing whether the process is effective or is otherwise influenced by the microwaves. Nonetheless, in real complex
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Figure 5. Residual quantity of H,O, in the catalase-assisted degradation of hydrogen peroxide under
microwave continuous irradiation (CMI), pulsed microwave irradiation (PMI), and conventional heating with a
water bath (WB). Note that * and **: Students t-test significant at p < 0.05 and p < 0.01, respectively, compared
to WB.

reaction systems, unexpected different useful results may well appear. Since no temperature measurements at the
molecular level have been done in this experiment, it was not possible to discuss whether this is a thermal effect or
a non-thermal effect. However, there is no doubt that it is an electromagnetic wave effect unique to microwaves.
By contrast, there was no advantage of using microwave irradiation to enhance the hydrolysis activity of papain in
the in vitro systems, because the hydrolysis that occurred in homogeneous aqueous media was driven thermally,
so that the effect of the microwaves was rather small. However, the promoting effect of microwaves was clearly
demonstrated in the intramolecular reaction of the self-digestion of papain. The effect of 20-millisecond micro-
wave pulses was clear. Generally, pulsed-wave and continuous-wave conditions are determined by the specifica-
tions of the power supply of the microwave device. From the points that do not appear in all reactions or appear
in pulses, there is nonetheless room for discussion of the possibility that non-thermal effects due to microwaves
may be involved. Consequently, if one pays no attention to this point, even if the reactions were carried out at the
same temperature, the maximum amount of microwave energy would vary greatly, which could lead to issues of
reproducibility in the experiments.

For the electromagnetic wave effect(s), microwave heating progresses directly through absorption of the
microwave energy by molecules and ions. The energy transmission and heat generation efficiency are signifi-
cantly higher than through conventional heat transfer. This can be associated to the fact that microwave heating
rate is faster than traditional heating. This fact reminds us of the following: despite the same thermal energy state,
expansion of the entropy of molecules and clusters associated with heat production is expected to be slow. If this
difference contributed to the reaction, it would either promote or reduce reaction efficiency. In the near future
and with additional studies, it may be possible to purposely control the effect(s) of electromagnetic waves in
enzymatic reactions.

Experimental

Microwave apparatus. The schematics and an actual photograph of the microwave device used in the
experiments are illustrated in Fig. 6. The microwave generator utilized a semiconductor-type microwave gen-
erator system {SPC Electronics Corp.: maximum output power, 240 W}. A generator was connected to a wave-
guide (WRJ-2), which was connected with a coaxial waveguide converter to the generator and to the sample
heating applicator through an isolator, and to the incident and reflection sensors. A water-cooled dummy load
was connected to the tip of the applicator (for E/H-field-CMI and E/H-field-PMI methods); the sample was sub-
sequently irradiated with a traveling wave without resonating the microwaves. The CMI and PMI were obtained
from a semiconductor microwave generator; under PMI conditions, the microwaves irradiated the sample(s) for
20 milliseconds (50 Hz duty cycle) and then turned OFF for 20 milliseconds. This pulse condition is the pulse
width generated by most of magnetrons driven by a 50 Hz power supply as commercial power frequency. That
is, it imitates the oscillation of most microwave ovens and industrial microwave irradiation equipment. The inci-
dent microwaves were absorbed with a dummy load; under the conditions used, none of the microwaves were
reflected. The reason for this was to prevent non-uniform temperatures at the samples owing to unevenness of
the electromagnetic wave at the samples’ position originating from resonance conditions. Also, a power sensor
was connected between the sample and the dummy load to monitor the power of the microwave passing through
it. On the other hand, in the experiment at the maximum electric or magnetic field, consisting of a single-mode
TE103 cavity (transverse electric 103 mode) schematically illustrated in Fig. 6b, also included a short plunger, an
iris, a three-stub tuner, power sensors and an isolator. The resonance of the microwaves was adjusted with the iris
and the plunger at 1.5 cycles.
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Figure 6. (a) Photograph of the microwave heating system using a microwave semiconductor generator,

a single channel power meter and a power sensor, isolator, single-mode applicator and a dummy load. (b)
detailed illustration of the experimental setup and positioning of the samples in the single-mode TE,(; cavity;
(i) maximal position of the electric field (E-field) density; (ii) maximal position of the magnetic field (H-field)
density.

Heating the enzyme solution was achieved by locating the quartz tube reactor in the single-mode microwave
apparatus (Fig. 6b) within the waveguide at positions either of maximal electric field (position (i)) or magnetic
field (position (ii)) density. The maximal position of the E field from the iris was located at 3/4 the wavelength of
the standing wave in the waveguide (i.e., at 11.09 cm)'2. An electric field monitor (Fuji Electronic Industrial Co.
Ltd.) was used to maintain the sample tube at the maximal position of the E-field density, as the reproducibility
of such experiments is often diminished if such operations were neglected. Under our conditions, no significant
positional changes of the electric field were necessary. The experiment of conventional heating was conducted
using a water bath with stirrer (AS ONE Co. WBS-80M); the temperature of water in the water bath was fixed
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Figure 7. Cavity image diagram for heating with microwaves while cooling the sample with an aluminium
block.

at 60 °C. Experiments for microwave heating and water-bath heating were repeated no less than six times; the
average of the data is reported. Analogous conditions of thermometer, reactor, and the same solution prevailed
under both conventional and microwave heating. The sample solution was contained in a branched test tube
made of quartz (inner diameter, 12 mm); a reflux tube was connected to the top of the test tube; the temperature
was measured using a fiber optic thermometer (Anritsu Meter Co., Ltd.). In preliminary experiments, we con-
firmed that the difference in temperature with respect to the vertical direction of the solution due to microwave
irradiation was less than 1°C. We also confirmed that during the experiments the reflection of microwaves was
zero according to the power sensor.

Microwave heating with a traveling wave (E/H-fields) under cooling conditions was also carried out using a
GPS-1000 microwave chemical synthesis equipment (Tokyo Rikakikai Co. Ltd.). The Pyrex glass reaction vessel
placed in the cooled thermostatic chamber aluminum block within the GPS-1000 system can be irradiated con-
tinuously with the traveling waves of the microwave radiation emitted from the semiconductor generator. The
advantage of this apparatus is that it can be used to irradiate with microwaves while cooling as illustrated in Fig. 7.
When the sample was irradiated at a microwave input power of 10 Watts, the temperature of the sample solution
reached 60 °C within 5 min. By contrast, when the aluminum block was cooled to 30°C, for the temperature of
the solution to reach 60 °C within 5 min necessitated irradiation with 13-Watt microwave radiation; thus, cooling
permitted the use of an extra 3 Watts of microwave power.

Methodology for in vivo enzymatic reactions. In a practical in vivo experiment, a 10-mg powdered
sample of the papain enzyme (Wako Pure Chemical Industries) was used to cover the whole surface of pieces of
beef (dimensions ca. 20 X 20 x 50 mm). Microwave radiation was subsequently used to heat the pieces of beef
with 11-Watt (continuous wave) and 20-Watt (pulse wave) microwaves in a system consisting of a single-mode
microwave applicator (traveling microwave wave) that was kept at a temperature of 45 °C for 10 min. In pulsed
microwave heating, the microwaves emitted from a semiconductor microwave generator were turned ON and
OFF every 20 milliseconds. For comparison, the beef/papain samples were also heated and kept at ca. 45 °C for
10 min in an electric furnace previously brought to this temperature. In electric furnace heating, the temperature
of the beef specimens was controlled and the potential overshoot of the temperature beyond 45 °C was prevented
by opening and closing the door of the electric furnace. The temperature of all the beef/papain samples was meas-
ured at locations 3 mm below the surface of the beef sample using a fiber optic thermometer.

Methodology for in vitro enzymatic reactions.  For the in vitro experiments involving the papain enzyme
and the casein protein, the enzyme (1.0 mg) was first added to ion-exchanged water (20.0 mL), whereas the casein
(500 mg; Wako Pure Chemical Industries) was dissolved in a tris-HCl aqueous solution (0.10 M; 50.0 mL; pH 8.0).
An enzyme activating solution (pH 8.0) was added to promote the activity of papain, which consisted of L-cysteine
hydrochloride monohydrate (440 mg; Wako Pure Chemical Industries, Ltd.) and ethylenediamine-N,N,N',N’-
tetraacetic acid disodium salt dihydrate (0.27 g; Wako Pure Chemical Industries, Ltd.) dissolved in ion-exchanged
water (45.0mL). Subsequently, the casein solution (2mL), the tris-HCl solution (0.010 M; 200uL), the ion-exchanged
water (200 L), and the papain aqueous solution (600 L) were added in this order to a quartz test tube reactor. The
resulting solution was stirred using a micro-stirring bar and then subjected to a 4-Watt microwave electric field
heating (E-field), to a 4-Watt magnetic field heating (H-field), and by conventional heating using a water bath. The
initial temperature of the solution was 20 °C, after which the temperature of the solution was raised in each case
to the reaction temperature of 60 °C (the heating rate was ca. 0.57°C s™!). At these microwave input power levels,
microwave heating and heat loss to the atmosphere were in equilibrium at 60 °C; no further temperature rise of
the solution occurred even if subjected to further microwave irradiation. Preliminary experiments had shown that
the hydrolysis of casein by the papain enzyme was no longer promoted at times over 30 min. Accordingly, heating
times with microwaves and water-bath heating periods were fixed at 5, 15 and 30 min, following which an aqueous
solution of trichloroacetic acid (5w/v%; 3 mL) was added to terminate the reaction of papain. The denatured protein
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was precipitated by centrifugation (300 rpm) for 5 min, following which the aqueous solution was filtered and then
analyzed spectroscopically with a UV/Vis spectrophotometer (JASCO V-760).

The hydrolysis of the amino acid trimers, t-butyloxycarbonyl-L-phenylalanyl-L-seryl-L- arginine-4-methylcoumaryl
-7-amide (Boc-Phe-Ser-Arg-MCA; 0.01 mg) and of the t-butyloxy- carbonyl-L-valyl-L-leucyl-L-lysine-
4-methylcoumaryl-7-amide system (Boc-Val-Leu-Lys-MCA; 0.01 mg) in the presence of the papain enzyme (1.0mg)
was carried out by addition of the amino acid trimers into 10L of ion-exchanged water. In the decomposition of the
amino acid trimer by the papain enzyme, the enzyme preferentially disconnects the arginine (Arg) terminal or lysine
(Lys) terminal amino acid. In essence, following the hydrolysis at the Arg-MCA or Lys-MCA positions, the MCA is iso-
lated causing it to fluoresce. The emission by the MCA was recorded at 393.8 nm using the JASCO FP-8000 fluorescence
spectrophotometer; the excitation wavelength was 290 nm.

The enzymatic activity of catalase (from bovine liver; Wako Pure Chemical Industries, Ltd.) in the degradation
of H,0, in aqueous media was investigated by introducing 2 mg of catalase in an aqueous Na;PO, buffered solution
(50mM; 15mL). Three microliters (3 uL) of this catalase solution were subsequently added to a quartz tube reactor
(dia., 12 mm; internal dia., 10 mm; height, 100 mm) followed by addition of 30 mL of an aqueous Na;PO, buffered
solution (50 mM; pH 8.0; 29.8 mL) containing 0.2 mL of 30% H,0, (quantity of H,O, in the resulting solution was
0.2%). The reactor containing a magnetic stirring bar (25 mm) was then positioned in the microwave equipment
(microwave heating) or in a water bath (conventional heating). After a given reaction time (2, 3, 5 or 6 min), the solu-
tion was immediately put into boiling water bath for 1 min to arrest the activity of the enzyme. The quantity of H,0,
remaining in solution was monitored at 190 nm with a UV/Vis spectrophotometer (JASCO V-760). Analogous con-
ditions of thermometer, reactor, and the same solution prevailed under both conventional and microwave heating.

Statistical analysis. Statistical analyses were performed with 1 tailed and unpaired Students t-test using the
formula eq. 1 (SD: standard deviation, n=number of samples, i = Water bath, ii =Microwave). Results from the
calculations (Excel software) are indicated with average and standard deviation.

(= |Average, — Average;|

(SDy? n (SD;)?

i njj (l)

n
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