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Abstract

Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high
commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be
difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced
palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent.
We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45,
member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected
embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency
was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to
partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or
just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from
whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types
and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded
pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed
in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting
observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use
of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and,
though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used for functional studies in
Atlantic salmon.
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Introduction

Atlantic salmon is an important commercial aquaculture

species. Likewise, the growing salmon industry displays a demand

for healthy, fast growing and tasty fish. To improve knowledge and

to solve bottlenecks of salmon aquaculture, the salmon genome is

currently being sequenced [1]. To further implement findings

gained from the salmon genome, functional studies of genes linked

to health, growth, welfare and filet quality will be necessary. This

will increase our knowledge and possibly explain causative

relations to some of the challenges present in the aquaculture

industry such as egg/sperm quality, reproductive mechanisms,

growth rate, disease resistance and immunological mechanisms. In

the era of genome wide association studies many genes will be

directly linked to a trait and further functional characterization of

these genes will significantly improve selective breeding of

associated traits.

Functional studies in salmon embryos have so far been difficult

to implement, but a few studies have employed knockdown

techniques in salmonids using morpholinos [2–4]. However,

current approaches have not proven to be very efficient. This

can partly be ascribed to the characteristics of the egg being

difficult to precisely inject due to its large and opaque features and

almost invisible first cell stage [5]. This together with the variable

efficiencies using morpholinos makes it even more difficult in this

non-model species [6].

In recent years the ability to specifically create targeted

mutations by gene editing techniques has steadily improved. The

first gene editing experiments in teleosts were conducted in

zebrafish, starting with targeted mutagenesis using zinc finger

nucleases (ZFN, [7,8]) followed by the more efficient transcription

activator-like effectors (TALENS, [9]). A study in rainbow trout

used ZFN to induce targeted mutagenesis in the sdy gene, with the

purpose to confirm its function in sex determination [10]. The

ZFN technology has also been applied to a catfish species, with the

aim to elucidate muscle growth mechanisms [11]. The problem

using this methodology in salmonids is their long generation time

(2–4 years) as previously used targeted mutagenesis protocols do
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not efficiently induce bi-allelic mutations and therefore require

breeding for two more generations to induce a homozygous

mutation in targeted genes.

Recently, with the CRISPR (clustered regularly interspaced

palindromic repeats)/Cas9 (CRISPR-associated) system, a highly

efficient technology has been developed, which has shown to

specifically induce mutations in many model and non-model

animals including zebrafish and tilapia [12,13]. This technology is

so efficient in zebrafish and Xenopus that it can induce gene

specific bi-allelic mutations in the first (F0) generation [14,15].

This feature makes this new technology very promising for use in

non-model organisms with longer life spans such as the Atlantic

salmon.

The CRISPR/Cas9 system was identified in bacteria and

archaea, serving as an immune system against bacteriophages and

foreign DNA [16–19]. In these organisms the CRISPR loci

incorporates foreign DNA, this DNA is then synthesized into short

CRISPR RNAs (crRNA) which bind to a transactivating RNA

(tracrRNA) and to foreign DNA catalyzing cleavage and

destruction by recruiting the RNA-guided DNA nuclease Cas9

[20]. A construct which has been tailored for targeted mutations is

a fusion of crRNA and tracrRNA functioning as a guide RNA

(gRNA) which in combination with the Cas9 nuclease can then

induce double DNA strand breaks [21]. The mutation is

introduced when the doublestrand break is repaired by either

high-fidelity homologous recombination or error prone non-

homologous end-joining (NHEJ).

The aim of the present study was to attempt creating specifically

induced bi-allelic mutations in target genes in Atlantic salmon

using the CRISPR/Cas9 system. For this purpose we selected

genes producing pronounced pigmentation phenotypes in zebra-

fish enabling a direct visual enumeration [22–23]. Specific target

oligonucleotides corresponding to two genes (tyrosinase and

slc45a2) known to be involved in pigmentation in zebrafish and

other species were cloned into a CRISPR vector developed for

zebrafish [14]. In vitro transcribed RNAs from the cloned

constructs were injected into one-cell stage Atlantic salmon

embryos together with Cas9 mRNA. Mutation rates were

measured in whole embryos prior to hatch and in DNA prepared

from finclip versus whole juvenile fish showing lack of pigmenta-

tion. Here, we present the first targeted genome editing employing

the CRISPR/Cas9 technology on salmonid fish and further

extend the list of successfully tested non-model species where

functional studies and induction of mutations have previously been

problematic.

Materials and Methods

Cloning of target sites for gRNAs
Using a draft salmon genome sequence (AGKD00000000.1)

both tyrosinase (tyr) and slc45a2 exon sequences were predicted by

comparing to published sequences in salmon for tyr (Accession:

NM_001123643) and in zebrafish for slc45a2 (NP_001103847).

From the predicted sequences in the salmon genome the slc45a2
gene was found split into two contigs (Accession:

AGKD01080285, AGKD01048537). The salmon tyrosinase (tyr)
coding sequence was found split into four genomic contigs

(Accession: AGKD01095509, AGKD01379509,

AGKD01094529, AGKD01346345). Suitable oligonucleotides

for CRISPR targeting were selected using an online tool provided

by http://zifit.partners.org/ZiFiT/ [24]. Candidate target se-

quences were compared to the current salmon genome draft to

exclude unwanted off-target cleavage. Target site and oligonucle-

otide sequences for salmon slc45a2 and tyr are listed in Table S1.

Oligonucletides were annealed and cloned into pT7-gRNA [14],

Addgene ID# 46759 as described below: 2 mM of each forward

and reverse oligonucleotide was annealed in annealing buffer (0.4

M Tris pH 8, 0.2 M MgCl2, 0.5 M NaCl, 10 mM EDTA pH 8) by

incubating at 95uC for 5 min, followed by ramping down to 4uC at

22uC/min. 3 ml of annealed oligonucleotides were ligated into

5 ng of BsmBI, BglII, SalI digested pT7-gRNA and gel-extracted

using Quick T4 DNA Ligase (NEB) and subsequently cloned using

XL1-blue competent cells (Stratagene). Plasmids were prepared

using a QIAprep Spin Miniprep Kit (Qiagen).

In-vitro transcription of gRNA and Cas9 mRNA
pT7-gRNA was linearized using BamHI-HF (NEB), containing

the respective cloned target sites for either slc45a2 or tyr, were
prepared using a QIAprep column (Qiagen) and transcribed using

the MEGAscript T7 kit (Ambion) according to the manufacturer’s

protocol. The mirVana miRNA Isoltation Kit was used to purify

gRNAs.

For producing Cas9 nuclease mRNA, we used the pTST3-

nCas9n vector optimized for Zebrafish [14] (Addgene ID#
46757). Prior to in-vitro transcription, the plasmid was linearized

using XbaI (NEB) and cleaned up via a QIAprep Spin column.

Cas9 mRNA was produced using the mMessage mMachine T3 kit

(Ambion) and purified using an RNeasy MiniKit spin column

(Qiagen).

Injection procedures
Salmon eggs and sperm obtained from Aquagen (Trondheim,

Norway) were sent overnight to Matre Aquaculture station at

IMR. Eggs were subsequently fertilized with sperm in fresh water

(6–8uC) containing 0.5 mM reduced Gluthathione as described

earlier for rainbow trout [25]. After fertilization, embryos were

incubated 2–3 hours at 6–8uC until the first cell was visible. Eggs

were subsequently injected with a mix containing 50 ng/ml gRNA

and 150 ng/ml Cas9 mRNA in MilliQ H2O using the picospritzer

III (Parker Automation, UK) and needles from Narishige (Japan).

After injection, eggs were incubated at 6uC until hatching.

Analysis of mutations
DNA was obtained from embryos, juveniles and fin clips using

DNeasy Blood & Tissue kit (Qiagen) or AllPrep DNA/RNA kit

(Qiagen) with the following modifications: Eggs were squashed in

Buffer ATL and Proteinase K (DNeasy Blood & Tissue kit,

Qiagen), incubated at 56uC for 2–4 h and subjected to phenol/

chloroform extraction prior to DNA purification. Briefly, 1 vol. of

UltraPure Phenol/Chloroform/Isoamylalcohol (25:24:1, Life-

technologies) was added, mixed and phases separated by

centrifugation. The upper phase was mixed with 1 vol. of

chloroform, centrifuged and 1 vol. of Buffer AL and 100% EtOH

(DNeasy Blood & Tissue kit, Qiagen) was added to the DNA

containing aqueous phase and subjected to subsequent steps of the

DNeasy Blood & Tissue kit protocol. Juveniles (separated from the

yolk sac) and fin clips were homogenized using Zirconium oxide

beads and a homogenizer (Precellys) in buffer ATL or buffer

RLTplus/b-mercaptoethanol (AllPrep kit, Qiagen) prior to DNA

extraction. PCR was performed on genomic DNA to obtain a

fragment that covered the targeted mutagenesis site (PCR primer

sequences are listed in Table S1). Fragments were both directly

sequenced and subcloned into pCR4-TOPO using the TOPO TA

cloning kit for sequencing (Invitrogen) to either measure the

general effect in the target site in the whole preparation or in single

sequences from clones to assess the level of mosaic mutation rate in

each individual or sample.
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Ethics statement
All animal experiments within the study were approved by

NARA, the governmental Norwegian Animal Research Authority

(http://www.fdu.no/fdu/). To avoid unnecessary pain all fish

larvae were sedated with metomidate prior to sampling.

Results and Discussion

For the establishment of the CRISPR/Cas method in salmon,

target genes were selected based on their known role in

pigmentation of fish, as a resulting phenotype is clearly visible at

early developmental stages and throughout life. Since salmonid

Figure 1. Graded levels of phenotypes induced by CRISPRslc45a2/Cas9 (slc45a2-1 to slc45a2-3) and CRISPRtyr/Cas9 (tyr-1 to tyr-3)
found in picture A. Mutation rates and number of indel variants found in Atlantic salmon whole juvenile fish extracts at 650 dayu (B).
doi:10.1371/journal.pone.0108622.g001
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genomes are partly tetraploid [26], the two selected pigmentation

genes, tyrosinase and slc45a2, were also chosen because both

occur only once in the genome making them suitable for gene

knockout. Tyrosinase (tyr) is essential for normal pigmentation

both in medaka [27–28] and zebrafish [22]. In addition Tyr has

previously been shown to affect pigmentation in rainbow trout

using morpholinos [29]. Likewise, Slc45a2 is essential for

pigmentation in both zebrafish [23] and medaka [30].

Since development is relatively slow in Atlantic salmon, it takes

almost three months until a visible pigmentation phenotype can be

observed in hatched embryos at about 500 dayu (,84 days at 6uC
[5]). In salmon, the developmental stage is calculated as dayu by
multiplying the incubation temperature (in uC) with the amount of

days since fertilization. At stages prior to visual examination,

embryos can be screened by PCR for targeted mutations.

Consequently, injected embryos were harvested two weeks after

fertilization (17 somite stage, 72 dayu), DNA was extracted from

whole embryos and PCR screenings were performed for both

gRNA targets, CRISPRslc45a2/Cas9 (n = 20 embryos) and

CRISPRtyr/Cas9 (n= 9 embryos). This analysis revealed that

both CRISPRslc45a2/Cas9 and CRISPRtyr/Cas9 resulted in

induced mutations in 40% and 22% of the embryos at early

developmental stages, respectively (see Table 1). This reflects that

in our experiments the overall mutation rate is lower than what

has been observed in zebrafish (75–90%) [14] but within a similar

range as it has been obtained for tilapia (24–50%) [13]. A possible

reason for a lower mutation rate in Atlantic salmon can be the

lower incubation temperature (6–8uC) causing the Cas9 enzyme to

Table 1. Mutation rate in CRISPR/Cas9 embryos and juveniles.

Targeted Gene
17 somite stage
embryos (72 dayu) Phenotype 650 dayu

Mutants without
phenotype 650 dayu

slc45a2 40% (8/20) 8.7 % (16/184) 9.5% (2/21)

tyr 22 % (2/9) 5.1% (19/371) 45% (5/11)

doi:10.1371/journal.pone.0108622.t001

Figure 2. Level of indel abundances in fin clip versus whole juvenile DNA preparation from CRISPRslc45a2/Cas9 (slc45a2-4 to slc45a2-
6) at 600 dayu. (A) Fish analyzed for indels in fin clip and whole juvenile fish preparations. (B–D) Frequency [%] (x-axis) of a specific indel (y-axis) in
fin clip (grey bars) and whole fish (black bars) of Atlantic salmon juveniles at 600 dayu.
doi:10.1371/journal.pone.0108622.g002
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be less effective. Another more plausible explanation is the

injection procedure. Because of the opaque character of newly

fertilized salmon eggs and the hardness of the chorion it is difficult

to inject directly into the cytoplasm of the first cell. Therefore, the

relatively low number of embryos displaying mutations is possible

due to failed injections. However, we assume that successful

injections result in a high incidence of mutations (Figure 1 and 2)

which implies that the mutation efficiency is as high as previously

observed for zebrafish [14]. An increased early mutation

frequency could possibly also be obtained by injecting the Cas9

protein directly or by improving the timing of injection after

fertilization. It has been shown that the introduction of off-target

mutations might constitute a problem using the CRISPR/Cas9

system. In this study we did not measure off-target mutations,

however previous studies in zebrafish has shown a low off-target

mutation frequency produced by CRISPR [31]. CRISPR sites

were also carefully selected in this study to prevent off-target

effects.

At 650 dayu phenotypes in mutated juvenile groups were

visually determined and 8.7% and 5.1% of juveniles displayed a

graded loss of pigmentation (Figure 1A). The similar graded

degree of phenotype induction has previously been observed in

both zebrafish and Xenopus for targeting the tyr gene in these

species [14,32]. In contrast to these studies a dose dependent

severety of phenotype could not be established, since we only used

one empirically determined concentration of gRNA and Cas9

mRNA in our work. However, we cannot exclude a dose-

dependent effect due to injection procedures as explained above.

Fish showing a graded phenotype due to mutations in either

slc45a2 or tyr, were selected based on the level of pigmentation

loss. Hence, the following juveniles were subjected to PCR

screening and sequencing of induced mutations; full (slc45a2-1),
almost full (tyr-1), medium (slc45a2-2, tyr-2) and little pigmenta-

tion loss (slc45a2-3, tyr-3, Figure 1, Table S2a–c and S3a–c).

Additionally, two fish from each group, targeted for either slc45a2
or tyr, which showed no visual pigmentation loss were analyzed

(neg slc45a2#1, neg slc45a2#2, neg tyr#1 and neg tyr#2, Figure 1,

Table S2e–f and S3e–f). To quantify mutation frequencies in each

juvenile fish, DNA was extracted from the whole fish, a PCR

product covering the CRISPR target site was amplified and the

product was subsequently subcloned (50–100 clones per fish). In

the mutated slc45a2-1 fish, which displayed a complete loss of

pigmentation, no wild type sequences could be detected in any of

the clones assayed (n= 88). However, medium pigmentation loss

phenotype in slc45a2-2 (Figure 1, Table S2b) mutated fish also

lacked wild type sequences even though 87 clones were sequenced.

Simply undersampling might be an explanation for this. Never-

theless, more wild type sequences have been detected in fish with

less severe phenotypes, while none or few could be found in strong

(no/medium pigmentation) phenotypes. This trend was also

observed in two of the five tyr phenotypes (tyr-1 and tyr-2), where
only one wild type sequence of 58 and 54 sequenced clones,

respectively, could be detected in each fish (Figure 1, Table S3a–

b). Additionally, we screened 21 and 11 fish targeted for either

slc45a2 or tyr, displaying a wild type phenotype at 650 dayu (neg
slc45a2#1, neg slc45a2#2, neg tyr#1 and neg tyr#2, Figure 1B). In

these groups, 9,5% (slc45a2) and 45% (tyr) of juveniles were shown
to have indel mutations (Table 1, Table S2d–e and S3d–e). As

expected these fish displayed a low frequency of targeted

mutations explaining the wild type character of the fish

(Figure 1B).

We further wanted to know if embryo/juvenile stages could be

sorted based on mutation frequencies in fin clips only, instead of

sacrificing the whole fish. This is important in future studies when
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targeting genes with unknown function and where mutated

embryos/juveniles show no visual phenotype in F0. To investigate

if fin clips could mirror the mutation type found in whole fish, we

screened fin clip and whole fish DNA preparations from additional

juveniles (600 dayu) which displayed graded pigmentation

phenotypes in the slc45a2 knockout attempts. This included three

fish slc45a2-4 which only displayed a few pigmentation spots,

slc45a2-5 displayed some more pigmentation spots and slc45a2-6
displayed even more pigmentation spots (Figure 2A). These fish

were screened for indel types and frequencies which are presented

in Figure 2 B–D and in Table S4a–c. This comparison revealed

similar frequencies for the most common indel variants in all three

fish. However, among the less frequently occurring indels we

observe more indel variants in the whole fish compared to fin clip.

These results show that the fin clip to a certain degree mirrors the

mosaicism in the knockout fish and can therefore be used as a tool

to evaluate knockout phenotypes.

Another interesting finding was the independent generation of

the same mutation types in different fish injected with the same

gRNA (Table 2). By thorough screening of the 6 scl45a2 mutated

fish (slc45a2-1 to slc45a2-6, Figure 1A and 2A), we found 7 of the

indel variants to be present in at least three of the seven fish

(Table 2). However, we were not able to link the abundance of

certain indel types to specific phenotypes. These mutations were

all in proximity of the PAM site (bold and underlined in Table 2),

which is similar to what has been observed previously in zebrafish

[14,24]. A previous study using the CRISPR/Cas9 technology in

Xenopus also indicated that the same mutations were formed using

the same construct in different F0 individuals [15]. This further

suggests that individual F0 fish may hold the exact same indel

variants and crosses of these can produce a non mosaic

homozygous mutant already in the F1 generation. This technology

is therefore especially relevant for species with long generation

times like Atlantic salmon.

In conclusion, we show here for the first time successful targeted

mutagenesis in salmon using the CRISPR/Cas9 technology. We

anticipate that this technology will be an important tool for

functional studies in this biologically and commercially interesting

fish species. In the future the use of this technology will be

facilitated since the rainbow trout genome has recently been

sequenced [26] and the Atlantic salmon genome has been made

available (Acc. No. AGKD00000000.3). In our hands, genome

editing using CRISPR/Cas9 in salmon seems to be somewhat less

efficient than reported for other fish species [12–14], probably due

to the features of the egg and hence obstacles during injections

procedures. Nevertheless, using knockout of pigmentation genes as

shown here, can be a useful marker in co-injections with gRNAs

targeting other genes of interest which show no obvious

phenotype. This approach could facilitate the selection of putative

positive fish for confirming a successful knockout of targeted genes.

Previous targeted knock out technologies such as TALENs and

ZFN did induce lower mutation frequencies in the F0 compared to

CRISPR/Cas9 [7–9]. Hence, due to the general high efficiency

and biallelic mutation capacity of the CRISPR/Cas9 technology,

the F0 generation can already be used for the evaluation of protein

functions in salmonids, as has been previously demonstrated for

tilapia and Xenopus [13,15]. Furthermore, this paper substantiates

that the stronger the knockout phenotype found in the F0

generation is, the less indel variants are found. We also tested and

confirmed that fin clips can be used as an indicator of an efficient

knockout. To conclude, the establishment of functional studies

through the CRISPR/Cas9 technique in salmonids opens up new

doors to understand their basic biology and provides a useful tool

for investigating traits important for the aquaculture industry.
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