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ABSTRACT
The tumor microenvironment (TME) within mucosal neoplastic tissue in oral cancer (ORCA) is greatly 
influenced by tumor-infiltrating lymphocytes (TILs). Here, a clustering method was performed using 
CIBERSORT profiles of ORCA data that were filtered from the publicly accessible data of patients with 
head and neck cancer in The Cancer Genome Atlas (TCGA) using hierarchical clustering where patients 
were regrouped into binary risk groups based on the clustering-measuring scores and survival patterns 
associated with individual groups. Based on this analysis, clinically reasonable differences were identified 
in 16 out of 22 TIL fractions between groups. A deep neural network classifier was trained using the TIL 
fraction patterns. This internally validated classifier was used on another individual ORCA dataset from the 
International Cancer Genome Consortium data portal, and patient survival patterns were precisely 
predicted. Seven common differentially expressed genes between the two risk groups were obtained. 
This new approach confirms the importance of TILs in the TME and provides a direction for the use of 
a novel deep-learning approach for cancer prognosis.
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Introduction

Head and neck cancer (HNSC) is currently garnering much atten-
tion; approximately 53,260 patients have been newly diagnosed 
with HNSC in 2020 – thus far in the United States – and HNSC- 
associated estimated deaths ranks 10th among the major malignant 
cancer types in the U.S.1 Although the number of patients 
accounts for only 2.9% of the newly reported cancer cases, the 
incidence rate of HNSC is 11.4% and the mortality rate is 2.5% 
over a period of 5 years, from 2013 to 2017, and the 5-year relative 
survival rate is only 66.2% from 2010 to 2016.2 Therefore, the 
development of new HNSC biomarkers is important to overcome 
the lack of research data as a result of the small number of patients.

Over the past several years, many studies have been con-
ducted to develop a novel HNSC biomarker that predicts 
prognosis.3–8 However, limitations of the current potential 
biomarkers make clinical application very challenging.9 The 
importance of tumor-infiltrating lymphocyte (TIL) informa-
tion has previously been reported,10,11 as TIL levels identify 
high-risk groups of patients with oral tongue squamous cell 
carcinoma.12 In particular, balanced levels of CD8 + T cells and 
regulatory T cells (Tregs) directly affect the survival rate of 
patients with oral cancer (ORCA).13 In addition, the elevated 
abundance of cancer-associated fibroblasts is highly correlated 
with patient survival.14

In TIL-focused analysis, determining increases in gene expres-
sion levels via differentially expressed gene (DEG) analysis is 

eventually used to identify individual potential gene biomarkers. 
In this case, within the analysis results, it is possible that there may 
be elevated false-potential biomarker genes that are not signifi-
cantly related to the immune system. Thus, broad identification of 
general immune microenvironments may be more effective than 
relying on the identification of individual levels of biomarker 
genes when analyzing immune-related survival rates.15,16 Thus, 
CIBERSORT, a popular TIL prediction method, was selected. 
Through the LM22 signature matrix, CIBERSORT provided the 
most diverse predictions of abundance levels across TIL subsets 
among the tumor microenvironment (TME) deconvolution tools 
that were currently available. This was consistent with our pur-
pose of identifying the “cell type-wide” immune cell landscape. 
Using the support regression vector-based machine learning 
method, Newman et al. have demonstrated that CIBERSORT 
effectively resolves cell subtypes with similar gene expression 
patterns via benchmarking analysis.17 CIBERSORT analysis for 
various cancer types has enabled the development of novel 
biomarkers,18–20 confirming the importance of focusing on 
immune cell fractions within the TME.

Several existing studies have identified survival patterns by 
analyzing gene expression profiles using deep learning,21–23 but 
deep learning studies that reveal TIL-specific patterns using 
secondary information, such as CIBERSORT, have not been 
published thus far. Therefore, in this study, deep learning was 
suggested as an alternative strategy for identifying biomarkers 
that may provide details about survival patterns. In this 
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strategy, heterogeneous TME information, RNA expression 
data of selected ORCA subgroups in the HNSC cohort of The 
Cancer Genome Atlas (TCGA), was fed into a deep neural 
network (DNN) classifier coupled to CIBERSORT.

Materials and Methods

RNA expression data and derived immunotype-predicted 
data preprocessing

The RNA-Sequencing (RNA-Seq) ORCA datasets were down-
loaded for training candidates and validation. The RNA 
expression and clinical data for head and neck squamous cell 
carcinoma were downloaded from the Broad Institute Genome 
Data Analysis Center Firehose database (https://gdac.broadin 
stitute.org/). Another ORCA dataset was downloaded from the 
International Cancer Genome Consortium (ICGC) data portal 
(https://dcc.icgc.org/). Detailed patient information after data 
preprocessing is provided in Table 1.

The immune cell fractions in both TCGA and ICGC data-
sets were predicted via CIBERSORT using the LM22 signature 
matrix with a 100× permutation count without applying quan-
tile normalization, as directed on the website. After running 
CIBERSORT, 203 out of the 566 samples with a CIBERSORT 
p-value > 0.05 were removed. Another 77 samples from sites of 
the hypopharynx, larynx, and oropharynx that obviously did 
not belong to ORCA were removed. A total of 113 samples 
from tongue sites (tongue base and oral tongue) were also 
removed, and the clinical prognosis was different from the 
validation cohort, gingivobuccal cancer.24,25 The remaining 
173 samples were obtained for further analysis. A detailed 
flowchart of the pipeline is shown in Figure 1(a).

Statistical analysis

K-means clustering and hierarchical clustering were performed 
using the scikit-learn Python package (version 0.22.1). 

Consensus clustering was performed using the 
ConsensusClusterPlus R package (version 1.50.0). Significant 
differences in each LM22 fraction were compared using the 
Mann‒Whitney U test. Survival analysis was performed using 
the lifeline Python package (version 0.24.2). Significance 
between survival curves was analyzed using the log-rank test. 
The t-test boxplot visualization was performed using the 
Statannot Python package (version 0.2.2).

DEG analysis

DEG analysis between TCGA risk groups was performed 
using the R limma package (version 3.42.2) .26 P-values < 
0.05 and |log fold change | > 1.2 threshold were applied to 
the result.

Survival prediction by deep learning classification

Deep learning classification was performed using a DNN classi-
fier in the TensorFlow module (version 1.14.0) in Python and 
included 2000 steps with a 7 × 7 hidden layer. The hidden unit 
size (7 × 7) was diversified by square multiplication from 2 to 30, 
determining the optimal value with the highest accuracy. Loss 
was calculated using softmax cross entropy, Adagrad for opti-
mizer, and Relu for the activation function. Accuracy was auton-
omously calculated using the internal evaluation function. 
A detailed flowchart of the pipeline is shown in Figure 1(b).

Analysis environment

The overall analysis was performed using Python (version 
3.7.9; Python Software Foundation, Wilmington, DE, USA) 
and R (version 3.6.1; The R Foundation, Vienna, Austria) 
software. Any other version of Python/R packages of interest 
may be checked in an established conda environment within 
the provided docker image.

Table 1. Clinical characteristics of the cohort of patients with head and neck cancer in The Cancer Genome Atlas for which the oral cancer data were filtered.

Total Low-risk group High-risk group

Number (Percentage)

Age (years) 0–39 4(2.3) 3(4.1) 1(1.0)
40–49 20(11.6) 8(10.8) 12(12.1)
50–59 58(33.5) 27(36.5) 31(31.3)
60–69 42(24.3) 14(18.9) 28(28.3)
70–79 34(19.7) 15(20.3) 19(19.2)

80+ 15(8.7) 7(9.5) 8(8.1)
Sex Male 124(71.7) 53(71.6) 71(71.7)

Female 49(28.3) 21(28.4) 28(28.3)
N stage N0 75(43.4) 34(45.9) 41(41.4)

N1 28(16.2) 8(10.8) 20(20.2)
N2 62(35.8) 29(39.2) 33(33.3)
N3 2(1.2) 0(0.0) 2(2.0)
NX 6(3.5) 3(4.1) 3(3.0)

T stage T1 14(8.1) 10(13.5) 4(4.0)
T2 56(32.4) 29(39.2) 27(27.3)
T3 33(19.1) 15(20.3) 18(18.2)
T4 66(38.2) 17(23.0) 49(49.5)
TX 4(2.3) 3(4.1) 1(1.0)

M stage M0 166(96.0) 68(91.9) 98(99.0)
M1 2(1.2) 2(2.7) 0(0.0)
MX 5(2.9) 4(5.4) 1(1.0)
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Results

Survival analysis of clustered CIBERSORT results from 
TCGA data

To obtain unsupervised classified results, the CIBERSORT 
results were subjected to various clustering analyses. The 
most important step in clustering was to determine the appro-
priate clustering method and optimal k-value. In this study, 
three clustering methods were considered for classification 
during candidate training: Hierarchical, K-means, and consen-
sus clustering. These clustering methods were all incorporated 
into the “intracohort validation” process, and the results were 
calculated for each k-value via mutual information (MI), nor-
malized MI (NMI), and adjusted MI (AMI) methods. To con-
cisely depict only the valid analysis results, the hierarchical 
clustering method was utilized with a k-value = 3 that exhibited 
every measuring value (Table 2).

A Kaplan‒Meier (K-M) graph was plotted to depict overall 
survival information in the clinical data for each defined clus-
ter. Cluster 2 (green) exhibited a better prognosis compared to 

clusters 1 and 3 (Figure 2(a)). The two groups (cluster 1, red 
and cluster 3, green) did not exhibit meaningful differences 
between them (p = .88740); therefore, the two groups were 
combined into a single high-risk group (Figure 2(b)).

Differences in the TIL fraction between the high- and 
low-risk groups

The Mann‒Whitney U test was used to determine the differ-
ences between the high- and low-risk groups in the TCGA 
ORCA dataset based on the abundance of each of the 22 TIL 
subsets (Figure 3). As shown in the boxplots, the counts of naïve 
and memory B cells, CD8 + T cells, activated memory CD4 + T 
cells, follicular helper T cells, Tregs, resting natural killer (NK) 
cells, monocytes, M1 macrophages, resting dendritic cells, and 
resting mast cells were significantly increased in the low-risk 
group, whereas a significant increase in the naïve CD4 + T cell, 
gamma delta T cell, M0 macrophage, activated mast cell, and 
eosinophil TIL counts were observed in the high-risk group. No 
difference was observed between the two groups with respect to 
plasma cell, resting memory CD4 + T cell, activated NK cell, M2 
macrophage, activated dendritic cell, and neutrophil counts.

Common DEGs between high- and low-risk groups

To explore prominent potential biomarker genes, DEG analy-
sis was performed between each predicted risk group in both 
TCGA and ICGC patients, confirming seven common DEGs in 
total. Small proline-rich protein 3 (SPRR3) was upregulated in 

Table 2.. Mutual information (MI), Normalized MI (NMI) and Adjusted MI (AMI) 
scores of potential clustering methods. The most acceptable scores among 
variated k values across each clustering/measuring method are highlighted..

Consensus 
(k = 3)

Hierarchical 
(k = 2)

Hierarchical 
(k = 3)

Hierarchical 
(k = 4)

K-means 
(k = 2)

K-means 
(k = 3)

MI 0.423562 0.405244 0.687885 1.037712 0.426107 0.686712
NMI 0.414230 0.592863 0.654062 0.818148 0.674453 0.642146
AMI 0.400079 0.589346 0.645963 0.809483 0.671388 0.633973

Figure 1. (a) Pipeline flowchart depicting the data preprocessing step. (b) Pipeline flowchart for processing the classifier establishment step, including the validation 
process using a deep neural network (DNN) classifier. GDAC, Genome Data Analysis Center; HNSC, head and neck cancer; RNA-seq, RNA sequencing; TIL, tumor- 
infiltrating lymphocyte; DEG, differentially expressed gene; DNN, deep neural network; RF, random forests; DT, decision tree; ICGC, International Cancer Genome 
Consortium; ORCA, oral cancer.
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the low-risk group, while collagen type XI alpha 1 chain 
(COL11A1), collagen type X alpha 1 chain (COL10A1), matrix 
metallopeptidase 11 (MMP11), matrix metallopeptidase 13 
(MMP13), collagen triple helix repeat containing 1 
(CTHRC1), and ring finger protein 128 (RNF128) showed 
significant upregulation in the high-risk group.

Survival prediction based on the classified CIBERSORT 
results

To verify if the survival rate of other public ORCA cohorts 
might be predicted based on the patterns observed in the 
current data group, a deep learning model using a DNN clas-
sifier was established. To validate the classifier model’s accu-
racy, two strategies were employed, i.e., “intracohort 
validation” and “intercohort validation.”

In the first step, 80% of the samples (n = 138) in the TCGA 
ORCA dataset were used as inputs to train the DNN classifier. 
The remaining samples were divided into two to perform valida-
tion tests. The accuracy for the former test group was 100%, 
whereas for the latter, it was 94.4% (n = 17 for group 1, n = 18 for 
group 2), demonstrating a significant survival group prediction 
level of 97.2%, on average. A time-dependent graph depicting 
the changes in the loss function/internal accuracy of the training 
set and accuracies in individual datasets is shown in Figure 4. 
Because the classifier predicted the survival pattern of the sample 
group based on the CIBERSORT results, the classifier was used 
to analyze a completely different RNA-Seq ORCA dataset.

There are some concerns that the remarkable perfor-
mance of the classifier might be attributed to overfitting, 
which is always associated with endeavors aimed at achiev-
ing maximum accuracy. Thus, the performance of the clas-
sifier must be validated using cohorts from completely 
different batches. The obtained ICGC ORCA RNA-Seq 
dataset was classified using a previously established classi-
fier. The differential survival patterns between samples from 
the predicted high-risk (n = 6) and low-risk groups 
(n = 28) were analyzed using the K-M method. As shown 
in Figure 5, the survival of the predicted high-risk group 
was significantly lower than that of the predicted low-risk 
group (p = .00685). Detailed patient information for each 
predicted group is provided in Table 3.

To validate the classifier’s performance over similar model-
ing methods, the validation result was compared to other 
results of the same training data using two methods: random 
forests and decision tree methods over the same pipeline. The 
accuracy of the random forest method was nearly 94.1% on 
average between the two intracohort validation datasets, but 
the established classifier with the method did not show any 
significant survival rates between the predicted risk groups in 
intercohort validation. In contrast, the decision tree method 
significantly predicted survival rates between the two groups in 
external validation, but the internal validation result had the 
worst accuracy across methods, scoring only 82.4% on average. 
All K-M plots, receiver operating characteristic curve plots, and 
corresponding area under the curve scores as validation results 
of the three methods over the pipeline are provided in 
Supplemental Figures 4 and 5.

Discussion

The analysis of hidden patterns within gene expression data is 
a tremendous strategy to attaining an in-depth understanding 
of functional genomics. However, the complexity of biological 
networks and the large number of genes make data analysis 
very difficult; thus, some clustering algorithms help derive 
useful information by identifying patterns in gene expression 
data.27 Based on this idea, by clustering the ORCA 
CIBERSORT results, which accurately estimate immune com-
position, we aimed to achieve a more immune-specific and 
noise-free clustering efficiency. In addition, to examine 
whether the results could be validly analyzed, the immunolo-
gical characteristics of each high- and low-risk group were 
determined by comparing the estimated immune cell fraction 
identified using CIBERSORT in each group.

The TME is an important indicator of the clinical and 
prognostic factors of cancer. Bin Liang et al. have identified 
the effects of 22 immune cell subsets in patients with HNSC, 
and used their characteristics to reveal clinical relevance and 
define independent prognosis factors in advance.28 

Furthermore, in this study, the actual risk groups were pre-
dicted by classifying the signature patterns of TIL fractions in 
patients with HNSC by combining them with survival infor-
mation. As a result of this effort, a few patients with HNSC, 

Figure 2. (a) Kaplan‒Meier (k-m) plot of K-means clustering after cell-type identification by estimating relative subsets of RNA transcripts (k = 3 and n = 173). The yellow 
line (class 3) shows a distinct favorable survival pattern. (p-value = 0.26592) (b) K-M plot of Figure 2a regrouped by binary risk group. Groups corresponding to the blue 
and green lines in Figure 2a are merged into one high-risk group. (p-value = 0.01441).
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whose survival rates were extremely low, were successfully 
identified.

The purpose of this study was to identify the clearest differ-
ences between the two risk groups and to introduce these data 
patterns into a classifier, so as to identify the classification 
method/optimal k-value that resulted in the most distant and 
significant clusters. Therefore, there was a significant difference 
between this approach and other clustering measurement 
methods, such as MI, NMI, and AMI. The measured score 
plays an important role in determining the optimal method/ 
k-value based on survival patterns, but it cannot serve as the 
sole evidence. For example, in the overall measuring scores of 

the hierarchical clustering method as shown in Table 2, the 
score with a k-value = 4 (MI = 1.037712, NMI = 0.818148, 
AMI = 0.809483) was significantly higher compared to that of 
a k-value = 3 (MI = 0.687885, NMI = 0.654062, 
AMI = 0.645963), but in the K-M analysis, the p-value asso-
ciated with the former condition was poor (k = 3, p = .1359 and 
k = 4, p = .2524). The survival plot based on K-M analysis is 
shown in Supplemental Figure 1–3.

Differences in LM22 subtypes between the risk groups were 
also investigated. Many immune cell subtypes that enhance 
immunity were decreased in the high-risk group. Focusing on 
T-cell subgroups, the high-risk group showed decreased counts 

Figure 3. Bar plots indicating the differences in the estimated LM22 fraction between the high and low survival risk groups. Each p-value is written above the bar plots 
(NS: p > .05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, and ****: p ≤ 0.0001). Y-axis indicates predicted fraction level of each cell subtype.
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of activated memory CD4 + T cell fractions. Given that the 
prediction level of the naïve CD4 + T cell fraction showed an 
opposing regulation pattern, these data suggested that CD4 + T 
cell differentiation affected survival rates. Although further 
investigations on memory CD4 + T cells are required, several 

studies on cell development have revealed that memory 
CD4 + T cell development in tumors is crucial for various 
immunotherapeutic treatments, such as immune blockade 
therapy, in the context of enhancing the effectiveness of the 
anti-tumor response.29 In addition, activated memory CD4 + T 

Figure 4. Scalar visualization of the established deep neural network (DNN) classifier model over steps in the loss function (a) and accuracy with the training datasets (b), 
primary test set (c), and secondary test set (d).

Figure 5. Kaplan‒Meier survival plot of the predicted International Cancer Genome Consortium oral cancer dataset. (p-value: 0.00685).
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cell-induced activation of CD8 + T cells increases the direct kill 
rate of cancer, which is illustrated in the same context as 
a dramatic difference in the current cell type data. The counts 
of follicular helper T cells, which have been reported to play 
important roles in various cancer microenvironments,30–32 are 
also decreased in the high-risk group. A high fraction level of 
gamma/delta T cells has been found in patients with HNSC 
compared to that of normal patients.33 The current corre-
sponding result also indicated that the elevated gamma/delta 
T cell fraction might affect the low survival rates of the pre-
dicted high-risk patient group.

Increased monocyte levels enhance macrophage polariza-
tion into M1 macrophages, which produce proinflammatory 
cytokines and reactive oxygen/nitrogen species that are crucial 
for host defense and tumor cell killing.34 Chronic inflamma-
tion abnormalities and the accompanying oxidative stress lead 
to the development of various diseases, such as cancer.35,36 In 
this context, the current predictions of monocyte and macro-
phage phenotype abundance revealed some interesting results. 
Specifically, although the M2 macrophage fraction did not 
show differences between the two groups, the M0 macrophage 
fraction counts were significantly increased in the high-risk 
group, while those of the M1 macrophages and monocytes 
exhibited a proportionately opposite regulation pattern, sug-
gesting that the proinflammatory deactivation caused by sig-
nificantly decreased macrophage polarization played a crucial 
role in determining the survival rate in the high-risk group. 
The resting and activated mast cell fractions also showed an 
opposite regulation pattern. Mast cell accumulation in tumor 
tissue is either beneficial or detrimental to tumors; although 
further understanding of the key roles of mast cells in cancer is 
required, several studies have summarized the correlation 
between mast cells and cancer.37

In particular, it is interesting to note that this result is 
somewhat different from the survival analysis results based 
on Tregs and M0 macrophages reported by Bin Liang et al.28 

Both studies showed low survival rates in the groups 

containing low M0 macrophage counts, but the current study 
showed a fraction level with an opposite pattern in the Treg 
counts between risk groups. This indicated that the classifier 
we established focused on the difference in the cell subtype 
count with a more significant effect on survival among the 22 
input channels, considering the overall actual TIL composition 
within malignant tissues. It also suggests that analyzing the 
survival patterns using individual factors, such as single 
immune-cell types, may be problematic because the TIL com-
position in the TME is heterogeneous.

Eosinophil activity affects tumors in various ways due to their 
immunobiological characteristics; they affect anti-tumor 
responses due to their destructive features, but also promote 
tumor proliferation by inhibiting Th1 responses or increasing 
Th2 responses.38 Although tumor-associated eosinophils are gen-
erally observed in hematological solid tumors with a favorable 
prognosis, 39 the eosinophil elevation levels in this study show an 
opposite tendency. Further studies on the roles of eosinophils in 
ORCA would contribute to better comprehension of the results. 
Additionally, both naïve and memory B cells had downregulated 
fractions in high-risk patients. This result suggests potential 
hazards of B cell deficiency, since the role of tumor-infiltrating 
B cells within the TME remains controversial40 and is a challenge 
that requires further investigation.

Toruner et al. have reported significant downregulation 
of SPRR3 in oral squamous cell carcinoma compared to 
that in normal tissues,41 in two individual studies.42,43 The 
current results were identical to that research. COL11A1 
and COL10A1, which express circulating extracellular- 
matrix (ECM)-related proteins, are significantly elevated 
in breast cancer, gastric cancer, and pancreatic cancer.44 

Although further study is required to apply this result to 
ORCA, the current study enhances the hypothesis of the 
role of the two genes in various types of cancer. Pal et al. 
have reported that MMP11 and MMP13 are stimulated by 
the tumor-specific ECM protein thrombospondin 1 
(THBS1), whose expression is highly elevated in both cul-
tured human ORCA cell lines and their co-cultivated 
mouse fibroblast cells. The expression level of CTHRC1 is 
highly correlated with metastasis of ORCA cells.45 

Downregulation of RNF128 expression is correlated with 
poor prognosis in various types of malignancies.46,47 

However, in the current study, RNF128 was upregulated 
in the high-risk group compared to that of the low-risk 
group. The Cox proportional-hazards model was used to 
acquire common DEGs, but no significant coefficient with 
survival was found among the genes included. In light of 
these results, determining the cancer survival prognosis 
with a single biomarker gene might overlook the impor-
tance of a cohort comprising the TME.

The benefits gained from the clustering of existing gene 
expression data and analysis methods are well established.48 

However, the ability to achieve useful results by clustering 
secondarily analyzed expression data (in this case, 
CIBERSORT) has been questionable. In this study, evidence 
was provided on the benefits of clustering CIBERSORT data 
that contained information on tumor-infiltrating immune cell 
subsets. Further study and understanding of these cell subsets 
in in vivo environments in various cancers are needed.

Table 3. Clinical characteristics of the risk-group predicted cohort of patients with 
oral cancer in the International Cancer Genome Consortium data.

Total Low-risk group High-risk group

Number (Percentage)

Age (years) 0–39 7(20.5) 7(25.0) 0(0.0)
40–49 10(29.4) 8(28.6) 2(33.3)
50–59 11(32.4) 10(35.7) 1(16.7)
60–69 5(14.7) 3(10.7) 2(33.3)
70–79 1(2.9) 0(0.0) 1(16.7)

80+ 0(0.0) 0(0.0) 0(0.0)
Sex Male 28(82.4) 22(78.6) 6(100.0)

Female 6(17.6) 6(21.4) 0(0.0)
N stage N0 8(23.5) 8(28.6) 0(0.0)

N1 17(50.0) 12(42.9) 5(83.3)
N2 9(26.5) 8(28.6) 1(16.7)
N3 0(0.0) 0(0.0) 0(0.0)
NX 0(0.0) 0(0.0) 0(0.0)

T stage T1 0(0.0) 0(0.0) 0(0.0)
T2 0(0.0) 0(0.0) 0(0.0)
T3 2(5.9) 2(7.1) 0(0.0)
T4 32(94.1) 26(92.9) 6(100.0)
TX 0(0.0) 0(0.0) 0(0.0)

M stage M0 34(100.0) 28(100.0) 6(100.0)
M1 0(0.0) 0(0.0) 0(0.0)
MX 0(0.0) 0(0.0) 0(0.0)
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Due to the lack of a public RNA-Seq ORCA dataset, the 
intercohort validation was performed using only a single 
cohort. In addition, there were some existing challenges that 
overcame the skewed intercohort validation result. In spite of 
efforts to establish binary risk group models with simultaneous 
sample-balanced, survival-distinct, and significant features, 
predicted high-risk patients were only 17.6% of the total 
patients, even though most of them were at the T4 stage.

Conclusion

Despite efforts to develop novel biomarkers for HNSC, more 
research is needed. To establish an accurate survival informa-
tion-specific predictive model, the public RNA-Seq ORCA 
dataset was virtually dissected and transformed into TIL- 
specific data using CIBERSORT. When these data were fed 
into the DNN classifier, it successfully predicted survival pat-
terns of the predicted risk groups in an independent ICGC 
ORCA cohort.

Through this study, a novel approach based on deep learning is 
suggested that has potential application in various types of cancer.
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