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Abstract

Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis.
Substantia nigra, striatum, and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in
Parkinson’s disease. We undertook functional and causal pathway analysis of gene expression and proteomic alterations in
these three regions, and the data revealed pathways that correlated with disease progression. In addition, microarray and
RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic
vesicle release, and these and other changes were reflected across all brain regions. Importantly, subsets of these changes
were replicated in Parkinson’s disease blood; suggesting peripheral tissue may provide important avenues for
understanding and measuring disease status and progression. Proteomic assessment revealed alterations in mitochondria
and vesicular transport proteins that preceded gene expression changes indicating defects in translation and/or protein
turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the
molecular changes that accompany functional loss and alpha-synuclein pathology in Parkinson’s disease, and may be
instrumental to understand, diagnose and follow Parkinson’s disease progression.
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Introduction

Parkinson’s disease (PD) is the second most common neurode-

generative disorder, affecting 1–2% of the population over the age

of 65. It is a chronic movement disorder caused by relentless

degeneration of specific neuronal populations in the brain, most

notably the dopamine-producing neurons of the substantia nigra,

which help control voluntary movement [1]. While the causes of

PD are not completely understood, many PD-related genetic loci

and large numbers of disease-causing mutations have been

identified [2,3], that may ultimately provide clues to disease

pathogenesis. In addition to mechanisms related to genetic factors,

sporadic PD may result from environmental factors (such as toxins)

that cumulatively damage dopamine-producing neurons. In

individuals who have defects in pathways dealing with oxidative

stress, mitochondrial dysfunction, the ubiquitin proteasome

system, or the autophagy-lysosome pathway it is possible that

there is an increased sensitivity to environmental factors [4].

To date, many PD-related genetic loci and several disease-

causing mutations have been identified [2,3]. However, because

the functional consequences of genetic alterations in PD are not

understood, and any functional pathway connections between the

identified PD genes are not yet established, the molecular basis of

PD pathogenesis remains elusive. While the mechanisms under-

lying PD initiation and progression still remains a mystery, PD-

related pathology and its progressive spread, initially described by

Braak [5,6], are a hallmark of pathogenesis. The pathologic

changes include the progressive appearance of alpha-synuclein

deposits coinciding with neuronal loss in interconnected circuits of

the brain, including regions such as the salivary gland [7–10] that

are not thought to be directly connected to the substantia nigra.

Coordinated and integrated activity of different brain regions is

required for a variety of cognitive and motor functions, and the

topographical sequence of Lewy body distribution and deposition

in ascending brain regions is well documented [5,6]. More

recently, functional connectivity has been studied by means of

electro- (EEG) and magnetoencephalography (MEG) and patients
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with advanced PD demonstrate decreased functional connectivity

[11,12]. The results of these cross-sectional studies suggest that

changes in functional connectivity evolve over the course of the

disease and may suggest that the observed loss of functional

connectivity and neuronal network alterations reflect clinically

relevant changes. Currently there is no clear understanding on

how functional and pathologically affected brain regions may be

connected at the molecular level and what, if any similar defects

exist. Identification of the molecular mechanisms underlying the

disease may help to suggest how disease progresses, aid in

identification of early biomarkers of disease onset prior to clinical

manifestation, and lead to new targets for therapeutic intervention

[13]. PD pathogenesis has been investigated in-depth, providing

gene expression and genetic variation data for integration and

analysis [14–16]. However, no study has used the same tissue to

directly compare two methods for gene expression changes and

related this to alteration to protein levels, or tried to identify

mechanistic alterations common to brain regions connected by

pathology.

‘‘Systems’’ analysis is believed to help deconvolute complex

biological responses involving hundreds or thousands of genes

assayed by OMICs methods. Although systems-style approaches

have been applied to PD tissue, most studies have used simple

functional overview approaches resulting in the identification of

Figure 1. Overview of brain regions and methodology used in this study. (a, b) Overview of workflow for functional overview and focused
analysis. (a) Expression data for healthy and diseased brain regions are statistically analyzed to obtain differentially expressed genes (DEGs). In the first
part, the functional overview, the DEGs are used to identify expression regulators as well as pathways that are significantly enriched with DEGs. (b) In
the second part, the focused analysis, pathways that are significantly enriched with expression regulators are combined with pathways that are
significantly enriched with DEGs. Combining the two-pathway enrichment results leads to the identification of key pathways, which are the basis for
the reconstruction of causal networks. (c) Cartoon representation of different brain regions used in the study, and the associated disease severity of
each region denoted by gradations of red. Also shown is connectivity between the substantia nigra, striatum and cortex and the three methods used
to interrogate the brain regions (microarray, RNAseq and proteomics).
doi:10.1371/journal.pone.0102909.g001
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differentially expressed genes (DEGs), or pathways. While these

approaches expanded our understanding of disease related

changes, they are not able to elucidate the complex interconnec-

tivity of biological and pathological processes present within

diseased tissue. These approaches are considered ‘‘low resolution’’

descriptive methods and don’t deliver executable hypothesis for

subsequent follow-up experiments.

In addition to our novel approach of synthesizing expression

and proteome data, we employed an additional level of complex

functional assessment that takes into account protein interactions

connecting genes (or proteins) within the dataset or whole

proteome, and identifies and ranks genes based on their biological

relevance for the phenotype. The interaction-focused method is

high resolution, as it offers a list of ranked proteins that can be

experimentally validated. Importantly, this approach identifies

topologically significant genes, which are often missed in

expression profiling experiments, as key regulatory genes, like

transcription factors or kinases, change expression only transiently

and on a small scale. Topologically significant genes are

complementary to DEGs and are important in the reconstruction

and integration of pathways and networks responsible for a given

phenotype [17]. We hypothesize that integrating expression

changes into higher order networks will allow for the identification

of pathways, which are temporarily and spatially dysregulated in

PD.

Using this high-resolution approach of integrating topologically

significant genes, substantia nigra, striatum, and cortex samples

from normal donors and patients with neurodegeneration (PD,

dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD))

were subjected to microarray, RNAseq, and proteome analysis in

an attempt to identify causal pathways dysregulated specifically in

PD. The use of three different techniques allowed for the

identification of common pathways, independent of the technology

as well as highlighting the advantages and unique findings specific

to each of these techniques. Additionally, we used this OMICs

analysis to compile a panel of 50 biomarkers, which are expressed

in the brain and periphery that, in conjunction with prodromal

analysis might provide a path for early PD diagnosis. To our

knowledge this is the first example in the literature of a systematic

analysis of individual brain regions using microarray, RNAseq,

and proteomics, providing a blueprint for future studies aimed at

understanding the complex pathological changes that occur in PD.

Results

Genes and pathways independently and commonly
dysregulated in PD brain regions

To identify pathways dysregulated in brain regions shown to be

functionally affected in PD, extracts from human brain samples

were specifically prepared as described in Materials and Methods.

Microarray expression analyses were performed in two main steps:

1) a functional overview providing insights into disease-associated

genes and cellular processes (Fig. 1a), and 2) and a focused
analysis to identify the most characteristic pathways associated

with the disease as well as causal network reconstruction (Fig. 1b).

Our samples, detailed in Table S1, were comprised of both males

Figure 2. Identification of pathways dysregulated in PD-brain regions, and the overlap of differentially expressed genes (DEGs)
between the PD-affected brain regions. The 10 key pathways most significantly enriched for DEGs in substantia nigra (a), striatum (b) and cortex
(c) of PD brains compared to control as measured by microarray. Enrichments for upregulated genes are shown on the left, for downregulated genes
on the right. The numbers of DEGs populating each pathway are denoted in the right columns (#DEGs). (d) Overlap between DEGs in PD cortex and
striatum as measured by microarrays. The overlap of upregulated genes is shown on the left, the overlap of downregulated genes on the right. (e)
Overlap between DEGs in striatum and substantia nigra (S.nigra) as measured by microarrays. The overlap of upregulated genes is shown on the left,
the overlap of downregulated genes on the right. (f) Overlap between DEGs in PD cortex and substantia nigra (S. nigra) as measured by microarrays.
The overlap of upregulated genes is shown on the left, the overlap of downregulated genes on the right. (g) Overlap between DEGs in PD cortex,
striatum and substantia nigra (S. nigra) as measured by microarrays. The overlap of upregulated genes is shown on the left, the overlap of
downregulated genes on the right.
doi:10.1371/journal.pone.0102909.g002
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and females with an average age range of 60–70 years old, and

with varying degrees of PD-associated pathology as verified by a

certified pathologist. In general the substantia nigra samples had

mild to moderate neuronal loss and depigmentation while the

striatum and cortex samples appeared morphologically normal

with little to no neuronal loss. We analyzed tissue from these three

distinct brain regions thus capturing and comparing expression

changes in brain regions exhibiting varying degrees of overt

pathological changes (Fig. 1c, in Table S1).

Figure 3. Creation of causal network models for PD brain regions reveals parallel yet distinct dysregulated pathways. (a) Integrated
causal network model for upregulated genes in cortex (1), striatum (2), and substantia nigra (3) based on microarray data. Red thermometers
represent upregulated genes. Yellow thermometers correspond to topologically significant genes in cortex (4), striatum (5), and substantia nigra (6).
(b) Integrated causal network model for downregulated genes in cortex (1), striatum (2), and substantia nigra (3) based on microarray data. Blue
thermometers represent downregulated genes. Yellow thermometers correspond to topologically significant genes in cortex (4), striatum (5), and
substantia nigra (6).
doi:10.1371/journal.pone.0102909.g003
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To extend the functional overview analysis outlined in

Figure 1a, the following steps were taken: 1. DEGs for each

region were identified (Table S2), shown here are the top three up

and down regulated genes from six unique controls and six unique

PD donors for each region quantified by multiplexed quantitative

gene analysis (QuantiGene from Panomics) (Fig. S1 in File S1); 2.

network-based analyses was performed to identify topologically

significant genes, including key direct (one step away) (Table S3),

and remote (multiple steps away) expression regulators (Table
S4); 3. enrichment analysis was performed using pathway and

other functional ontologies to provide insights into dysregulated

cellular processes.

Following the functional overview, these results were utilized in

the focused analysis to identify key pathways, i.e. pathways that are

most reliably associated with the transcriptional changes found in

PD. Key pathways served as the basis for causal network

reconstruction and their creation is described in the methods.

Full lists of key pathways dysregulated in the different brain

regions as well as the DEGs and topologically significant genes

populating the key pathways can be found in Tables S5, S6 and S7

respectively. Maps of key pathway dysregulated in the substantia

nigra, striatum and cortex of PD brains versus control can be

found in Figure 2a, b, c, respectively. While many top pathways

identified using this more complex analysis were also found using

simple individual component analysis, our approach revealed new

dysregulated pathways including oligodendrocyte and synaptic

vesicle misregulation. Importantly a number of the top dysregu-

lated pathways were not associated with a general neurodegen-

eration response, as many of the pathways were unique to PD

when compared with non-PD neurodegeneration samples (Fig. S2
in File S1).

The top pathways dysregulated in the substantia nigra included

upregulation of canonical WNT signaling, immune response

mediated by IL-6 and IL-1b, and G-protein signaling cross-talk

between the Ras-family of GTPases and as expected downregu-

lation of dopamine D2 signaling and GABA receptor life cycle

(Fig. 2a and Fig. S3a in File S1). In the striatum we found

upregulated DEGs heavily populated the glutamate regulation of

dopamine D1A receptor signaling, NMDA-dependent postsynap-

tic long-term potentiation, and Nrf2 regulation of oxidative stress

pathways (Fig. 2b and Fig. S3b in File S1). Top pathways

identified in the cortex that were not typically associated with PD

or neurodegeneration included up-regulation of NFAT signaling,

regulation of oligodendrocyte precursor cells, ACM regulation of

nerve impulse, and chemokines and cell adhesion (Fig. 2c and

Fig. S3c in File S1).

To identify common pathways affected in all brain regions we

examined the overlap of DEGs between each region (Fig. 2d, e,
f) and the combined union between all three-brain regions

(Fig. 2g). The somewhat surprising extent of overlap, allowed us

to construct and analyze causal network models. Causal network

models are one of the most informative ‘‘high resolution’’ tools for

analysis of gene expression data. Unlike the pre-built pathway

maps that utilize cellular processes, which reflect general

knowledge mined from the literature, condition-specific causal

networks can be built to model molecular events in a particular

dataset and disease state [18,19].

Causal networks linking functionally and pathologically
connected brain regions

Understanding the nature of cause and effect is fundamental to

all fields of scientific investigation. While DEGs and functional

pathways affected in the brains of PD patients were identified, the

complex nature of CNS (central nervous system) disorders makes it

impossible to elucidate whether these changes directly contribute

to pathology, or are simply a reflection of cell death, loss of critical

regulatory signals, or are confounding effects of therapeutic

treatment. To our knowledge this is the first attempt applying

causal network models to deconvolve transcriptional changes

present in the multifactorial environment of diseased tissue.

To shed light on the causal processes underlying the expression

changes observed in PD brain regions, the most dysregulated parts

of key pathways were extracted and manually compiled into a new

pathway map highlighting the most important PD-associated

signaling cascades specific to each brain region (see methods).

Causal models were built for both up and down regulated genes

for each brain region (Fig. S4 ((a, b, c upregulated and d, e, f
downregulated) in File S1). These individual models were then

integrated across the three brain regions to create a global causal

map (Fig. 3). The united causal networks upregulated in PD brain

regions included neuroprotection (WNT, PDGF and histamine

H2), general neuronal functions (dopamine D2 and calcium

signaling), long-term changes in neuronal function (dopamine

D1A), response to stress (TNFa pathway), protein folding (heat-

shock proteins), anti-oxidant defense (metallothionein family), and

axonal cytoskeleton (actin and myosin) (Fig. 3a). Downregulated

pathways include Notch signaling, Angiotensin II receptor,

Oligodendrocyte function, Rab-3 signaling, and GABA receptors

(Fig. 3b).

To pressure test the relevance and general applicability of our

causal maps, we performed a meta-analysis using public PD

microarray data recently compiled in the ParkDB database [20].

Figure 4. Overlap between pathways significantly enriched
with differentially expressed genes identified by microarray
and RNA-sequencing. (a) Overlap of pathways enriched with
upregulated genes together with the five most significant overlapping
pathways. (b) Overlap of pathways enriched with downregulated genes
together with the five most significant overlapping pathways.
doi:10.1371/journal.pone.0102909.g004
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Some of the alterations in these previously unidentified causal

pathways built from our data set were also present in these public

data sets, indicating that our data set is comparable to the data sets

previously reported on, however, our unique analysis highlights

pathways previously hidden including oligodendrocyte differenti-

ation, synaptic transmission, and anti-oxidant responses (Fig. S5
in File S1).

To determine the applicability of PD causal networks to other

synucleinopathies, microarray analysis of brains from patients with

dementia with Lewy bodies (DLB) was performed. Patients with

DLB have a build-up of alpha-synuclein containing Lewy bodies in

the cortex rather than in the substantia nigra, therefore overlap

analysis between PD cortex and DLB cortex as well as PD

substantia nigra and DLB cortex was performed (Fig. S6a in File

S2). Interestingly the overlap of up-regulated genes between the

physiologically similar PD cortex and DLB cortex (8.4%, 109/

1305) was substantially less than the overlap between the similarly

diseased PD substantia nigra and DLB cortex (34.1%, 394/1157).

Additionally we assessed DLB cortex for changes in causal

pathways (Fig. S6 b, c in File S2) and found that many of the

pathways altered in PD tissue were also affected in DLB cortex.

These changes were specific for synucleinopathies, as microarray

Figure 5. Protein alterations in PD brain are dominated by mitochondrial and lipid transport defects, and are largely independent
of transcriptional changes. (a) Overlap between proteins and differentially expressed genes in striatum, as measured by mass spectrometry and
microarray technologies. The overlap of upregulated proteins/genes is shown on the left, the overlap of downregulated proteins/genes on the right.
(b) Overlap between proteins and differentially expressed genes in PD cortex, as measured by proteomics and microarray technologies. The overlap
of upregulated proteins/genes is shown on the left, the overlap of downregulated proteins/genes on the right. (c) Oxidative phosphorylation
pathway. The most significantly enriched upregulated pathway for PD cortex based on proteomics data. Red thermometers represent proteins with
increased abundance. (d) Regulation of CDK5 in presynaptic signaling. The most significantly enriched downregulated pathway for PD cortex based
on proteomics data. Blue thermometers represent proteins with decreased abundance.
doi:10.1371/journal.pone.0102909.g005
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analysis of AD brains did not overlap at the DEG, pathway, or

causal level with PD brains (Fig. S2 in File S1 and Fig. S7 in File

S2). These data suggest disease-associated gene expression changes

correlate more closely with PD pathology and alpha-synuclein

deposition rather than physiological tissue similarity, although

further studies are needed to confirm these findings.

Different transcriptional techniques of PD tissue reveal
similar alterations in causal networks

Currently there is a debate about the value of microarray versus

RNAseq as a means to assess transcriptional changes. The

technology to evaluate gene expression is constantly being refined,

and while microarray analysis has been widely applied in biology,

RNAseq technology may offer a less biased, more sensitive method

to assess gene expression changes. While some direct comparisons

have been performed [21–23], an assessment on PD tissue has not

been executed. Therefore, a subset of normal and PD brain

samples from substantia nigra, striatum and cortex were subjected

to a 50 million read RNAseq analysis. The data was then

processed to identify DEGs (Table S8). A functional overview, as

described for our microarray data was also performed to identify

enriched pathways (Fig. S8 in File S2). Given the increased

sensitivity reported for RNAseq technology it was not surprising

that, when compared to the microarray data, the RNAseq analysis

revealed many more significantly changed DEGs. However, the

overlap of the DEGs from the two techniques was not complete,

with individual brain regions influencing the extent of overlap

(Fig. 4a, b). However, this difference in DEG detection was not

reflected at the level of enriched pathways as the common shared

pathways were similar to those identified by microarray (Fig. 4a,
b) and this overlap was reflected as overlaps in the causal maps

(Fig. S9 in File S2).

Figure 6. Tracking peripheral biomarkers identified from the causal mapping of PD brain. (a) High confidence biomarkers consistently
identified for PD cortex, striatum, and substantia nigra (S. nigra) using microarray analysis. Upregulated biomarkers are shown on the left together
with fold changes in the three brain regions, downregulated biomarkers on the right. (b) Functional biomarker panel that combines DEGs, high
confidence biomarkers shown in (a) and genes from the causal map. (c) Assessment of biomarkers in brain (top panels)(substantia nigra, SN) and
blood (bottom panels) from age-matched control and PD patients using QuantiGene technology from Panomics. * p#0.05 and ** p#0.01 as
determined using a two-tailed unpaired t-test with Welch’s correction.
doi:10.1371/journal.pone.0102909.g006
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Protein alterations in PD brain are largely independent of
transcriptional changes

The same samples used for microarray and RNA-sequencing

were subjected to label-free quantitative mass spectrometry in

order to quantify protein abundance changes in different PD brain

regions (Table S9), and to understand the extent of overlap of

protein changes with gene expression alterations. The overlap of

proteomics with microarray at the level of DEGs represented only

approximately 15% (54/372) of the significantly increased proteins

in striatum (Fig. 5a), and approximately 7% (31/455) of increased

proteins in the cortex (Fig. 5b). These data are highly suggestive

that protein abundance changes are not reflected at the level of

gene transcript in PD brain, and suggest that robust changes in

protein degradation or protein translation occur in addition to

changes in gene expression. As this could reflect sensitivity issues

with microarray we also compared the proteomics data to the

RNA-sequencing data and the results were similar (Fig. S10a, b
in File S2). By mass spectrometry analysis, the top pathways with

increased protein abundance in the striatum were cytoskeleton

remodeling, glycolysis, and cell adhesion, and for the cortex they

were oxidative phosphorylation, cytoskeleton remodeling and

glycolysis (Fig. S11a, b in File S2). We validated increased levels

via western blot (Fig. S11c in File S2). The primary defect

identified in the cortex for the top dysregulated pathway, oxidative

phosphorylation, were in complex 1 reflected by increased NDUF

(NADH dehydrogenase ubiquinone) subunits (11/46 subunits with

increased abundance), complex 3 (4/11 subunits with increased

abundance) and ATPase synthases (Fig. 5c). Mitochondrial

respiration defects have long been reported for PD patients [24].

However, recent studies also suggest deficiencies in mitochondrial

quality control and mitochondrial fusion/fission could drive early

pathogenesis and energy depletion [25].

We also detected several proteins with decreased abundance in

the PD cortex, changes primarily driven by decreased levels of the

vesicular transport proteins synaptotagmin 1, VAMP-2 and

SNAP-25 (Fig. 5d). We validated reduced levels via western blot

(Fig. S11d in File S2). Interestingly ubiquitin levels were

decreased in both striatum and cortex likely reflecting a depletion

of free ubiquitin pools. Future studies aimed at demonstrating the

applicability of protein abundance changes in patient blood from

early-stage PD patients will provide valuable insight and poten-

tially new tools for early detection of PD prior to the onset of

massive neuronal loss.

Peripheral markers representative of causal changes
identified from PD brain

CNS diseases are difficult to diagnose and neurodegeneration

usually precedes observable clinical changes. Therefore, it is

critical to identify peripheral markers that can be used as

predictive biomarkers of CNS disease long before symptoms of

degeneration arise. To that end we identified 50 potential

biomarkers (25 up and 25 down) that were either present as

DEGs in the brain or were key regulators in the causal pathways

(Fig. 6a) Using these 50 potential biomarkers as a starting point

we tailored our final biomarker list (54 genes) to include a subset of

these genes in addition to DEGs with the most robust changes

(Fig. 6b and Table S10). Using Panomics QuantiGene multi-

plex technology we validated the DEGs within the individual brain

regions as well as key genes present along the causal pathway

(Fig. 6b, Fig. S1 in File S1) and measured gene changes in

human blood isolated from nine age-matched control and 28 PD

patients. As the biomarker lists were created based on genes

changes in the CNS, many of the genes were not present in human

blood. However, we were able to detect ten of these genes within

human blood and a representative three are shown, CAMK2,

CXCR4, and ALDHA1 with differential expression between

control and PD correlating to what was found in PD brain

(Fig. 6c). Recently we demonstrated that intra-cellular alpha-

synuclein levels are elevated in the white blood cells of patients

with PD [26]. To determine if alterations in our peripheral

biomarkers were linked to elevated alpha-synuclein we performed

a correlation analysis of intracellular alpha-synuclein levels

quantified as mean fluorescent intensity with relative expression

of four of our peripheral biomarkers (Fig. S12 in File S2).

Expression alterations in three of four of the biomarkers assessed

(CAMK2B, CXCR4, ASHA2) correlated with alpha-synuclein

levels. Overall, these data indicate that peripheral changes in

PBMC’s (peripheral blood mononuclear cells) are reflective of

molecular alterations in the CNS and may act as part of a

diagnostic panel for early detection of PD.

Discussion

Elucidation of the causal events preceding the initiation and

progression of disease pathogenesis, while extremely challenging, is

one of the overarching goals of medical research. In an effort to

reveal underlying molecular signatures common among unique

brain regions affected during PD disease pathogenesis we

undertook a systems-based approach utilizing data from micro-

array, RNAseq, and label-free quantitative mass spectrometry.

Employing three analysis techniques on the same tissue samples

allowed us to directly compare transcript and proteomic changes

within disease tissue to derive underlying mechanistic insight

provided by tissue analysis using three independent technologies.

Identification of DEGs and pathways using functional analysis,

which has been employed by others, revealed changes previously

described in PD brain tissue [15]. The bulk of previous studies

have focused on transcriptional alterations, as assessed by

microarray in the substantia nigra. When comparing these reports

with our own findings, a high degree of overlap encompassing

alterations in calcium signaling [27], Erk/MAPK pathway [28],

and cytoskeletal changes [27] were observed, all of which are

current areas for therapeutic intervention. Similarities with

previous reports were also found in our cortex and striatal

analysis, and included pathways such as chaperone response [29].

While many similarities were detected, our analysis pulled out

unique changes, including down regulation of Rab-3 signaling in

the substantia nigra and decrease in S1P2 and S1P3 (Sphingosine-

1 phosphate receptor 2 and 3) in the striatum.

In line with what has been previously reported in other studies,

the experimental data did not show large changes in numerous

genes, and this partially explains why there has not been good

convergence between the numerous PD microarray analyses [28].

Indeed if standardized pathway membership is used for compar-

ison among different published microarray studies of PD tissue

rather than ranked gene lists based on a fold change cutoff and p-

value there is greater convergence between datasets [28]. The

expression changes, as assessed by microarray analysis, were

similar possibly due to the inherent heterogeneity in human

disease, as this was true even when we increased sample size.

Although the individual magnitude of changes may be minimal,

the fact that genes work together to carry out functions, suggests

that coherent changes in biologically meaningful sets of genes, may

allow one to identify the biological processes that underlying these

changes. Gene enrichment analysis performed here allowed for the

detection of modest, but coordinate expression changes in

functionally related genes. The importance and value of network

Causal Networks Elucidated in Parkinson’s Disease
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modeling have been detailed by others [30–32] and have been

used to identify underlying pathological processes in neurodegen-

erative and non-neurodegenerative diseases [33].

Additionally, common transcript changes across various brain

regions were assessed using causal network analyses. In-depth

investigation revealed several common molecular drivers up and

downregulated in all three-brain regions. These changes were

integrated and comprised our causal map. The causal signatures

were shared between brain regions with differing pathology, and

were not reflected in non-PD neurodegeneration. Although PD is

clinically heterogeneous, we were able to isolate molecular

commonalities shared between brain regions suggesting a unifying

mechanism of PD could exist with parallel signatures engaged

along the spectrum of neurodegeneration.

One of the most striking upregulated causal pathways consis-

tently identified in all three-brain regions was metal homeostasis

driven by robust expression of the metallothionein genes. These

genes were increased in the substantia nigra GEO dataset [34] but

only recently documented to be increased in a meta-analysis [35]

of PD substantia nigra [34]. Multiple metallothionein genes (MT-

1M, MT-1X, MT-II, and, MT-1G) were upregulated in the

substantia nigra, striatum and cortex and PAX5 (paired-box 5

family) was identified as a topologically significant transcription

factor linked to metallothionein activation. Recently metallothio-

nein genes were shown to be dysregulated in lysosomal storage

disorder (LSD) patient brain, and to function as markers of disease

progression and therapeutic response [36] perhaps providing clues

to the genetic link and underlying cause shared between PD and

LSD [37].

A downregulated causal pathway identified from our study has

implications for oligodendrocyte function/myelination and includ-

ed transcript and proteomic changes in Olig2, MAG, PLP1, and

MBP. While alterations in oligodendrocyte function have to our

knowledge not been previously described, our analysis of the

ParkDB confirmed that alterations in some of these genes have

been detected but not highlighted before, again emphasizing the

importance of our functional analysis. These molecular changes

may explain the imaging alterations observed in the white matter

of PD patients. For example, reports utilizing diffusion magnetic

resonance imaging demonstrated widespread pathology of white

matter in PD patients as well in patients with other synucleino-

pathies and this pathology was associated with executive

dysfunction and changes in cognition [38,39]. Determining

whether these changes are associated with the lipid metabolism

changes observed in the frontal cortex of PD patients [40], or is a

reactionary change to the loss of dopamine still needs to be

elucidated.

Although the causal pathways stemmed from microarray

assessment, we also investigated transcriptional changes using

RNAseq. To our knowledge this is the first report to subject the

same tissue sample from normal and diseased patients to both

microarray and RNAseq analysis. Not surprisingly the enhanced

sensitivity of the RNAseq technique revealed more statistically

significant dysregulated DEGs including alterations in POMC

signaling, LRRK2 signaling in neurodegeneration, and multiple

inflammatory pathways including IFN-gamma in TH2 cytokine-

induced inflammation. While differences existed between these

two analyses, comparison of DEG and pathway overlaps between

microarray and RNAseq analyses highlighted pathways represent-

ed on the causal map.

The difference between microarray and RNAseq analysis may

reside with the inherently low RIN (RNA integrity numbers)

associated with human brain, on average significantly lower than

other tissues [41]. A recent study suggested that, in addition to post

mortem interval (PMI), RIN has a negative correlation with BMI

(body mass index) and is a reproducible predictor of correlation

between microarray data and follow up RT-PCR [41]. Micro-

array requires hybridization of transcripts with chips, however

RNAseq techniques utilize fragmented RNA for sequencing and

may not be as affected by low RINs. Moreover, microarray

requires the transcripts to be present on the hybridization chip

whereas RNAseq is able to assess all transcripts, and due to the

high number of sequencing reads is able to pull out transcripts that

may be present at a lower frequency.

Outside of the gene-expression signatures representing com-

monalities among unique brain regions affected by disease, we also

observed protein homeostasis dysregulation. Robust alterations in

protein levels in the least affected brain region, the cortex,

suggested that massive cell death is not the driving force [42].

Although we did not analyze the substantia nigra by mass

spectrometry, other groups have not reported overt changes in the

levels of proteins in these pathways [43–45]. Recent studies

estimate mRNA expression and protein levels have a modest

correlation, with clusters of proteins exhibiting variance in levels

independent of changes in mRNA expression, estimated at

approximately 50% overlap [46–50]. In our case, the unequal

overlap between transcript and protein was significantly affected

by disease, with increased protein abundance observed for

mitochondrial proteins and glycolytic enzymes in PD brain. In

addition to defects in protein degradation and quality control, an

intriguing possibility is that there are defects in protein translation

driving the differences in protein abundance compared to gene

expression in PD brain. Recent genetic linkage studies reported

point mutations, albeit so far rare, in the translational initiator

protein EIF4G1 [51]. In addition ribosomal proteins are over-

represented in proteins associated with alpha-synuclein and DJ-1

[52] and there were defects in translation when the bacterial

homolog of DJ-1 was deleted [53]. More recently additional

quality control genes/mutations have been reported linked for

Parkinsonism, including DNAJC6, DNAJC13, VPS35 and

ATP6AP2 [54]. Future studies aimed at determining whether

there are global defects in protein quality control and translation

that correlates with disease severity in PD will be of interest.

While we did not detail alpha-synuclein, changes in our analysis

were similar to other studies [20,34,55], we found that alpha-

synuclein message levels were decreased in the substantia nigra

(21.38 fold) as assessed by microarray analysis and relatively

unchanged in the other brain regions. Interestingly, upon

performing sequential protein fractionation we found that alpha-

synuclein levels were relatively constant in the soluble and Triton-

X-100 detergent fractions, however there was an increase in

alpha-synuclein, specifically high molecular weight alpha-synu-

clein in the insoluble fraction of all three PD brain regions, and the

cortex of DLB patients (data not shown), with the most

pronounced changes found, not surprisingly in the substantia

nigra.

Perhaps the most important outcome of this study is our ability

to detect changes in the periphery that were assembled from our

molecular signatures identified from PD brain regions. Future

studies using microarray analyses of fibroblasts or PBMCs isolated

from normal donors or those affected with sporadic or familial PD

overlaid onto these causal networks built from PD brains will be

powerful to determine the feasibility of detecting early changes in

the periphery prior to neurodegeneration and clinical manifesta-

tion of PD. While changes in the levels of peripheral proteins, e.g.

derived from apoptosis of lymphocytes, have been reported to

correlate with changes in PD neurons and may provide a source

for proteins in plasma [56], we also hypothesize that proteins
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released from neurons will be found in blood plasma and provide a

more direct source of potentially diagnostic biomarkers. This was

recently reported in AD where the protein tau is released from

affected neurons and detected peripherally. Proteins present in

serum may exist in various forms; proteolytically processed

fragments, normal cellular forms present as circulating immune

complexes, or containing post-translational modifications. Overall,

these data do represent a discovery sample set, and a new sample

set will be needed for validation. Future studies aimed at

measuring PD and control plasma to determine if similarities

exist between cellular changes in brain homogenates and patient

plasma will give direction to the development of suitable

biomarkers or surrogate markers of PD for early diagnosis and

treatment monitoring.

Methods

Tissue
Detailed description of the tissue used in our analysis can be

found in Table S1.The human studies were performed following

the study and protocol, that The Parkinson’s Institutional Review

Board approved, and all subjects gave written informed consent

for this study. Tissues were generously provided by the Sydney

Brain Bank at Neuroscience Research Australia, which is

supported by the National Health and Medical Research Council

of Australia (NHMRC), University of New South Wales, and

Neuroscience Research Australia, (http://www.neura.edu.au/

sydneybrainbank). Additional tissues were generously provided

by the Human Brain and Spinal Fluid Resource Center, (11301

Wilshire Blvd. (127A) Building 212 Room 16 Los Angeles, CA

90073, http://brainbank.ucla.edu).

RNA isolation
RNA isolation was performed by Expression Analysis (Durham,

NC), and isolation was completed using the Qiagen miRNeasy

Mini Kit. Briefly, the miRNeasy Mini Kit combines phenol/

guanidine-based lysis of samples and silica membrane–based

purification of total RNA. QIAzol Lysis Reagent is a monophasic

solution of phenol and guanidine thiocyanate designed to facilitate

lysis of tissues, to inhibit RNases, and also to remove most of the

cellular DNA and proteins from the lysate by organic extraction.

Tissue samples were homogenized in QIAzol Lysis Reagent. After

addition of chloroform, the homogenate was separated into

aqueous and organic phases by centrifugation. RNA partitions

to the upper, aqueous phase, while DNA partitions to the

interphase and proteins to the lower, organic phase or the

interphase. The upper, aqueous phase was extracted, and ethanol

was added to provide appropriate binding conditions for all RNA

molecules from 18 nucleotides (nt) upwards. The sample was

applied to the RNeasy Mini spin column, where the total RNA

binds to the membrane and phenol and other contaminants were

efficiently washed away. High quality RNA was then eluted in

RNase-free water.

Microarray
Expression Analysis (Durham, NC) performed the microarray

according to their standard protocols. Briefly, prior to labeled

target preparation, RNA samples were quantitated by spectro-

photometry using a Nanodrop ND-8000 spectrophotometer, and

assessed for RNA integrity using an Agilent 2100 BioAnalyzer or

Caliper LabChip GX. RNA samples were converted to sense-

stranded cDNA using the Ambion WT Expression Kit and

subsequently labeled using the Affymetrix GeneChip WT Termi-

nal Labeling Kit. The WT Expression kit is optimized for use with

human, mouse and rat Affymetrix GeneChip Sense Target (ST)

Arrays. Briefly, 200 ng of total RNA undergoes a reverse

transcription step designed to exclude priming of ribosomal

RNA. Primers are designed using a proprietary-oligonucleotide

matching algorithm that avoids rRNA binding, thereby providing

comprehensive coverage of the transcriptome while significantly

reducing coverage of rRNA. This method also avoids the 39 bias

inherent in methods that prime exclusively with oligo-dT-based

primers. The resulting sense-strand cDNA is next fragmented and

labeled using uracil-DNA glycosylase (UDG) and apurinic/

apyrimidinic endonuclease 1 (APE 1) which recognizes and

fragments the cDNA at dUTP residues incorporated during the

2nd-cycle. Next, DNA is labeled by terminal deoxynucleotidyle

transerase (TdT) using the Affymetrix DNA Labeling Reagent.

Hybridization cocktail is then prepared using the Hybridization,

Wash, and Stain kit (Affymetrix), applied to arrays, and incubated

at 45uC for 16 hours. Following hybridization, arrays are washed

and stained using standard Affymetrix procedures before scanning

on the Affymetrix GeneChip Scanner and data extraction using

Expression Console.

RNAseq
Libraries are prepared for RNA-Seq as per the standard

protocol; in brief sample libraries were prepared using the TruSeq

RNA Sample Prep Kit (Illumina), including the use of Illumina in-

line control spike-in transcripts. Prior to library preparation, RNA

samples are quantitated by spectrophotometry using a Nanodrop

ND-8000 spectrophotometer, and assessed for RNA integrity

using an Agilent 2100 BioAnalyzer or Caliper LabChip GX.

Library preparation begins with 500 ng of RNA in 50 ml of

nuclease-free water, which is subjected to poly(A)+ purification

using oligo-dT magnetic beads. After washing and elution, the

polyadenylated RNA is fragmented to a median size of ,150 bp

and then used as a template for reverse transcription using random

primers. The resulting single-stranded cDNA is converted to

double-stranded cDNA, ends are repaired to create blunt ends,

then a single A residue is added to the 39 ends to create A-tailed

molecules. Illumina indexed sequencing adapters are then ligated

to the A-tailed double-stranded cDNA. A single index is used for

each sample. The adapter-ligated cDNA is then subjected to PCR

amplification for 15 cycles. This final library product is purified

using AMPure beads (Beckman Coulter), quantified by qPCR

(Kapa Biosystems), and its size distribution assessed using an

Agilent 2100 BioAnalyzer or Caliper LabChip GX. Following

quantitation, an aliquot of the library is normalized to 2 nM

concentration and equal volumes of specific libraries are mixed to

create multiplexed pools in preparation for sequencing.

Panomics multiplex quantigene analysis
Gene probe ID’s can be found in Table S10. Panomics (Santa

Clara, CA) performed the quantigene analysis according to their

standard protocols. Briefly samples were hybridized overnight at

54uC, washed 36, hybridized with pre-amplifier at 50uC for

1 hour, washed 36 with 16 wash buffer, hybridized with

Amplifier at 50uC for 1 hour, washed 36 with 16 wash buffer,

hybridized with Label Probe at 50uC for 1 hour, washed 36with

16 wash buffer, incubated with SAPE at room temperature for

30 minutes, read on a Luminex instrument. The sample input

amount(s) for human brain samples was determined in a sample

input optimization assay in which we determined that 400 ng/well

of RNA was optimal for signal/noise ratio with out saturating

housekeeping gene signals. Human universal RNA at 250 ng/well

served as a positive control for the assay. RNase-free water in place

of the RNA samples served as the background wells. The
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QuantiGene Plex 2.0 Human 57-plex panel data was exported

from the BioPlex Instrument into Microsoft Excel and FI, FI-bkgd,

Std dev, and % CV, for multiple analyte format was normalized

again housekeeping genes, Gapdh, GusB, and Rplpo. For human

blood analysis, 50 ml of flash frozen human whole blood samples

were prepared according to the QuantiGene Sample Processing

Kit for Blood Samples. Sample input optimization assay on a

subset of the samples was run with the 57-plex panel. In brief

lysate samples were loaded at 3 different amounts in singlet for

input assay optimization. For the experimental assay, 12 ml per

well for sample processing and all 46 human whole blood lysate

samples were run in duplicate at 400 ng/well.

Lysis conditions for proteomics analysis
Tissue samples were lysed in (450–600 ml) 20 mM HEPES

(pH 7.2), 150 mM NaCl, 10% glycerol, 1% Triton X-100, 5 mg/

ml NEM, 2% SDS and EDTA free complete protease inhibitors

(Roche). Tissue samples were lysed using FastPrep Lysing Matrix

D (MP Biomedicals) per manufacturer’s instructions. FastPrep

FP120 (Thermo) was used at speed 6.0, 40 s (62); samples were

then centrifuged at 14,000 rpm in a tabletop microcentrifuge for

10 minutes (62). The supernatants were quantified using BCA

(Pierce).

Liquid chromatography- tandem mass spectrometry (LC-
MS/MS)

The proteomics analysis of the trypsin-digested brain homog-

enates was performed by a label-free method combining LC-MS

and LC-MS/MS techniques. The tryptic peptide mixtures were

separated by capillary reversed-phase chromatography

(0.36150 mm C18-capillary column) at 8 microliters/min flow

rate delivered from an Agilent Capillary 1100 pump (Agilent

Technologies, Santa Clara, CA) employing a 2 hour-long binary

gradient of 0% to 45% acetonitrile in water, both solvents

modified with 0.1% formic acid. The effluent of the HPLC

column was connected online to the electrospray ionization source

of the mass spectrometer (Thermo LTQ-Orbitrap XL, Thermo

Scientific, San Jose, CA). The primary MS1 mass spectra were

acquired in the Orbitrap at resolving power of 60,000 (defined at

m/z 400), while tandem mass spectra were acquired in the linear

ion trap (LTQ) at a rate of five tandem mass spectra during each

Orbitrap scan.

Protein identification was performed by searching the acquired

tandem mass spectra for each sample against a human protein-

database using byOnic software (Protein Metrics, Inc.). The false

discovery rate (FDR) was estimated concatenating the full

reversed-sequence set of proteins with the protein sequence

database, with a cutoff value of 1% at the peptide and protein

level. Relative quantitative information was extracted from the

MS1 scans acquired for each sample using Sieve software (Thermo

Scientific). For the proteomics analyses, the reproducibility that we

used has been reported previously in method-development papers

using replicate analyses of identical samples [57–60]. In our study

we find that for proteins with no differences in abundance the

median % CV values are in the 10–20% range which is typical for

the method and consistent with previously published methods.

Microarray expression data
Multiple microarray platforms were used in the expression

analysis of different brain regions. Cortex samples were hybridized

to the Affymetrix Gene ST 1.0 platform with 5 samples for PD

cortex, DLB cortex, and control cortex, respectively. 6 PD and 6

control striatum samples (from the putamen) were hybridized to

the Affymetrix Gene ST 1.0 platform. 11 PD, 11 control, and 3

non-PD striatum (from the putamen) samples were hybridized to

the Affymetrix HG U133 Plus 2.0 platform. 3 PD and 3 control

substantia nigra samples were hybridized to the Affymetrix Gene

ST 1.0 platform. 13 PD and 11 control substantia nigra samples

were hybridized to the Affymetrix HG U133 Plus 2.0 platform.

Cortex samples were augmented with a publicly available dataset

from GEO (GSE28894) where samples were hybridized with the

Illumina humanRef-8 v2.0 expression bead-chip array.

ParkDB expression data
Pre-processed lists of differentially expressed genes for cortex

and substantia nigra were downloaded from the ParkDB database

[20]. The parameters for differential gene expression were set to

1.2 fold change and 0.05 adjusted p-value. The cortex dataset

comprised samples from superior frontal cortex (ArrayExpress id

E-GEOD-8397), prefrontal cortex area 9 (ArrayExpress id E-

GEOD-20168), and cortex area (ArrayExpress id E-GEOD-

13035). The substantia nigra dataset comprised samples from

substantia nigra (ArrayExpress id E-GEOD-7621), substantia
nigra pars compacta (ArrayExpress id E-GEOD-7307), medial
substantia nigra (ArrayExpress id E-GEOD-8397), and lateral
substantia nigra (ArrayExpress id E-GEOD-8397).

Statistical processing of expression data
Microarray expression data has been deposited to NCBI Gene

Expression Omnibus [61], accession number, GSE54282. Micro-

array expression data for each brain region were normalized with

the RMA algorithm included in R using a custom CDF file from

the brain array database [62,63]. If samples from different

platforms were available, they were first normalized separately

and then merged into one dataset using Entrez gene ids as

common identifier. Batch effect removal was performed using the

ComBat algorithm to remove technical variation between results

of the two platforms [64]. Quality assessment of merged data was

performed to ensure that no separation by platform was observed

after batch effect removal. Differential gene expression was

identified using an empirical Bayes moderated t-test available in

the Bioconductor limma package [65]. Genes were defined as

differentially expressed if their absolute fold change was above 1.2.

Proteomics expression data were pre-processed as described

above under mass spectrometry, and differentially expressed

proteins were defined using an absolute fold change cut-off of

1.2 and p-value threshold of 0.05. RNA-sequencing data were pre-

processed by Expression Analysis (http://www.expressionanalysis.

com) and read count estimates were calculated using the RSEM

algorithm [66]. Differentially expressed genes were identified using

the DEGseq R-package using a fold change threshold of 1.2 for

consistency with microarray parameters [67]. Gene and protein

lists provided were mapped to Entrez gene identifiers using the

DAVID bioinformatics resource [68].

Enrichment analysis
A total of seven proprietary and publicly available ontologies

were extracted from the MetaBase resource [69]: 1) Pathway maps
represent a portfolio of over 1,000 canonical, disease-specific and

toxicity-specific pathways. The goal of each pathway map is to

show the cellular response to particular stimulus. Pathway maps

are manually curated based on scientific articles and typically

contain multiple linear directional pathways involved in similar

biological outcomes. 2) Process networks represent reconstructions

of more general metabolic and signaling processes and are usually

larger than pathway maps. 3) Toxicity networks are manually

curated network reconstructions of toxicity mechanisms. 4) Disease
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biomarkers are based on the classification in Medical Subject

Headings (MeSH) and each disease in the ontology is assigned a

set of biomarker genes. 5)–7) GO processes, GO molecular
functions, and GO Localizations are regularly updated ontologies

developed by the Gene Ontology [70]. Each set of differentially

expressed genes was tested for overlap with pathway maps. The

significance of the overlap between an entity in the ontology and a

list of differentially expressed genes was calculated using a

hypergeometric test:

p{value~
R!n!(N{R)!(N{n)!

N!

Xmin(n,R)

i~max(r,Rzn{N)

1

i! R{ið Þ!(n{i)!(N{R{nzi)i

R corresponds to the number of genes contained in the list of

differentially expressed genes. n corresponds to the number of

genes contained a particular entity of the ontology. N represents

the total number of genes contained in the ontology. r corresponds

to the overlap between a particular entity in the ontology and the

list of differentially expressed genes.

Expression regulators
Expression regulators can be identified by mapping a set of

differentially expressed genes onto a molecular interaction

networks. Expression regulators correspond to those proteins that

are responsible for the observed gene expression changes. All

network-based analyses are based on the MetaBase resource, a

manually curated interaction database [69].

A. Direct expression regulators. Direct expression regula-

tors correspond to genes that are directly interacting with an

unexpectedly high number of differentially expressed genes.

Direct regulators can be identified using an over connectivity

test, which calculates the overlap of a protein’s interactors

and a list of differentially expressed genes [71]. We defined a

protein as over connected, i.e. as a direct expression

regulator, if the corresponding node in the interaction

network had more direct interactions with differentially

expressed genes than expected by chance. The significance

of over connectivity was estimated using a hypergeometric

test as described previously.

B. Remote expression regulators. Remote expression

regulators correspond to genes upstream of the differentially

expressed genes. They are not required to directly interact

with differentially expressed genes but are responsible for

triggering signaling cascades that lead to the observed gene

expression changes. Remote regulators can be identified

using the Hidden Nodes algorithm [72]. The algorithm takes

as input a molecular interaction network and a list of

differentially expressed genes and creates a condition-specific

sub-network by extracting the connections between the

differentially expressed genes. Connections between differen-

tially expressed genes are calculated based on shortest paths.

Hidden Nodes evaluates the number of paths traversing a

node in the condition-specific sub-network compared to the

total number of paths traversing the same node in the input

interaction network. Nodes associated with an unexpectedly

high number of paths in the condition-specific sub-network

are regarded remote expression regulators because of their

topological importance in the network.

Identification of key pathways
Key pathways correspond to those pathways that are most

reliably associated with the observed transcriptional response and

are required to be enriched with both differentially expressed

genes and expression regulators. Key pathways were identified

using the following calculations:

1) Pathway maps that are significantly enriched with differen-

tially expressed genes were identified (the DEG set).

2) Pathway maps that are significantly enriched with expression

regulators were identified (the regulator set).

3) Pathway maps that are significantly enriched with both

differentially expressed genes and expression regulators were

identified (the combination set).

To identify key pathways, the significance p-values resulting

from the enrichment analyses in 1), 2) and 3) were compared:

Pathway maps whose enrichment p-value in the combination set

was lower than the p-values in the two sets separately were defined

as ‘‘synergistically’’ enriched and correspond to key pathways.

Causal network reconstruction
A causal network integrates prior biological knowledge with

experimental data and describes the biological mechanisms

underlying an observed phenotype. A causal network contains

proteins and small molecules that are connected via directed

molecular interactions. All interactions are supported by experi-

mental evidence and are annotated with biological effects such as

activation and inhibition. The structure of a causal network

includes ligand-receptor interactions (triggers), signaling cascades

via signal-transduction molecules, and transcription factors, which

modulate the expression of downstream genes and lead to the

observed phenotype. Here, causal networks were reconstructed

using canonical pathway maps from the MetaBase resource,

precisely the previously identified key pathways, since these maps

contain experimentally validated interactions only and are

structured the same way as a causal network.

Specifically, causal networks were reconstructed as follows:

First, the differentially expressed genes and expression regulators

were overlaid onto the key pathway maps. Differentially expressed

genes and expression regulators were both considered affected in

the phenotype. Second, affected genes were identified that

correspond to ligands or receptors as they are regarded as triggers

of the signaling cascades. Third, signal transduction pathways

were selected that are 1) downstream of the affected triggers, 2)

contain consecutive stretches of affected signal-transduction

molecules, and 3) end at affected transcription factors. In addition

to key pathway maps, groups of affected proteins were included in

the causal network, where a group represents a well-defined

functional module such as a protein complex.

Key genes
Key genes represent genes that are important for the observed

phenotype based on multiple sources of evidence. Each gene was

evaluated based on the following criteria: 1) the gene is

differentially expressed; 2) the gene is an expression regulator; 3)

the gene is annotated with a GO biological process term that is

enriched in the list of differentially expressed genes [73]; 4) the

gene is annotated with a GO molecular function term that is

enriched in the list of differentially expressed genes; 5) the gene is

present on an enriched pathway map; 6) the gene is present on an

enriched process network as stored in MetaBase; 7) the gene is

present on an enriched toxicity network as stored in MetaBase; 8)

the gene is present on a key pathway map; 9) the gene is present on
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the reconstructed causal network; and 10) the gene is expressed in

whole blood. Whenever a gene fulfilled a requirement, it received

a score of 1 in this particular category and 0 otherwise. Therefore,

the maximum score a gene may receive is 10 and the minimum

score is 0. Genes with high scores are regarded key genes and if

expressed in blood they may serve as potential biomarkers for the

phenotype.
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