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Quantum entanglement 
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splitter in the form of coupled 
waveguides
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A. A. Kharlamova & Yu. V. Tsykareva

It is well known that a beam splitter (BS) can be used as a source of photon quantum entanglement. 
This is due to the fact that the statistics of photons changes at the output ports of the BS. Usually, 
quantum entanglement and photon statistics take into account the constancy of the reflection 
coefficient R or the transmission coefficient T of the BS, where R + T = 1 . It has recently been 
shown that if BS is used in the form of coupled waveguides, the coefficients R and T will depend on 
the photon frequencies. In this paper, it is shown that the quantum entanglement and statistics of 
photons at the output ports of a BS can change significantly if a BS is used in the form of coupled 
waveguides, where the coefficients R and T are frequency-dependent.

It is well known that a beam splitter (BS) is a source of quantum entangled photons1–4. At the same time, quantum 
entanglement is the basis in new directions of quantum optics: quantum metrology5, quantum information6, 
etc. Quantum entanglement and changes in the statistics of photons in BS can be used in linear optical quantum 
computing (LOQC)7–9. In 2001, Knill et al. showed that using BS, phase shifters, photodetectors and single photon 
sources, it is possible to create a universal quantum computer (KLM protocol)10. Beam splitters currently can be 
of various types. The most common and well-known type is the prismatic BS. The prismatic BS has a drawback 
that is its size. Therefore, they are most often used in experiments, but not in quantum technologies. An analogue 
of a prismatic BS can be a BS in the form of coupled waveguides. Coupling between waveguides can be achieved 
when two waveguides are brought together close enough to each other so that the electromagnetic fields overlap; 
in this case it is a directional coupler (for example11,12). Coupled waveguide BS has an advantage over prismatic 
because it is much smaller than prismatic BS and also has many other advantages3,9,13.

Currently, theories describing quantum entanglement and statistics of photons at the BS output ports are 
based on the constancy of the main parameters of the BS: the reflection coefficient R and the transmission coef-
ficient T, where R + T = 1 see e.g.1,3–5,14–16. Recently, the paper17 presented the theory of a frequency-dependent 
BS in the form of coupled waveguides. In this work, it was shown that if the BS is presented in the form of cou-
pled waveguides, then the coefficients R and T depend on the frequencies of the photons entering both ports 
of the BS. This dependence can be significant and must be taken into account in many applications of quantum 
optics. For example, in the works18,19 it was shown that the well-known theory of Hong-Ou-Mandel (HOM) 
interference, based on the constancy of the coefficients R = 1/2 and T = 1/2 , can be significantly changed. In 
addition, this change affects a fundamental understanding of the HOM effect itself. It is shown that even in the 
case of completely identical photons and a balanced BS in the HOM effect, the visibility V can differ from unity.

Thus, the problem of studying many physical characteristics of a frequency-dependent BS in quantum optics 
is topical. In this paper, we investigated the quantum entanglement and statistical properties of photons at the 
output ports of a frequency-dependent BS. It should be added that the study of the quantum entanglement of 
two-mode photonic states with allowance for a frequency-dependent beam splitter has not been carried out pre-
viously and is a separate problem that needs to be solved. It is shown that quantum entanglement and statistical 
properties of photons can be very different from the case with constant coefficients R and T. The results obtained 
are important not only from a theoretical point of view, but also from an applied point of view, since they can be 
used in practice, for example, to generate quantum entangled photons with specified properties.
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Quantum entanglement and photon statistics
It is well known14,20–22 that a lossless two-mode BS in quantum optics is described by a unitary matrix UBS , which 
has the form

where the annihilation operators 1 and 2 modes at the input to the BS respectively represent â1 and â2 , and after 
output BS b̂1 and b̂2 ; T and R are the coefficients of transmission and reflection; respectively, and φ is the phase 
shift. The Eq. (1) is general and applies to any type of linear BS, including a BS in the form of coupled waveguides, 
see. Figure 1. As was shown in17,18, the reflection coefficients R, the transmission T and the phase shift φ in the 
case of the BS in the form of a coupled waveguide will be in the form

where � is a certain frequency characterizing the BS; tBS is the time of interaction of photons in the BS (in the 
case of monochromatic and identical photons, coincides with11, where R = sin2(Cz) , φ = π/2 , C = �/(2v) 
is the coupling constant between adjacent waveguides, z = vtBS , v is wave velocity in a waveguide); ω1 and ω2 
are the photon frequencies in the first and second ports, respectively. It should be added that the greater the 
coupling in the waveguides, the greater the value of � and vice versa. Thus, we can regulate the coupling in the 
waveguide by changing �.

In general, the matrix UBS is needed to find the wave function of photons in the output state �out from the 
initial state �in . The wave function �out , taking into account the non-monochromaticity of photons, will be17,23,24

where s1 and s2 are the initial number of photons in modes 1 and 2, respectively, |0� is the vacuum state, 
and b̂1 and b̂2 are determined from the BS matrix (1), φ(ω1,ω2) is the joint spectral amplitude (JSA) 
of the two-modes wavefunction ( 

∫

|φ(ω1,ω2)|2dω1dω2 = 1 ). It should be added that the initial state 
�in = �out(tBS = 0) =

∫

φ(ω1,ω2)|s1, s2�dω1dω2 . It was shown in17 that �out in the case of a BS in the form of 
coupled waveguides will be

where |k, s1 + s2 − k� = |k�|p� is the state of the photons at the output ports of the BS,

where Pα,βγ (x) are Jacobi polynomials, s1 and s2 are the number of photons in the first and second input ports, 
respectively, k and p are the number of photons in the first and second output ports, respectively. Moreo-
ver, the condition k + p = s1 + s2 is satisfied, i.e. the number of photons in the system does not change15, 
|k, s1 + s2 − k� = |k�|p� is the state of the photons at the output ports of the BS. In this case, the probability �k 
of detecting photons in k and p = s1 + s2 − k states at the first and second ports of the BS, respectively, will be
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Figure 1.   (a) 3D representation of the BS in the form of coupled waveguides, where �in and �out are the initial 
and output (recorded by the D1 and D2 detectors) photon wave function, respectively. (b) 2D image of such a BS, 
which is often used in various designs.
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Next, we will study the quantum entanglement of such a system. For this, it will be assumed that there is no 
quantum entanglement of photons at the input ports of the BS. In other words, we will consider the incoming 
photonic states as Fock, but the photons are not monochromatic. In this case, as is well known, the photon 
wave function is factorizable, i.e. �in =

∫

φ1(ω1)|s1�dω1

∫

φ2(ω2)|s2�dω2 , where φ(ω1,ω2) = φ1(ω1)φ2(ω2) . 
It should be added that usually quantum entanglement is considered for monochromatic photons, in this case 
�in = |s1�|s2� , see e.g.1,15. At first glance, it seems that the non-monochromaticity of photons cannot greatly 
change the quantum entanglement at the BS. As will be shown below, quantum entanglement can vary greatly 
depending on the degree of non-monochromaticity of the photons. To analyze quantum entanglement, we will 
use the von Neumann entropy SN = −

∑

k �k ln (�k)
1,17,25–27. The von Neumann entropy SN is the most com-

monly used measure in the analysis of quantum entanglement. Next, let’s choose φi(ωi) ( i = 1, 2 ) in the most 
commonly used form, this is a Gaussian distribution

where ω0i is the mean frequency and σ 2
i  is the dispersion. Next, we will use the ω0i/σi ≫ 1 condition, which 

is applicable to most photon sources. At first glance, it seems that this is enough for photons to be considered 
monochromatic. This is really so, but only for �in , for �out this is no longer the case, since the coefficients R, T 
depend on the photon frequencies, which ultimately leads to dependencies of �out from dispersion σi.

Figure 2 let us represent the dependence of the von Neumann entropy SN depending on the dimensionless 
parameter �tBS for identical photons, i.e. for σ1 = σ2 = σ and ω01 = ω02 = ω0.

It should be added that the results obtained for monochromatic photons, i.e. for σ → 0 (more precisely, for 
σ/� ≪ 1 so that σ tBS ≪ 1 ) coincide with previously known results, see e.g.1,15. Indeed, if we use the result for 
monochromatic photons11, for the reflection coefficient R = sin2(�tBS/2) and, for example,1 for calculating 
quantum entanglement, then it is easy to get the dependencies presented in Fig. 2 for σ/� = 0 (thin lines). Thus, 
our result is more general, applicable to non-monochromatic photons. An interesting and noteworthy result is 
the large difference between the quantum entanglement of monochromatic and non-monochromatic photons. 
Moreover, in the case of non-monochromatic photons, when σ/� ∼ 1 , the quantum entanglement is larger. The 
difference is not only in the quantitative value, but also in the qualitative behavior of quantum entanglement. In 
the case of non-monochromatic photons, when σ/� � 1 and for relatively large �tBS , quantum entanglement 
tends to a constant value. In the case of monochromatic photons, quantum entanglement is a periodic function. 
This difference is easily explained by comparing the reflection coefficients R in the case of monochromatic and 
non-monochromatic photons, see Eq. (2) and below. In the case of monochromatic photons, this is a periodic 
function relative to �tBS . In the case of non-monochromatic photons under the sine argument, there is a depend-
ence on the photon frequencies, which ultimately removes the periodicity when integrating over frequencies, 
see Eq. (6).
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Figure 2.   The dependence of the von Neumann entropy SN on the parameter �tBS is presented. In (a–d) the 
value of SN is presented for |1, 1�, |2, 3�, |4, 2�, |3, 3� , respectively (where |s1, s2� are input states to 1 and 2 ports 
of the BS, respectively). All figures show the results for σ/� = 10 (brown), σ/� = 5 (blue),σ/� = 3 (red), 
σ/� = 1 (green), σ/� = 1/3 (orange) from bottom to top, respectively. The thin curve is made at σ/� = 0 
(black).
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Let us consider in more detail the case of input photons in the states |1, 1� . This case is of particular interest 
because it implements the Hong-Ou-Mandel (HOM) effect2,18. Other cases are close enough in analysis and 
representations, so it is enough to study the case |1, 1� . To analyze this case, it is convenient to represent the 
contour plot for the von Neumann entropy depending on two parameters σ/� and �tBS , see Fig. 3(a). Since, for 
large �tBS (of course, the condition σ tBS ≫ 1 must also be satisfied) quantum entanglement tends to a constant 
value, then Fig. 3(b) represents this constant value, depending on the σ/� parameter. Moreover, you can find 
the analytical dependence represented by the dependence Fig. 3(b) as

where erf is an error function. Should be added that, to get the Eq. (8) sine and cosine terms (rapidly oscillating 
terms at �tBS → ∞ ) must be ignored when integrating over frequencies.

It can be seen from the graphs obtained that the quantum entanglement has a maximum, which will be at 
σ/� = 0.44467 . It is also seen that the quantum entanglement is large at σ/� ∼ 1 , and as σ/� increases, it 
tends to zero.

Next, consider the statistics of photons at the output ports of the BS. This requires a probability analysis �k 
see Eq. (6). If we were considering monochromatic photons, but the coefficient R would be constant, then fol-
lowing Eq. (6) �k = �k . This case was discussed in detail earlier, see e.g.14. You can see that our results, in this 
case, match14. Thus, our consideration is general and, in a particular case, coincides with the previously well-
known results. Consider a BS with specified characteristics. Let us choose its length z = vtBS and frequency 
� = 2Cv (see above, after Eq. (2)) so that the reflection coefficient for monochromatic and identical photons is 
R = sin2(�tBS/2) = 1/2 . As a result, we choose �tBS = 5π/2 . This choice is determined by how the statistics of 
photons change depending on their non-monochromaticity, which can be seen on the example of a particular BS. 
In addition, the choice of the reflection coefficient R = 1/2 is found in many applications of quantum optics2,28,29. 
Thus, further we will consider identical ( σ1 = σ2 = σ and ω01 = ω02 = ω0 ), but not monochromatic photons.
The calculation results are presented in Fig. 4. From Fig. 4(a) you can see that for the states |1, 1� at σ/� = 0 the 
HOM effect2 is realized. This means that only pairs of photons are recorded on the first or second detectors (in 
the figure, this is for k = 0 and k = 2 ) with a probability of 1/2. By increasing σ/� the HOM effect disappears 
and the photon statistics changes dramatically. It is quite interesting to see the statistics of photons at maximum 
quantum entanglement, see Fig. 4(b). This statistic differs from the statistic of the HOM effect Fig. 4(a) and from 
statistics in the case of monochromatic photons at maximum quantum entanglement, i.e. with constant reflection 
coefficient R, see15. For large σ/� ≫ 1 , the probability �k will tend to unity for k = 1 . This means that photons 
will never arrive in pairs at the detectors. A similar analysis is quite simple to carry out for any input states |s1, s2� . 
A common thing for all cases will be this coincidence with the statistics for monochromatic photons at σ/� = 0 
presented in the work14, see also15. Also, the general behavior of the probability for any states |s1, s2� this will be the 
tendency of the photon statistics at σ/� ≫ 1 to the statistics of incoming photon states. This is easily explained, 
since at � → 0 (the same as σ/� ≫ 1 ), the coupling between the waveguides in the BS weakens, which means 
that photons propagate along their waveguides.

Also consider the limiting case described above for quantum entanglement, this is the case for large �tBS 
(more precisely, the condition σ tBS ≫ 1 must also be satisfied) for the input state |1, 1� . In this case, it is easy 
to obtain the probability of detecting photons on both detectors P1,1 = J , where J is represented in Eq. (8). The 
probability of detecting pairs of photons on 1 or 2 detectors will then be P2,0 = P0,2 = 1/2(1− P1,1) . The results 
are presented in Fig. 5. It is interesting enough to note that the minimum of the function min{P1,1} or the maxi-
mum of max{P2,0 = P0,2} for σ/� = 0.44029 practically coincides with the maximum for quantum entanglement 

(8)SN = ln
2(1− J)J−1

(2J)J
, J = 1+ 3

8

(

�

σ

)2

−
√
π

16

(

�

σ

)3{

3+ 10

( σ

�

)2
}

erf

(

�

2σ

)

e

(

�
2σ

)2

,

b

Figure 3.   (a) A contour plot of the von Neumann entropy SN versus two parameters σ/� and �tBS for the 
input state |1, 1� is presented. (b) von Neumann enetropy SN is presented as a function of σ/� in the limiting 
case �tBS → ∞ for the input state |1, 1�.
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at σ/� = 0.44467 (see Fig. 3(b)). This means that the maximum of quantum entanglement is realized when 
photons at the first and second detectors can be registered with a minimum probability. Or, which is the same, 
when pairs of photons can be recorded on detectors with maximum probability. Also in the insets Fig. 5(a),(b) 
the probabilities P1,1 and P2,0 = P0,2 are presented, respectively, depending on two parameters of the studied 
system σ/� and �tBS . It can be seen that taking into account the non-monochromaticity of photons significantly 
changes the probabilities, in comparison with monochromatic ones.

It should be added that such an analysis, for quantum entanglement and photon statistics, is fairly easy to 
carry out for any photons input states |s1, s2� , as well as various BS parameters �, tBS and the values of non-
monochromaticity of photons σ1, σ2.

Discussion and Conclusion
Thus, we have studied quantum entanglement and photon statistics on a BS based on coupled waveguides. Cou-
pled waveguides are frequency-dependent BS, i.e. reflection coefficients R and transmission T depend on the 
frequencies of incoming photons to ports 1 and 2 of the BS. Since our theory takes into account the frequency 
dependence of the coefficients R and T, it means that we take into account the non-monochromaticity of input 
photons. One of the main conclusions is a significant difference between quantum entanglement and photon 
statistics compared to a BS, where R and T do not depend on frequencies. Given that the quantum entangle-
ment and statistics of photons of a frequency-dependent BS have not been studied previously, this conclusion 

a b

c d

10 2 10 2

=0 =0.44467

=1.0 =3.0

Figure 4.   A histogram of the dependence of the probability �k of detecting k and p = s1 + s2 − k (we consider 
the case |1, 1� , where s1 = s2 = 1 ) photons at the output of the first and second ports, respectively, for different 
values of σ/�.

3

a

b

Figure 5.   (a) Shows the probability P1,1 , (b) shows the probability P2,0 = P0,2 for �tBS → ∞ depending on the 
σ/� parameter. Also in the insets (a),(b) are contour plots for the probability P1,1 and P2,0 = P0,2 are presented, 
respectively, depending on two parameters of the studied system σ/� and �tBS.
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is very important. If we choose R and T as constant values, then our theory in the limiting case is σ/� → 0 (in 
general, ε → 0 in Eq. 2 ) coincides with the previously well-known theories, for quantum entanglement e.g.1,15 
and photon statistics e.g.14. It should be added that Fock’s input states are considered here, since they are not 
quantum entangled. In general, this theory can be easily generalized to arbitrary input states, including quantum-
entangled states, see eg30,31.

The frequency-dependent BS discussed here can be a good source of quantum entangled photons. Moreover, 
quantum entanglement is easy to regulate by changing the � parameter (see e.g. Fig. 3(a)). The � parameter 
is quite easy to change, following the work17,18. To do this, you just need to weaken or increase the connection 
in the waveguides. This can be done, for example, by separating or bringing the waveguides closer together. A 
big advantage in using a frequency-dependent light splitter as a source of quantum entanglement of photons is 
practically the maximum possible quantum entanglement for σ/� ∼ 1 and �tBS > 1 . As is well known e.g.1,32 
that the maximum quantum entanglement for the von Neumann entropy SN = ln(1+ N) when N + 1 is a 
dimensional bipartite system. In our case, N = s1 + s2

1. It should also be added that in this work (similar to eg1), 
quantum entanglement of photons is understood as bipartite entanglement of modes, see eg33. In contrast to the 
case that is realized on a non-frequency-dependent BS (where R and T are constants), in our case, for σ/� ∼ 1 
and �tBS > 1 , quantum entanglement is close to its maximum value. For constant R and T, quantum entangle-
ment is a periodic function with respect to �tBS , and for large �tBS ≫ 1 , it is a rapidly oscillating dependence.

All this suggests that a frequency-dependent beam splitter based on coupled waveguides can be used as a 
source of large quantum entanglement of photons. The results obtained can have interesting practical applica-
tions in quantum optics, in particular, in quantum metrology and quantum information.
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