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Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects.
On the other hand, immunotherapy also has significant clinical applications in the
treatment of cancer. Both therapies, on their own, have some limitations and are
incapable of meeting the demands of the current cancer treatment. The efficacy of PDT
and immunotherapy against tumor metastasis and tumor recurrence may be improved by
combination strategies. In this review, we discussed the possibility that PDT could be
used to activate immune responses by inducing immunogenic cell death or generating
cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy
in combination with some immunotherapy such as immune adjuvants, inhibitors of
immune suppression, and immune checkpoint blockade.
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INTRODUCTION

Cancers are chronologic diseases that seriously threaten human life. Many strategies have been
developed for cancer treatment, including chemotherapy, radiotherapy, surgery, and targeted
therapy, which are found to be effective for some malignant tumors (1, 2). However, metastasis,
recurrence, heterogeneity, resistance to chemotherapy and radiotherapy, and avoidance of
immunological surveillance are the most common reasons for cancer treatment failure. Therefore,
new therapies with targeted and less invasive features are needed for cancer treatment. In 1903,
Tappeiner and Jesionek used white light and eosin to treat skin tumors, setting a photodynamic
therapy (PDT) model to treat tumors (3). PDT is a minimally invasive therapy that generates
cytotoxic reactive oxygen species (ROS) through a light source, molecular oxygen, and organic
macrocycles called photosensitizers (PSs) (4, 5). Currently, nanomaterials are widely used as PS
carriers due to their better cytocompatibility, lower cytotoxicity, and excellent tumor targeting
compared with traditional small-molecule PSs (6, 7). The enhanced permeability and retention (EPR)
effect-based nanomedicine has been widely used for tumor targeting during the past decades. PDT
only produces ROS in the tumor after local irradiation with excitation light, making it less invasive
and confined. Furthermore, PDT has shown promising results in the diagnosis and treatment of
cancers, such as breast, colorectal, and skin cancers, because of the mechanism of action of PSs, which
does not cause drug tolerance (8–10). PDT can also induce immunogenic cell death (ICD), promote
the release of tumor-associated antigens (TAAs) from tumor cell remnants, and increase the
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proliferation, activation, and infiltration of antigen-presenting
cells and antigen-specific T cells (11–13).

Tumor immunotherapy is an innovative therapy that
modulates the immune microenvironment and activates the
immune system. It depends on autoimmune functions to kill
cancer cells and tumor tissues (14, 15). This approach has the
advantage of producing long-term immunological memory
effects while causing no harm to normal tissues or cells (16).
In recent years, with the discovery of tumor immune
checkpoint molecules, such as cytotoxic T lymphocyte
(CTL)-associated protein-4 (CTLA-4), programmed cell
death protein-1 (PD-1), and its ligand PD-L1, important
breakthroughs have been made in the study of antitumor
immune mechanisms, and immunotherapy has become a
promising tumor treatment (17, 18). Currently, the main
strategies in cancer immunotherapy include tumor vaccines,
adoptive cellular immunotherapy (ACI), and immune
checkpoint blockade (ICB) therapy (19–21). However,
immune drugs alone are not effective for all patients. Drug
resistance or adverse effects, including skin rashes, itching,
diarrhea, pneumonia, and thyroid malfunction, may occur in
some people (22). In addition, immune side effects, including
the cascade of inflammatory mediators, hematopoietic system
dysfunction, and organ toxicity, also limit the optimization of
immunotherapy methods (23–25). Therefore, it is needed to
develop appropriate combined cancer therapies to enhance
the effectiveness of immunotherapy and to reduce side effects.
It has been revealed that combining PDT with antitumor
immunotherapy not only can improve the PDT-induced
antitumor immune response but also can promote the
proliferation and activation of immune memory cells,
Frontiers in Oncology | www.frontiersin.org 2
inhibit tumor metastasis, and prevent tumor recurrence
(26, 27).

In this review, we explain the principles and damage
mechanisms of PDT and discuss the immune response induced
by PDT. We also summarize the combined treatment strategies of
PDT and some immunotherapies, such as immune adjuvants,
inhibitors of immune suppression, and ICB for cancer. We believe
that this combination therapy strategy will be further developed
and functionalized to meet the application in biomedicine, thereby
making remarkable contributions to human health.
THE PRINCIPLE AND DAMAGE
MECHANISM OF PHOTODYNAMIC
THERAPY

The exact mechanism of PDT has not yet been elucidated.
However, the widely accepted theory is based on photophysical
principles and guided by the Jablonski Diagram. The Jablonski
Diagram clarifies the different electronic states of molecules and
the process of their transitions, which are considered as the
basic principles for designing phototherapeutic reagents (28,
29). As shown in Figure 1, PS is excited by light irradiation, and
the electronic state changes from the ground state (S0) to the
singlet excited state (Sn) and then relaxes to the lowest energy
level of the singlet excited state (S1) through internal conversion
(IC). The PS at the S1 state can consume energy in three ways,
resulting in diverse outcomes (30, 31). 1). The molecules at the
S1 state emit a photon with a longer wavelength to S0. The
FIGURE 1 | The photophysical mechanism and the two classic types of photodynamic therapy (PDT). The photosensitizer absorbs light energy to jump from the
ground state to the excited state, which then leads to a long-lived excited triplet state through intersystem crossing and finally generate reactive oxygen species
through type I reaction or type II reaction.
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photon emission process can be applied to fluorescence
imaging. 2) S1 state molecules release heat by colliding with
each other and relax to the S0 state in a non-radiative manner,
which is often used in photothermal therapy. 3) The PS at the S1
state transitions to the lowest energy level of the triplet state
(T1) through intersystem crossing (ISC) (32–34). The
molecules at the T1 state can relax to the S0 state by emitting
photons. This phenomenon is called phosphorescence. In
addition, molecules in the T1 state can also perform two
different types of PDT by generating free radicals or singlet
oxygen (35–37). In type I reaction, T1 state chemicals form free
radicals by directly interacting with endogenous substrates,
such as cell membranes or biological macromolecules, and
subsequently react with oxygen to produce ROS (38). In the
type II reaction, T1 state molecules directly transfer energy to
oxygen molecules in the surrounding environment to generate
singlet oxygen, which may oxidize the macromolecular cellular
components, resulting in cellular death through either
apoptosis or necrosis (39, 40). However, it should be noted
that most PSs exert their antitumor effects by causing cell
damage through the generation of singlet oxygen from the
type II reaction (41). Singlet oxygen can act on protein
sulfhydryl and amino groups to denature proteins and reduce
enzymatic activity in cells (42, 43). Singlet oxygen can also alter
Frontiers in Oncology | www.frontiersin.org 3
the structure and function of cell membranes, mitochondrial
membranes, and DNA molecules (44, 45).

The tumor damage mechanism caused by PDT mainly
includes the following types. 1) Direct killing effect of ROS on
tumor cells, including apoptosis, necrosis, and autophagy. 2) PSs
target the vascular system to form thrombi, causing hypoxic
infarction of tumor tissues. 3) Tumor cells that undergo
apoptosis or necrosis release inflammatory factors, which
trigger an inflammatory response that leads to an antitumor
immune response (46–48) (Figure 2). It is worth mentioning
that apoptosis, autophagy, and cell cycle arrest after PDT may
occur simultaneously during a single treatment session.
Sasnauskiene et al. (49) found that the degree of oxidative
stress damage to cells is dose-dependent. Cells showed
increased autophagy and cell cycle arrest but no apoptosis
when the cytotoxic dose was increased to 50%. However, the
cells displayed significant apoptosis, autophagy, and cell cycle
arrest when the cytotoxic dose was greater than 70%. The
damage to blood vessels by PDT is based on the characteristics
of tumor tissue with wide vascular gaps and poor integrity, which
are conducive to PS aggregation (50). After photoactivation, PS
enrichment in tumor vascular endothelial cells causes many
physiological responses, including platelet aggregation and
vasoconstriction, which lead to tumor vascular blockage,
FIGURE 2 | The tumor damage mechanism caused by photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) to induce cell apoptosis and
necrosis; photosensitizers target the vascular system to form thrombi, causing hypoxic infarction of tumor tissues; apoptotic and necrotic tumor cells recruit a variety
of white blood cells.
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ischemia, and hypoxia (51, 52). The direct ablation effect of PDT
on tumor cells also releases inflammatory mediators, thereby
recruiting a variety of white blood cells, such as neutrophils,
macrophages, and dendritic cells (DCs) (53). These white blood
cells will then activate the immune cascade to further suppress
the tumor (54, 55).
PHOTODYNAMIC THERAPY AND
ANTITUMOR IMMUNE RESPONSE

Photodynamic Therapy-Mediated
Immunogenic Cell Death
The current elaboration on the mechanism of PDT antitumor
immune response tends to focus on PDT-induced oxidative
stress in tumor cells, causing ICD and release of TAAs and
damage-associated molecular patterns (DAMPs) (56, 57). ICD is
a specific cell death mode that translocates calreticulin (CRT) to
the cell surface and releases high mobility group box 1 protein
(HMGB1), adenosine triphosphate (ATP), and heat shock
proteins (HSPs) to the extracellular surface (58, 59).
Inflammation-related signaling pathways, the release of
immune-related cytokines, neutrophil infiltration, and the
complement cascade are all triggered by these DAMPs (60,
61). DCs are specialized antigen-presenting cells that link the
innate immune response to the adaptive immune response,
taking up TAAs, binding DAMPs through pattern recognition
receptors (PRRs), and processing antigens as they migrate to
lymph nodes and mature. The antigens are presented to T cells
for proliferation and differentiation into CTLs, which exert
antitumor immune effects (62–64).

After the determination of the important role of
immunogenic DAMPs in the PDT-mediated antitumor
immune response, many studies have been conducted to
improve the ICD triggered by PDT. Deng et al. (65) designed
reduction-sensitive Ds-sP nanocarriers loaded with an efficient
endoplasmic reticulum (ER)-targeting PS TCPP-TER. The
unique ER targeting ability of PS TCPP-TER results in an
elevated level of oxidative stress in the ER of tumor cells,
which in turn releases more DAMPs and enhances
the immune effect. This strategy can effectively address
the prob lems of shor t ROS ha l f - l i f e and l imi ted
intracellular diffusion depth. However, a hypoxic tumor
microenvironment (TME) can limit the efficacy of PDT and
reduce the efficiency of ICD induction (66). Therefore,
increasing the oxygen content of tumor tissues is essential to
improve the efficiency of PDT treatment. Liang and colleagues
(67) developed gold nanocages (AuNCs) with hollow structures
and coated them with a layer of manganese dioxide to
synthesize core-shell nanoparticles (AuNC@MnO2). In the
acidic microenvironment of tumor tissue rich in H2O2,
manganese dioxide reacts as follows: MnO2 + H2O2 +
2H+!Mn2+ + 2H2O + O2↑ generates a large amount of
oxygen to promote the accumulation of ROS in the tumor
and enhances the efficacy of PDT by improving tumor hypoxia
Frontiers in Oncology | www.frontiersin.org 4
to achieve ICD. The released oxygen and Mn2+ can provide
fluorescence (FL)/photoacoustic (PA)/magnetic resonance
multimodal imaging function to evaluate the integration of
tumor diagnosis and treatment. In short, the induction of ICD
by enhanced PDT to promote antitumor immune response is a
promising tumor treatment strategy (Figure 3).

Photodynamic Therapy-Generated
Cancer Vaccines
Tumor cell lysates and TAAs produced by PDT can also induce
specific immune responses and are more effective than tumor
cell lysates produced by ionizing radiation and ultraviolet rays
(68). Similar to the inoculation mechanism of conventional
vaccines that directly introduce microorganisms into the body
to produce protective antibodies, cancer vaccines stimulate the
activation of the body’s immune system through tumor cell
death (69, 70). DCs have played a major role in the
development of cancer vaccine therapy as critical mediators
of antigen presentation, reversing a major component of
tumor-mediated immune suppression (71, 72). Tumor
residues after PDT can be used as a cancer vaccine to
dramatically increase DC activation and release inflammatory
cytokines to boost immune response in a mouse breast cancer
model, according to a study using chlorin e6 (Ce6) as a PS (73).
A promising tumor treatment strategy is to use PDT-treated
tumor cells as a DC vaccine to develop a PDT-DC vaccination
that can more efficiently destroy tumors and trigger a powerful
antitumor immune response (74, 75).

lAntigens produced by PDT ablation of tumors may have
insufficient immunogenicity as a DC vaccine and are limited to
immunosuppressed “cold” tumors (76). Korbelik made a vaccine
against SCCVII cells using PDT to destroy the cells and used this
vaccine in the SCCVII tumor model to show that it inhibits
tumors growth (77). However, the levels of splenic myeloid-
derived suppressor cells (MDSCs) were significantly enhanced.
Therefore, the immune adjuvant N-dihydrogalactochitosan (GC)
was added to the PDT vaccine group to reduce the number of
MDSCs (precursors of DCs, macrophages, and granulocytes) and
alleviate immunosuppression (78). Ni et al. (79) used the
amphipathic 4T1 breast cancer cell membrane to load PS Ce6
and the chemotherapeutic drug, i.e., doxorubicin hydrochloride
(Dox), and coated the cell membrane surface with calcium
carbonate to construct nanodrug delivery systems. Ce6-based
PDT and Dox cause DNA damage, induce tumor ICD, and
release TAA. The ROS generated during this process is expected
to form in situ PDT-DC vaccination by mimicking inflammatory
mechanisms to recruit DCs. In PDT-DC vaccinated mice, the
growth of both primary 4T1 and untreated distant tumors was
suppressed, indicating the establishment of an efficient immune
response. Moreover, serum levels of inflammatory cytokines in
mice increased continuously, peaking and then stabilizing the day
after vaccination. It provides a novel antitumor combination
therapy for improving the immunogenicity of the PDT-DC
vaccine by introducing adjuvants or chemotherapeutic drugs.
This therapy enhances body-specific immune responses,
eliminates tumors, and builds long-term immunological memory.
November 2021 | Volume 11 | Article 738323
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COMBINED TUMOR TREATMENT
STRATEGY BASED ON PHOTODYNAMIC
THERAPY AND IMMUNOTHERAPY
Photodynamic Therapy and
Immune Adjuvants
Immune adjuvants are chemicals that boost the cellular or
humoral immune response to an antigen (80, 81). Vaccines,
which are one of the most successful medicinal discoveries
against a variety of infectious diseases, occasionally require a
molecule in conjugation to boost the immune response (82). It is
therefore expedient to co-administer these with an adjuvant to
ensure a high-quality/high-quantity, memory-enhanced
antibody response. In chronological order of appearance, the
first immune adjuvant to be used clinically was Alum, followed
by the development of oil-in-water emulsions and toll-like
receptor (TLR) agonists (83, 84). TLR agonists are currently
being used as immune adjuvants to activate TLR signaling
pathways and boost immunological responses and are found to
be promising agents for cancer treatment (85, 86). This review
focuses on summarizing the strategies of TLR agonists in
combination with PDT.
Frontiers in Oncology | www.frontiersin.org 5
TLRs are one of the PRRs that are expressed by a wide range of
immune cells and have received more attention. To date, 13
different TLRs (TLR1–13) have been identified in mammals (87).
The TLR7 agonist imiquimod (R837) is a synthetic
imidazoquinoline-like molecule, approved by the US Food and
Drug Administration (FDA) as a single drug and commonly used
in the treatment of various skin diseases, including basal cell
carcinomas (88). R837 interacts with TLR7 on the DC surface
and endosomes that results in the stimulation of DC maturation
and release of pro-inflammatory cytokines through elevated
expression of co-stimulatory molecules (89). PDT using the PS
5-aminolevulinic acid (ALA) in combination with imiquimod
cream has been proven to be useful in the treatment of
squamous cell carcinoma of the skin (90). This combination
therapy ameliorates the poor oncogenic effect caused by
insufficient local penetration of the PS into the tumor. Because of
the limitations of topical use of imiquimod cream, this agent can
only be used for superficial skin cancer treatment. If tumors in
internal organs of the body are to be destroyed, R837 must be
delivered locally to the tumor through blood circulation. R837,
being a small-molecule, is diffused after local injection, and few of
them eventually reach the tumor site (91). Furthermore, R837
FIGURE 3 | Photodynamic therapy (PDT)-induced immune response. PDT induces immunogenic cell death and promotes the release of calreticulin (CRT) and high
mobility group box 1 protein (HMGB1) from tumor cells; tumor cell lysates and antigens are used as cancer vaccines to cause a series of immune cascades.
November 2021 | Volume 11 | Article 738323

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hua et al. Photodynamic Therapy and Immunotherapy
causes direct cell death by inducing autophagy and has
concentration-dependent cytotoxicity (92–94). The use of
nanomaterials to encapsulate immune adjuvants and decrease
their harmful effects is a viable technique for addressing such
issues. Xu et al. (95) used the hydrophobic region between UCNP
and PEG to load the PS chlorin e6 (Ce6) and the TLR7 agonist
R837. The results showed that TAA released from PDT-killed
tumor cells and R837 induced DC maturation and released
cytokines related to innate and adaptive immunity, such as TNF-
a and IL-12, by upregulating the expression of co-stimulatory
molecules such as CD80 and CD86. Resiquimod (R848), a second-
generation derivative of R837, shares a similar structure and
properties with R837. However, in contrast to R837, R848 can be
used as an agonist of both TLR7 and TLR8 (96, 97). Many studies
on R848 immunotherapy, both alone and in combination with
chemotherapy and photothermal therapy, have been reported,
suggesting that R848 can enhance immunity and improve
anticancer therapeutic effectiveness (98–100). However, studies
on the combined application of R848 with PDT have not been
reported, which may be a promising direction for future research.

Other TLR agonists have been used in PDT immunotherapy
to enhance the immune response. According to the reported
study, the combination of PDT and TLR5 agonist flagellin (FlaB-
Vax) effectively inhibited bilateral melanoma in mice, enhanced
TME tumor antigen cross-presentation, and promoted tumor
CD8+ T-cell infiltration and systemic IFN-g secretion (101). CpG
oligodeoxynucleotides (CpG ODN) are synthetic DNA
fragments that function as TLR9 agonists by interacting with
DC-expressed TLR9 and enhancing antigen-specific immune
responses (102). Ni and co-workers (103) used the cationic PS
5,10,15,20-tetra(p-benzoato)porphyrin (TBP) to adsorb the
anion CpG to achieve efficient PDT and effective delivery of
CpG. In a mouse breast cancer model, the combination of PDT
and CpG was found to provide excellent tumor suppression, with
about 97% of tumors being eliminated. Cai et al. (104) designed a
metal–organic framework (MOF) nanoparticle formed by the
self-assembly of the PS H2TCPP and zirconium ions. The porous
internal structure of MOF was used to load the TLR9 agonist
CpG ODN. When compared with the control and the treatment
group alone, the combination of CpG ODN and PDT
dramatically increased the expression of MHC-II, CD317, and
co-stimulatory molecules including CD80/CD86. Remarkably,
CpG ODN also reduced the immunosuppressive activity of
MDSCs and improved the tumor immunosuppressive
microenvironment (105). However, CpG ODN is still mostly
used as an immunostimulant in PDT immunotherapy, and there
is a significant research gap in improving immunosuppression.

Many immune adjuvants such as glycated chitosan (GC),
lactobacillus BCG, mycobacterial cell wall extract (MCWE),
complete Freund (CF) adjuvant, and incomplete Freund (IF)
adjuvant can stimulate the immune response similar to that of
TLR agonists (106). Previously, it was demonstrated that GC, a
water-soluble compound synthesized from galactose and chitosan,
was shown to stimulate TNF-a secretion by macrophages and
induce tumor-specific immune responses (107). Cai’s group (108)
found the highest levels of apoptotic and inflammatory responses
Frontiers in Oncology | www.frontiersin.org 6
and the highest infiltration of immune cells in tumors in the
synergistic treatment group of PDT and GC. Additionally, mice
treated with a combination of PDT and GC had a significantly
better survival rate in the EMT6 mammary tumor and 4T1
metastatic mammary tumor models. In short, PDT adjuvant by
immune adjuvant has promising research potential because of its
ability to inhibit tumor metastasis and recurrence.

Photodynamic Therapy and Inhibitors of
Immune Suppression
PDT can activate the immune system to some extent, but the
intensity of the PDT-induced immune response may not be
sufficient to destroy the tumors or prevent their metastasis and
recurrence due to the immunosuppressive effect of the TME and
immune escape of tumor cells (109, 110) (Figure 4). Moreover,
PDT causes local inflammation and immunosuppression due to
contact hypersensitivity (CHS) (111). Therefore, it is necessary to
explore suitable immune inhibitors to inhibit tumor
immunosuppressive signals and enhance PDT-induced
immune responses.

Immunosuppressive cells such as MDSCs and regulatory T cells
(Tregs) in the TME suppress the antitumor immune responses and
promote tumor progression and invasion (112, 113). Specifically,
MDSCs suppress T-cell function through multiple mechanisms,
including production of nitric oxide and immunosuppressive
metabolites, secretion of immunosuppressive cytokines such as
TGF-b and IL-10, and upregulation of cyclo-oxygenase 2 (Cox2)
and prostaglandin E2 (PGE2) (114, 115), while Tregs suppress T-cell
function through CTL antigen 4 to inhibit the expression of DC co-
stimulatory molecules including CD80 and CD86 (116). Recently, it
has been found that PDT vaccination significantly increased MDSC
and Treg levels, while low doses of GC and cyclophosphamide were
found to reduce the elevated levels of immunosuppressive cells (77,
117). The findings demonstrated the feasibility of using small-
molecule inhibitors to weaken immunosuppressive cells and alter
the immunosuppressive TME, thereby enhancing the PDT-DC
vaccine-induced immune responses.

Apart from their role in tumor development and immune
escape, the reprogramming of tumor cells’ metabolism influences
immune cell metabolism (118). Tryptophan (Trp) metabolism in
T cells is mediated by tumor cells through an elevated level of
indoleamine 2,3-dioxygenase (IDO) expression, which converts
Trp to kynurenine (Kyn) (119). Lack of Trp inhibits CTL
activation, while abnormal accumulation of Kyn recruits Treg to
suppress effector T-cell function (120, 121). Reducing the level of
immunosuppression by PDT nanoparticles loaded with IDO
inhibitors is a more appropriate strategy. Zhao et al. (122)
constructed self-delivery photo-immune stimulators (iPSs)
through non-covalent interactions between the PS Ce6 and IDO
inhibitor, i.e., NLG919. They first demonstrated that iPSs can
promote DC maturation by inducing apoptosis and ICD in CT26
cells via PDT and cellular release of CRT and HMGB1. Following
PDT treatment with iPSs, increased CD4+/CD8+ T-cell infiltration
was observed in the mouse CT26 tumor tissues, while a significant
decrease in Kyn/Trp ratio was observed in the serum. Additionally,
transcriptomic analysis of mouse tumor tissues demonstrated that
November 2021 | Volume 11 | Article 738323
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iPS-based PDT could effectively stimulate the tumor immune
microenvironment and enhance tumor immunotherapy efficacy.
A variety of PSs and IDO inhibitors, such as self-assembled
nanoparticles, are being developed extensively. Yang’s group
(123) designed pH-responsive nanovesicles (pRNVs) as carriers
to synthesize PRNVS/HPPH/IND smart nanoparticles by
encapsulating the PS HPPH and the IDO inhibitor indoximod
(IND) through hydrophobic interactions. They found that PDT
treatment of the nanoparticles inhibits mouse melanoma growth,
and the release of IND stimulates CD8+ T cells to destroy distant
tumors by increasing P-S6K phosphorylation.

Tumor tissues secrete large amounts of vascular endothelial
growth factor (VEGF) to promote the proliferation of
immunosuppressive cells and inhibit DC maturation by NF-kB
pathway activation (124, 125). Excess VEGF leads to
abnormalities in tumor vascular structure and function,
exacerbating the hypoxic state of the TME and affecting the
efficacy of PDT therapy (126). Zhou et al. (127) developed a self-
assembled nanoplatform containing the PS Ce6, the VEGF
receptor (VEGFR) inhibitor axitinib (AXT), and the IDO
inhibitor dextro-1-methyl tryptophan (1MT) to alleviate
immunosuppression by promoting vascular normalization and
improving the tumor hypoxic microenvironment, thereby
enhancing PDT immunotherapy. According to the obtained
results, the enhanced PDT immunotherapy has significant
effects on both primary melanoma and lung metastases in mice.

The PS-based PDT induces tumor ICD and stimulates
immune activation, while the inhibitor of immune suppression
Frontiers in Oncology | www.frontiersin.org 7
promotes PDT-induced immune response by weakening tumor
immune escape (128). It is about the immunosuppressive TME
of MDSCs and Tregs and immunosuppressive molecules like
IDO-1 and VEGF. PDT should be combined with compounds
that can inhibit MDSCs and/or Tregs and IDO or VEGF.

Photodynamic Therapy and Immune
Checkpoint Blockade
Various immunosuppressive mechanisms can impair the
efficiency of antitumor immunotherapy during tumor
progression. For example, immune checkpoint molecules are
considered to be the primary anticancer immunotherapy targets,
as they have a negative immunomodulatory effect (129). The
development of target-specific antibodies to block the underlined
immune checkpoints is a hot topic in immunotherapy. However,
due to the low tumor immunogenicity, the response rate of some
patients to ICB therapy is unsatisfactory (130). The efficiency of
ICB therapy can be improved by enhancing tumor
immunogenicity and sensitivity through PDT-mediated ICD
induction (131, 132). Herein, three immune checkpoints,
including CTLA-4, PD-1/PD-L1, and CD47, have been
described, followed by summarizing their combined treatment
strategies along with PDT.

CTLA-4 Checkpoint Blockade
CTLA-4 is an immune checkpoint receptor expressed on Tregs
and other activated T cells (133). It binds CD80 and CD86 ligands
on DCs, weakening T-cell activation and inability to perform
FIGURE 4 | Tumor immunosuppressive environment after photodynamic therapy (PDT). Tumor tissues secrete vascular endothelial growth factor (VEGF) to promote
the proliferation of myeloid-derived suppressor cells (MDSCs); the high expression of indoleamine 2,3-dioxygenase (IDO) in tumor cells promotes the recruitment of
Treg cells and inhibits the activation of CD8+ T cells through tryptophan metabolism.
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normal immune functions (134). It is considered the first immune
checkpoint receptor to be used clinically for cancer
immunotherapy. Additionally, ipilimumab, an anti-CTLA-4
monoclonal antibody used to treat metastatic melanoma, has
been approved by the FDA (135). The combination of anti-
CTLA-4 antibody and PDT is essential for the eradication of
systemic tumors and may be an effective therapeutic strategy for
advanced cancers (136). Wang et al. (137) developed bullet-shaped
magnetic mesoporous organosilica nanoparticles (M-MONs) with
Fe3O4 at the head and a mesoporous silica framework at the tail.
Next, the redox/pH dual-responsiveM-MONs@Ce6 nanoparticles
were developed with M-MONs (pores size of ~3.8 nm) and loaded
with the PS Ce6. M-MONs@Ce6 induced more severe ICD by
simultaneous PDT and magnetothermal treatment under the
combined action of laser and alternating-current magnetic field
(ACMF), releasing DAMPs to trigger specific immune responses
and significantly inhibiting the growth of mouse and human
breast cancers. In a mouse model of breast cancer with lung
metastasis, the PDT+anti-CTLA-4 antibody treatment group and
the magnetothermal treatment+anti-CTLA-4 antibody treatment
group showed an inhibitory effect on lung metastatic tumor. This
inhibitory effect was further enhanced when the two treatments
were combined, accompanied by an increase in CTL and a
decrease in Treg. Furthermore, the nanoparticles used for PDT
treatment had no severe side effects when combined with ICB
treatment, indicating that this is a safe and effective strategy for
the treatment of metastatic cancer.

PD-1 and PD-L1 Checkpoint Blockade
Following the success of CTLA-4 checkpoint blockade in
antitumor immunotherapy, more consideration has been paid
to the exploration of new immune checkpoints. PD-1, also known
as CD279, is an immunosuppressive signaling molecule highly
expressed on tumor-specific T cells. PD-1 binds to PD-L1 (PD-1
ligand) present on the tumor cells. Consequently, the inhibition of
T-cell proliferation and activation, elevated levels of T-cell
apoptosis, and reduced cytokine secretion were observed (138,
139). PD-1/PD-L1 signaling promotes tumor immune escape and
severely affects the efficacy of cancer immunotherapy (140). For
this reason, several anti-PD-1/PD-L1 antibodies have been
developed for restoring T-cell viability and promoting
antitumor immune response (141). It has been reported that
PDT significantly increases tumor PD-L1 levels, while the
majority of recruited CD8+ T cells express PD-1, emphasizing
the importance of a combined anti-PD-1/PD-L1 antibody
therapeutic strategy (142, 143). Liu et al. (144) used PS-g-PEG
micelles to encapsulate the PS, i.e., BDP-I-N to improve its water
solubility, followed by modifying the micelles with functional
groups to attach anti-PD-L1 antibodies that result in the synthesis
of BDP-I-N-anti-PD-L1 multifunctional nanoparticles. Unlike
the conventional therapeutic strategy to achieve the
combination with PDT by intravenous injection of anti-PD-1/
PD-L1 antibodies, this work assembled anti-PD-L1 antibodies
and PSs into nanoparticles and accomplished the efficient
accumulation in tumor tissues through the active targeting of
immune checkpoint antibodies and the EPR effect of
nanoparticles. In vivo results demonstrate that BDP-I-N-anti-
Frontiers in Oncology | www.frontiersin.org 8
PD-L1 nanoparticles eliminate MC38 mouse colon tumors by
synergistic action of PDT and ICB, generate immune memory to
prevent tumor recurrence, and have an excellent biosafety profile.

Anti-PD-1/PD-L1 antibodies have demonstrated excellent
efficacy in tumor immunotherapy; however, the high cost of
these antibodies adds to the financial burden of cancer patients
(145). To address the high cost of anti-PD-L1 antibodies, Zhang
and colleagues (146) extracted PD-1-expressing HEK293T cell
membranes to replace anti-PD-L1 antibodies to bind PD-L1 on
4T1 cells. They developed PDT-mediated PFTBA@HSA-DVMS
(PHD) nanoemulsions against hypoxic tumors by wrapping the
oxygen supply agent perfluorotributylamine (PFTBA) in human
serum albumin (HSA), followed by loading it with the PS
sinoporphyrin sodium (DVDMS). In addition, they developed
PHD@PM nanoplatform by encapsulating PHD nanoemulsion
inside PD-1-expressing cell membranes to realize the
combination of PDT and ICB. Their work demonstrates that
PHD@PM nanoplatform is an innovative therapeutic platform.
This platform has high clinical application because of its low cost,
high biocompatibility, and active targeting. Furthermore, it has the
ability to improve TME, which is hypoxic and immunosuppressive.

CD47 Checkpoint Blockade
Aside from the two most widely studied immune checkpoints
mentioned above, one of the current hot spots in cancer ICB
therapy is targeting the CD47–SIRP signaling axis. CD47 is a
membrane protein expressed by almost all cells, while signal-
regulating protein a (SIRPa) is only expressed by myeloid cells
such as macrophages and monocytes (147, 148). CD47 on the
surface of tumor cells binds to SIRPa on macrophages releasing a
“don’t eat me” signal that inhibits macrophage phagocytosis and
thus promotes tumor immune escape (149). A reported study has
revealed that thrombospondin-1 (TSP-1) in the TSP-1/CD47/SIRP-
a signal axis could significantly improve treatment outcomes by
blocking it, laying the groundwork for the clinical use of PDT cancer
vaccines (150). Chang et al. (151) designed Cu2O@CaCO3

nanoparticles for the target-specific treatment of colorectal cancer
(CRC). In the acidic microenvironment of CRC, the CaCO3 shell
decomposed to release the PS precursor Cu2O. Exposed Cu2O
reacted with endogenous H2S in the CRC, producing Cu31S16 and
ROS to achieve PDT under 1,064-nm laser radiation. It was found
that the oxidative stress induced by Cu2O@CaCO3 nanoparticles
could also promote macrophages from immunosuppressed M2
phenotype to immune-activated M1 phenotype. Combined
treatment with anti-CD47 antibody resulted in improved
phagocytosis of macrophages, promoted antigen presentation, and
induced antitumor immune response by T cells, achieving effective
inhibition of CRC metastasis and recurrence. Furthermore, recent
studies have also indicated that the combination of PDT and CD47
monoclonal antibodies may have the potential for the treatment of
human bladder cancer (152).

The combination of PDT and ICB can effectively inhibit
tumor metastasis and recurrence compared with the individual
therapeutic effect of PDT. Moreover, the combination strategy
also improves the failure of ICB treatment due to insufficient
immunogenicity of tumor cells. Current studies have identified
several new immune checkpoints, such as V-domain Ig
November 2021 | Volume 11 | Article 738323
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FIGURE 5 | Schematic overview of synergized photodynamic immunotherapy. Photodynamic therapy enhances the antitumor immune response, thus killing primary
and distant tumors in combination with different immunotherapeutic strategies (immune adjuvants, immune inhibitors and immune checkpoint blockade).
TABLE 1 | Summary of photodynamic therapy synergized immunotherapy.

Combination strategies Photosensitizers/l ex

(nm)
Immunotherapy

reagents
Tumor models Effector cells and cytokines Ref

PDT and immune adjuvants 5-Aminolevulinic acid/
630

TLR7 agonist
(imiquimod)

SCC invasive squamous cell
carcinoma

CD4+ and CD8+ T cells
IFN-a, TNF-a, IL-6, IL-8, CXCL9 and

CXCL10

(90)

UCNP-Ce6/980 Imiquimod (R837) CT26 mouse colon
adenocarcinoma

DCs, CD8+ T cells, Treg
TCM and TEM

IL-12p40, IFN-g, TNF-a

(95)

Pheophorbide A/671 TLR5 agonist
(FlaB-Vax)

B16-F10 mouse melanoma memory CD8+ T cells CD103+ DCs,
IFN-g (101)

W-TBP/650 TLR9 agonist (CpG) TUBO murine breast
adenocarcinoma

T cells, NK cells, DCs macrophages,
IFN-a, IL-6 (103)

H2TCPP/670 TLR9 agonist (CpG) H22 mouse hepatocellular
carcinoma

DCs, CD4+/CD8+ T cells
TNF-a, IFN-g, IL-12p70 (104)

Photofrin/630 Glycated chitosan EMT6 and 4T1 murine breast
carcinoma

CD3+/CD8+ T cells
(108)

PDT and immune inhibitors Chlorin e6/630 IDO-1 inhibitor
(NLG919)

CT26 murine colorectal cancer DCs, CD4+/CD8+ T cells
Treg, Kyn/Trp (122)

HPPH/671 IDO inhibitor
Indoximod (IND)

B16F10 mouse melanoma DCs, CD8+/CD4+ T cells
IL-6 and TNF-a (123)

Chlorin e6/660 VEGFR inhibitor
Axitinib (AXT)

B16F10 mouse melanoma T cells, TAM
IL-2, IL-6, IFN-g (127)

PDT and immune checkpoint
blockades

Bremachlorin/662 Anti-CTLA-4
antibody

MC38 and CT26 colorectal
cancer

CD8+ T cells
CD4+ regulatory T cells (136)

Chlorin e6/660 Anti-CTLA-4
antibody

MCF-7 and 4T1 breast
carcinoma

DCs, CTLs, Treg
TNF-a, IFN-g, IL-6 (137)

BDP-I-N
740 or 808

Anti-PD-L1 antibody MC38 murine colorectal cancer —

(144)

(Continued)
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suppressor of T-cell activation (VISTA), T-cell immunoglobulin
and ITIM domain (TIGIT), and T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3) (153, 154). Taken
together, the combination of immune checkpoints and PDT
may be a promising direction for future research.

Figure 5 shows the combined treatment strategies of different
types of PDT immunotherapy. These strategies exert significant
effects in cancer treatment mainly by enhancing the anticancer
immune response or by reducing the suppression of the immune
system. The specific details of the combination of PDT and
different types of immunotherapies are summarized in Table 1.
CONCLUSION

In this review, we have explained the classification and
photophysical mechanism of PDT based on the Jablonski
Diagram. By inducing ICD, PDT has been shown to successfully
activate the immune response. However, due to insufficient
immunogenicity or immunosuppression, the immune reaction
induced by a single PDT is greatly restricted. Therefore, PDT
with other immunotherapies has been integrated to solve such
problems. However, optimizing the in vivo safety assessment is still
a challenge and needs further research to enhance the efficiency of
PDT immunotherapy for effective tumor treatment.

Immunotherapy has been extensively studied in clinical trials,
but clinical studies on PDT and its effects on the human immune
system are very rare. Although a large number of PSs have been
Frontiers in Oncology | www.frontiersin.org 10
developed and used for PDT in animal studies, Photofrin and
aminolevulinic acid (ALA) are the few two used in clinical
research. And only a few of these studies have investigated on
the effect of PDT on the human immune system (155, 156).
Determining the relationship between PDT and immune
response in clinical research and combining it with
immunotherapy will be a major focus for future research. We
hope that PDT immunotherapy can be proven to be an excellent
cancer treatment in clinical trials.
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