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a b s t r a c t 

We present a method for performing efficient barycentric interpolation for large grain boundary octonion point 

sets which reside on the surface of a hypersphere. This method includes removal of degenerate dimensions via 

singular value decomposition (SVD) transformations and linear projections, determination of intersecting facets 

via nearest neighbor (NN) searches, and interpolation. This method is useful for hyperspherical point sets for 

applications such as grain boundaries structure-property models, robotics, and specialized neural networks. We 

provide a case study of the method applied to the 7-sphere. We provide 1-sphere and 2-sphere visualizations to 

illustrate important aspects of these dimension reduction and interpolation methods. A MATLAB implementation 

is available at github.com/sgbaird-5dof/interp. 

• Barycentric interpolation is combined with hypersphere facet intersections, dimensionality reduction, and 

linear projections to reduce computational complexity without loss of information 
• A max nearest neighbor threshold is used in conjunction with facet intersection determination to reduce 

computational runtime. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Approximate and Efficient N-sphere Barycentric Interpolation 

Keywords: Hypersphere, Octonion, Triangulation, Grain boundary 

Article history: Received 29 July 2021; Accepted 9 May 2022; Available online 18 May 2022 

h

2

(

DOI of original article: 10.1016/j.commatsci.2021.110756 
∗ Corresponding author. 

E-mail addresses: sterling.baird@byu.edu (S.G. Baird), ojohnson@byu.edu (O.K. Johnson). 

ttps://doi.org/10.1016/j.mex.2022.101731 

215-0161/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

 http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2022.101731
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101731&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.commatsci.2021.110756
mailto:sterling.baird@byu.edu
mailto:ojohnson@byu.edu
https://doi.org/10.1016/j.mex.2022.101731
http://creativecommons.org/licenses/by/4.0/


2 S.G. Baird, E.R. Homer and D.T. Fullwood et al. / MethodsX 9 (2022) 101731 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifications table 

Subject Area: Materials Science 

More specific subject area: Barycentric Interpolation 

Method name: Approximate and Efficient N-sphere Barycentric Interpolation 

Name and reference of original 

method: 

Companion work 

(1) Baird, S. G.; Homer, E. R.; Fullwood, D. T.; Johnson, O. K. Five Degree-of-Freedom 

Property Interpolation of Arbitrary Grain Boundaries via Voronoi Fundamental Zone 

Framework. Computational Materials Science 2021, 200, 110756. 

https://doi.org/10.1016/j.commatsci.2021.110756 . 

Singular value decomposition 

(2) Golub, G. H.; Reinsch, C. Singular Value Decomposition and Least Squares Solutions. 

Numerische Mathematik 1970, 14 (5), 403–420. https://doi.org/10.1007/BF02163027 . 

Barycentric coordinates 

(3) Mobius, A. F.; Barth, J. A. Der Barycentrische Calcül Ein Neues Hülfsmittel Zur 

Analytischen Behandlung Der Geometrie; Johann Ambrosius Barth: Leipzig, 1827. 

Facet intersection 

(4) Anatoliy, T. Check if ray intersects internals of D-facet 

https://math.stackexchange.com/q/1256236 . 

Quickhull Triangulation 

(5) Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The Quickhull Algorithm for Convex 

Hulls. ACM Trans. Math. Softw. 1996, 22 (4), 469–483. 

https://doi.org/10.1145/235815.235821.Triangulation 

Resource availability: github.com/sgbaird-5dof/interp 

∗Method details 

Introduction 

Barycentric coordinates are a type of homogeneous coordinate system that reference a prediction 

point within a simplex [1] or convex polytope [1–3] based on “masses” or weights at the vertices,

which can be negative. The prediction point is assumed to be the barycenter (center of mass) of the

simplex or convex polytope, and weights at the vertices necessary to make this assumption true are

determined. We utilize rigid SVD transformations and a standard triangulation algorithm 

1 to define a

simplicial mesh on the (approximated) surface of an n-dimensional hypersphere (Section 2). We then 

use barycentric weights (i.e. coordinates) for computing intersections of a point within a simplicial

facet (Section 3) and for interpolation (Section 4) [1] . These methods are relevant for applications

such as grain boundaries structure-property models [5] , robotics hand-eye calibration [6] , and efficient

neural networks [7] , especially cases where coordinates may have degenerate dimensions, occupy no 

more than a hemisphere 2 , or require interpolation of properties. While the methods described are

general to n-dimensional hyperspheres, we focus on one application of interest for our prior work on

grain boundary octonions [8] : the unit 7-sphere. Grain boundary octonions are of particular interest

to us due to their ability to represent the macroscopic crystallographic character of grain boundaries

and because they allow for an analytical minimum to the U(1) (z-axis) symmetry present in that

representation which in other representations is solved by numerical methods (Section 2.1). This 

represents a significant advantage for computationally efficient computation of high-fidelity distance 

metrics between grain boundaries of varying macroscopic crystallographic character. Additionally, the 

novelty in our companion work ([8]) is the ability to compute distances between grain boundaries

using Euclidean or hyperspherical distances in such a way that approximates the original grain

boundary octonion distance metric [ 5 , 9 ]. This lends itself to Barycentric interpolation (this work). For

further information on barycentric coordinates and its applications and generalizations, see [ 1–3 , 10–

23 ]. The methods described here are used in Baird et al. [8] and are summarized in Table 1 . 
1 i.e. quickhull [4] via delaunayn in sphconvhulln.m. Built-in MATLAB functions are indicated with parentheses (e.g. 

delaunayn), whereas custom functions (from github.com/sgbaird-5dof/interp unless otherwise specified) are indicated with the 

.m extension (e.g. sphconvhulln.m). 
2 When the points occupy less less than a hemisphere, a linear projection onto a hyperplane followed by an SVD 

transformation can be used to compute the triangulation in one dimension lower 3 If the points span the full hypersphere, 

triangulation must proceed in the original dimensionality to produce an accurate triangulation. 

https://doi.org/10.1016/j.commatsci.2021.110756
https://doi.org/10.1007/BF02163027
https://math.stackexchange.com/q/1256236
https://doi.org/10.1145/235815.235821.Triangulation
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Table 1 

Steps for mesh triangulation, mesh intersection, and barycentric interpolation for computationally 

efficient interpolation of properties on an n-sphere using large point sets. 

Step (1) Mesh Triangulation 

1.1 apply a SVD transformation to remove any degeneracies ( Section 2.1 ) 

1.2 project to tangent hyperplane relative to origin and mean of input points ( Section 2.2 ) 

1.3 perform a second SVD transformation ( Section 2.3 ) 

1.4 compute the triangulation according to the quickhull algorithm [4] 

Step (2) Mesh Intersections 

2.1 apply the same rigid transformation to the prediction points (Section 3.1) 

2.1a concatenate both input and prediction points 

2.1b perform the SVD transformation 

2.1c separate the transformed input and prediction points (reverse of concatenation step) 

2.2 identify facets nearby a prediction point and test for intersection (Section 3.2) 

2.2a linearly project the prediction point onto facet hyperplane 

2.2b compute the point’s barycentric coordinates within the facet [ 21 , 24 ] 

2.2c test that all coordinates are positive [1] within a tolerance 

2.2d repeat steps 2.2a-2.2c until an intersection is found or a stop condition is reached 

Step (3) Barycentric Interpolation 

3.1 Recompute barycentric coordinates using a larger tolerance 

3.2 Compute dot product between barycentric coordinates facet vertex properties 
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riangulating a mesh 

Creation of a simplicial mesh is necessary to perform barycentric interpolation. Due to the

ifficulty of interpreting and visualizing a high-dimensional n-sphere [9] , we provide visual

llustrations of the process as applied to lower-dimensional analogues. The triangulation process

ccurs by: 

1.1 applying a SVD transformation to remove any degeneracies 3 (Section 2.1) 

1.2 linearly projecting points onto a hyperplane that is tangent to the vector between the origin

and the mean of the input points 4 (Section 2.2 ) 

1.3 performing a second SVD transformation (Section 2.3 ) 

1.4 computing the triangulation according to the quickhull algorithm [4] 

In the explanation of each step that follows, we make reference to lower-dimensional visual

nalogues of the triangulation procedure, which are given in Figs. 1 –3 . We note that 3D Cartesian

oordinates in Fig. 1 correspond to 8D Cartesian coordinates, whereas 3D Cartesian coordinates in

igs. 2 and 3 correspond to 7D Cartesian coordinates. This is intentional for two reasons. 

First, Fig. 1 illustrates that 8D Cartesian points constrained to the surface of a hypersphere are

nalogous to a point cloud on the 2-sphere ( Fig. 1 a) and that an 8D Cartesian point set constrained

o the surface of a hypersphere is analogous to a geodesic arc on the 2-sphere ( Fig. 1 b). If a point

et has a degenerate dimension, this can be removed by a rigid SVD transformation to 7D Cartesian

oordinates (analogous to 2D Cartesian coordinates in Fig. 1 c). This sequence would be more difficult

o visualize if Fig. 1 a was meant to represent a point cloud on the 3-sphere (4D Cartesian coordinates),

tc. 

Second, Fig. 2 illustrates a second transformation from normalized 7D Cartesian coordinates

 Fig. 2 a) to a hyperplane ( Fig. 2 b) which is then transformed into 6D Cartesian coordinates via a

econd SVD. In this case, key issues are retained that would otherwise be lost if an arc on a circle
3 e.g. U(1)-symmetry degeneracy for grain boundary octonions [9] ) inherent in the coordinates. 
4 This applies when the data resides on less than a hemisphere and is to reduce computational burden of the triangulation. 
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Fig. 1. 3D Cartesian to 2D Cartesian analogue of 8D Cartesian to 7D Cartesian degeneracy removal via rigid SVD transformation 

as used in barycentric interpolation approach. (a) Starting spherical arc points on surface of 2-sphere, (b) rotational 

symmetrization applied w.r.t. z-axis (analogous to U(1) symmetrization), and (c) degenerate dimension removed via singular 

value decomposition transformation to 2D Cartesian with either the origin (black plus) preserved (black asterisks, zeroQ = T) for 

triangulation or ignored (red asterisks, zeroQ = F) for mesh intersection. The spheres (a,b) and circle (c) each have a radius of 

0.8 and are used as a visualization aid only. 

Fig. 2. 3D Cartesian to 2D Cartesian analogue of 7D Cartesian to 6D Cartesian mesh triangulation used in barycentric 

interpolation approach. (a) 3D Cartesian input points are (b) linearly projected onto hyperplane that is tangent to mean of 

starting points. (c) The degenerate dimension is removed via a rigid SVD transformation to 2D Cartesian and the Delaunay 

triangulation (black lines) is calculated, with input vertices (red). Delaunay triangulation superimposed onto normalized input 

points (d). The spheres in (a), (b), and (d) have a radius of 0.8 and are used for visualization only. 

 

 

 

 

(1-sphere) to 1D Cartesian coordinates were used instead 

5 . Additionally, the use of actual triangles is

a more familiar and compelling illustration of triangulation . 

While lower dimensional analogues are useful for visualizing and understanding the process of 

triangulation, a written description for the full-dimensional space is also given (Sections 2.1–2.3). As 

appropriate, we refer to the teaching figures described in this section. 

Singular value decomposition transformation from 8D Cartesian to 7D Cartesian 

To reduce the computational complexity of triangulating a high-dimensional mesh [4] , some 

simplifications are made. First, the degenerate dimension which is present from the analytically 

minimizing U (1) symmetry [9] is removed via a rigid (i.e. distance- and angle-preserving) SVD

transformation. This is analogous to a Cartesian rotation and translation (see 3D to 2D SVD

transformation from Fig. 1 b to c). A SVD is given by: 

A = USV ′ (1) 

where U, S, V , and ·′ represent a unitary matrix with sorted, singular vectors, a diagonal matrix

containing sorted, singular values, a unitary matrix with sorted, singular vectors, and Hermitian 
5 Non-intersection issues due to high-aspect ratios and consideration of facets connected up to nnMax NNs do not manifest 

in triangulations on the surface of a 1-sphere because one of the two facets (i.e. line segments) connected to the first NN mesh 

vertex relative to the prediction point is guaranteed to have an intersection. 
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Fig. 3. A ray (red line) is linearly projected from the 2-sphere onto the hyperplane of a mesh facet (transparent black), shown 

as a red asterisk. The barycentric coordinates are computed as. Because all barycentric coordinates are positive, it is determined 

that the projected point is an intersection with the mesh. Given vertex values of 8 . 183, 3 . 446, and 3 . 188 for vertices 1, 2, and 

3, respectively, the interpolated value is calculated as 4 . 94 via Eq. (5) . 
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ranspose operator, respectively. The SVD transformed coordinates [24] are given by: 
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(2)

here n deg and S sub represent number of degenerate dimensions and S with the degenerate

olumns removed, respectively. Only the principal components which correspond to non-degenerate

imensions are retained (this process of dimensionality reduction is also referred to as principal

omponent analysis). 

inearly project onto hyperplane 

Next, the resulting 7D Cartesian representation of each point is projected onto a hyperplane that

s tangent to the centroid (i.e. mean) of the point set 6 ( Fig. 2 a). The linear projection is given by [24] :

a = − ‖ v ‖ 
v · p 

p (3)

here v, p, kk, and 

• represent unit normal to hyperplane of interest, point to project from

ypersphere to hyperplane, 2-norm, and dot product, respectively. By performing this linear

rojection, one of the dimensions becomes degenerate. 

ingular value decomposition transformation from 7D Cartesian to 6D Cartesian 

This additional degeneracy is removed via a second SVD transformation, this time to 6D Cartesian

oordinates (see 3D to 2D projection in Fig. 2 a-b). 

The distortion-introducing local SVD is simply to efficiently obtain a triangulation which then

pplies directly on the (one-dimension higher) point set, which is where interpolation occurs. Since

he distortion is isotropic with respect to solid angle, we believe the triangulation is very similar to
6 This is not a rigid transformation; however, it approximates one with sufficient accuracy to produce a high-quality 

riangulation. 
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what would be obtained without SVD and that the interpolation will be largely unaffected, and this

is what we see in practice. 

Stereographic projections are an alternative method to SVD that could have been used; there do

not seem to be clear methodology advantages of using one or the other for our use case of grain

boundary octonions; because well-maintained software implementations for SVD are more prevalent, 

we determined this to be the more favorable choice. 

Finally, the resulting points can be triangulated via the quickhull algorithm [4] 7 which relies on

Euclidean distances 8 . Because the simplicial mesh is defined by a list of edges between vertices for

each simplicial facet, this list applies immediately to the point set in its 7D Cartesian coordinates (i.e.

no reverse transformation is necessary to use the mesh on the 6-sphere in 7D). 

Intersections in a mesh 

Once the triangulation has been determined, we need to find which facet each prediction point

intersects (i.e. find the intersecting facet). There are two sub-steps: 

2.1 apply the same rigid transformation to the prediction points as was applied to the input points

(otherwise the prediction points will not line up properly with the mesh) (Section 3.1) 

2.2 identify facets nearby a prediction point and test for intersection (Section 3.2). 

Apply same singular value decomposition to input and prediction points 

The positions of the prediction points need to be fixed relative to the mesh even after the rigid

SVD transformation. This is accomplished by: 

2.1a concatenating both input and prediction points 

2.1b performing the SVD transformation 

9 

2.1c subsequently separating the transformed input and prediction points (reverse of concatenation 

step) 

The same SVD transformation can be applied without major issue to new points, assuming the

new points are not positioned outside the bounds of the original convex hull 10 . 

Testing nearby facets for intersections 

Once the prediction points are lined up properly with the mesh, the facet containing the prediction

point (i.e. intersecting facet) is found 

11 . We define the intersecting facet as the one for which a point’s

barycentric coordinates are positive within a given tolerance: 

λi ≥ −σ, i ∈ [ 1 ..d ] (4) 

where λi , σ , and d represent i-th barycentric coordinate, projection (or intersection) tolerance, and

dimension of barycentric coordinates, respectively. Consequently, we determine facet affiliation by: 

2.2a linearly projecting the prediction point onto the hyperplane defined by a mesh facet’s vertices

( Fig. 3 ) 
7 See sphconvhulln.m and delaunayn. 
8 While the triangulation algorithm used in this work relies on Euclidean distances, other distance metrics that are non- 

Euclidean [25] could potentially be incorporated into the barycentric approach such as by doing an edge-length based simplex 

reconstruction [ 26 , 27 ] using the triangulation edge lengths. 
9 See proj_down.m via svd. 

10 To map new points onto the mesh, the usv structure output from proj_down.m needs to be stored and supplied in future 

calls to proj_down.m. Likewise, usv need to be supplied to proj_up.m to perform the reverse SVD transformation. 
11 Testing intersections for nearby facets is handled in intersect_facet.m and depends on the barycentric coordinate 

computations in projray2hypersphere.m. 
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Fig. 4. Illustration of two prediction points (red) for which no intersecting facet is found due to being positioned within a 

high-aspect ratio facet. The inset shows that facets connected to the NN do not contain the prediction point. Many NNs would 

need to be considered before an intersection is found. Additionally, it is expected that if found, the interpolation will suffer 

from higher error due to use of facet vertices far from the interpolation point. Proper intersections of prediction points with 

the mesh are shown in blue. 
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2.2b computing 12 the point’s barycentric coordinates within the facet [ 21 , 24 ] 

2.2c testing that all coordinates are positive [1] within a tolerance. Two tolerances 13 are used: one

for the initial computation of barycentric coordinates by projecting onto the hypersphere to

determine facet affiliation and a larger tolerance for computation of barycentric coordinates to

determine interpolated values (Section 4). 

2.2d repeating steps 2.2a-2.2c until an intersection is found or a stop condition is reached 

14 

Due to the large number of facets per point of a high-dimensional triangulation (approximately

0 0 0 facets per vertex for a 50 0 0 0 point triangulation, or 1 × 10 8 total facets), some simplifications

re made in order to determine intersections of prediction points with the mesh. If every edge length

f every facet were equal, only facets connected to the first NN would need to be considered to find

 proper intersection. However, since the points are randomly sampled, edge lengths of facets are

on-uniform, and non-unity aspect-ratio facets exist ( Fig. 2 , Fig. 4 ). If the facets have high-aspect

atios, the intersecting facets of prediction points can be far from the NNs mesh points relative to the

rediction points (see Fig. 4 inset), especially near the perimeter of a hyperspherical surface mesh.

ather than loop through every facet to find an intersection ( ∼1 × 10 8 facets in a 50 0 0 0 point

esh), the prediction point intersections are calculated by considering facets connected to up to some

umber of NN mesh vertices 16 relative to each prediction point. The NN mesh vertices relative to a

rediction point are computed. The facet IDs of facets connected to these NNs are then computed 

15 . 
12 See projray2hypersphere.m 

13 We typically use projtol = 1e-4 in proj_down.m and inttol = 1e-2 in intersect_facet.m, respectively. 
14 The stop condition is that up to a certain number of NN have been considered (or all points have been considered).The 

arameter associated with this is nnMax in intersect_facet.m 

16 See nnMax in intersect_facet.m. We have typically used 

nMax = 10. 
15 via find(K == nn), where K is the triangulation from sphconvhulln.m and nn is the ID of one of the NN mesh vertices) 
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Some prediction points will have no intersecting facet found. From our numerical testing, we 

determine that this non-intersection phenomenon occurs in two situations: 

high-aspect ratio facets (described above) 

prediction points that are positioned just outside the bounds of the mesh but within the bounds

of a region, due to the fact that the mesh is a piecewise linear approximation of a surface with a

curved perimeter and that randomly sampled points typically do not fall on the true perimeter 

In the first case, barycentric interpolation within high-aspect ratio facets may actually lead to 

worse interpolation error than a NN interpolation strategy due to influence by points far from the

prediction point. In the second case, there is no true intersection between the prediction point

and the mesh. Both issues can be addressed with the same strategy: we apply a NN approach

when an intersecting facet is not found within some number of NNs. In numerical tests, meshes

composed of 388 and 50 0 0 0 vertices produced non-intersection rates of (12 . 07 ± 1 . 02)% and (0 . 68

± 0 . 11)%, respectively, over approximately 10 trials and using 10 0 0 0 prediction points for each trial.

An alternative strategy for the second case is to linearly project the point of interest onto the closest

facet, and compute the interpolation there. 

Interpolation 

Once a mesh triangulation has been determined (Section 2), barycentric coordinates are 

recomputed for a prediction point within the input mesh (Section 3) using a somewhat larger

tolerance; the interpolated value is found by taking the dot product of the prediction point’s

barycentric coordinates and the properties of the corresponding vertices of the intersecting facet via 

v m,q = 

N ∑ 

i =1 

λm,i v m,i (5) 

where λm,i , v m,q , v m,i and N , are the barycentric coordinates of the m-th prediction point, interpolated

property at the m-th prediction point, property of the i -th vertex of the intersecting facet for the

mth prediction point, and number of vertices in a given facet ( N = 7 for facets of the simplicial mesh

on the degeneracy-free 6-sphere), respectively. Interpolation of many prediction points simultaneously 

can be accomplished by a simple, vectorized approach 

16 . This assumes triangulation and weights have

been precomputed. In other words, both input and prediction coordinates remain fixed, and only 

input property values change. If this is the case, barycentric interpolation of new points is incredibly

fast. By contrast, if input coordinates change, the triangulation must be recomputed, and if prediction

coordinates change, the intersecting facets must be recomputed. 

In Baird et al. [8] , we also performed barycentric interpolation without the centroid projection

described (thereby removing the local distortion inherent to the local SVD transformation) and found 

only insignificant differences for our application. For interested readers, the implementation for the 

more exact spherical Barycentric method is also available at https://github.com/sgbaird-5dof/interp . 

Efficiency 

Both triangulation and finding intersecting facets are computationally demanding with respect to 

memory and runtime for large datasets. A mesh triangulation consisting of 50 0 0 0 points evaluated

for 10 0 0 0 interpolation points requires ∼1.6 hours with 12 cores ( ∼20 CPU hours in total) and 128

GB of RAM available. The total runtime as a function of set size evaluated on 10 0 0 0 prediction points

(i.e. combined triangulation and intersection finding) is estimated by a fitted linear model 17 , 5332 . 02

+ 

1 . 26959 x , where x is the number of points and 10 0 0 ≤ x ≤ 50 0 0 0. The triangulation itself

( ∼1 × 10 8 facets) requires ∼6 GB of memory storage. Alternative interpolation methods such 
16 i.e. dot as used in interp_bary_fast.m. 
17 Using Mathematica’s FindFormula. 

https://github.com/sgbaird-5dof/interp
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s Gaussian process regression and other machine learning approaches can greatly reduce the

omputational burden while retaining interpolative performance [8] . 

uture work 

It may be interesting to compare these Barycentric interpolation techniques (general to n-spheres)

ith techniques that leverage unique algebra specific to hypersphere dimensions such as the 1-, 3-,

-, and 23-spheres. For example, is using one of these explicit parameterizations faster, and will this

e feasible when degeneracies specific to grain boundary octonions are present? 

onclusion 

SVD/PCA transformations, linear projections, and nearest neighbor searches can be used to reduce

he computational burden of high-dimensional hyperspherical triangulations and intersection-finding.

arge point sets in high-dimensions still have large memory and runtime requirements, but are more

ractable with these methods. When the borders of the region of interest are not within the convex

ull of points or when the region of interest is inherently curved (beyond the curvature naturally

resent due to residing on a hypersphere), non-intersections manifest and can be addressed by

efaulting to a nearest neighbor approach. 
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