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Background: Although immunotherapy with checkpoint inhibitors is changing the face

of lung adenocarcinoma (LUAD) treatments, only limited patients could benefit from it.

Therefore, we aimed to develop an immune-relevant-gene-based signature to predict

LUAD patients’ prognosis and to characterize their tumor microenvironment thus guiding

therapeutic strategy.

Methods and Materials: Gene expression data of LUAD patients from Gene

Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were systematically

analyzed. We performed Cox regression and random survival forest algorithm to identify

immune-relevant genes with potential prognostic value. A risk score formula was

then established by integrating these selected genes and patients were classified into

high- and low-risk score group. Differentially expressed genes, infiltration level of immune

cells, and several immune-associated molecules were further compared across the

two groups.

Results: Nine hundred and fifty-four LUAD patients were enrolled in this study. After

implementing the 2-steps machine learning screening methods, 12 immune-relevant

genes were finally selected into the risk-score formula and the patients in high-risk group

had significantly worse overall survival (HR = 10.6, 95%CI = 3.21–34.95, P < 0.001).

We also found the distinct immune infiltration patterns in the two groups that several

immune cells like cytotoxic cells and immune checkpoint molecules were significantly

enriched and upregulated in patients from the high-risk group. These findings were further

validated in two independent LUAD cohorts.

Conclusion: Our risk score formula could serve as a powerful and accurate tool for

predicting survival of LUAD patients and may facilitate clinicians to choose the optimal

therapeutic regimen more precisely.
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BACKGROUND

Lung cancer is the most common cancer worldwide and the
leading cause of cancer death in men and women (18.4% of
the total cancer deaths), accounting for an estimated 2,093,876
new cases (11.6% of the total cases) in 2015 (1). The 5-year
survival rate of lung cancer is still low, which was 21.2% in
the USA and 19.8% in China (2). Followed by lung squamous
cell carcinoma, lung adenocarcinoma (LUAD) is currently the
most common subtype of non-small cell lung cancer (NSCLC),
which accounts for more than 40% of lung cancer incidence
(3). Complete surgical resection remains the standard treatment
method for early LUAD, while adjuvant or neoadjuvant therapy
including chemotherapy and radiotherapy are given to selected
patients. Up to now, risk factors such as TNM stage and age
are commonly used for predicting LUAD patients’ survival and
determining therapeutic regimen. However, LUAD within the
same TNM stage might also have different prognosis because
of the inherent clinicopathological and molecular diversities.
Therefore, numerous prognostic models integrating clinical
factors and gene expression data have been provided as a
supplement to traditional TNM staging system (4–6). However,
most of these studies failed to take the biological functions of
prognostic genes into account before the gene selection process.

In the past decade, immune checkpoint blockade such as
Nivolumab and Pembrolizumab has delivered unprecedented
success in treating NSCLC to extend overall survival (7–
9). However, only a small percentage of patients experience
such clinical benefits (10). Therefore, a multi-immune-relevant-
gene-based signature which enables clinicians to predict
LUAD patients’ prognosis and to characterize their tumor
microenvironment is urgently demanded.

To address this problem, in this study we performed Cox
regression analysis and random survival forest algorithm to
identify the immune relevant genes with potential prognostic
value from an immune gene list. A risk-score system was
constructed to predict patients’ risk in both discovery and
validation cohorts, and the immune infiltration patterns of
patients with different risk score were comprehensively depicted.
We believe that our gene signature and corresponding risk score
will facilitate clinicians to predict LUAD patients’ prognosis and
choose the optimal treatment more precisely.

METHODS AND MATERIALS

LUAD Datasets Acquisition and
Preprocessing
For (Gene Expression Omnibus) GEO data, the criteria for
enrollment of public available LUAD patient’s data was as follows:

Abbreviations: LUAD, lung adenocarcinoma; NSCLC, non-small cell lung

cancer; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas;

OS, overall survival; HR, hazard ratio; DEGs, differentially expressed genes;

GO, gene ontology; RSF-VH, random survival forest-variable hunting; VIMP,

variable importance; AUCROC, area under receiver operating characteristic;

IFN, interferon; ssGSEA, single sample gene set enrichment analysis; CSF1,

colony-stimulating factor 1; TAMs, tumor-associated macrophages; LASSO, Least

Absolute Shrinkage and Selection Operator.

the gene expression data was generated by the same chip platform
(Affymetrix Human Genome U133 Plus 2.0 chips) and reliable
clinical survival information were accessible. After systematically
screening, microarray data from GSE31210, GSE41271, and
GSE50081 datasets representing different independent studies of
LUAD were directly downloaded from GEO (http://www.ncbi.
nlm.nih.gov/geo). The probe sets of Affymetrix Human Genome
U133 Plus 2.0 chips were annotated to gene names based on
the annotation platform GPL570, while the list of immune-
relevant genes was obtained from https://www.immport.org/
shared/home (n = 1811). The batch effect resulting from
the heterogeneity among different microarray data sets were
eliminated by the use of sva package (11), while the background
adjustments and data normalization were performed with limma
package (12).

As for TCGA (The Cancer Genome Atlas) data, the
LUAD legacy level-3 RNA sequencing data were downloaded
and normalized using the TCGAbiolinks R package (13).
Corresponding baseline demographic and clinical information
were acquired from UCSC Xena Database (http://xena.ucsc.
edu/). We removed the patients whose clinical outcome
information including survival time and vital status were vague
or absent. The pathological stages of the patients included in this
study were updated according to the 7th edition of the American
Joint Committee on Cancer criteria.

Identification of Potential Genes Using
Bioinformatics Dimension Reduction
Algorithm
We downloaded the list of 1,881 immune relevant genes
from Immport Database (https://www.immport.org) (14).
Cox regression proportional hazards regression analysis
was employed for the primary screening from the 1,881
immune relevant genes for potential prognostic ones. Each
gene was analyzed as an independent overall survival (OS)-
related prognostic variable by multivariable analysis with the
adjustments of age, gender, TNM stage, and smoking status.
In the present study, the independent hazard ratio (HR) and
corresponding 95% confidence interval for each gene was
calculated by the implementation of survival package. The
genes whose p-value was <0.05 were considered as significant
prognostic genes.

The random forest algorithm, a machine learning dimension
reduction strategy based on the construction of thousands of
classification or regression trees, has been widely used in variable
selection of high-dimensional data, while the randomForestSRC
package makes it possible for researchers to analyze survival
data with this method (15). As suggested by Ishwaran et al., we
set the number of nsplit at 10 in the variable hunting function
(16, 17). Genes were further selected out if their VIMP (variable
importance), which measures the variation of the random forest
model’s prediction error rate when a gene was randomly added in
the model, was higher than 0.01.

After this two-step filtration method, a risk score formula
was then established by including each of these selected genes,
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weighted by their estimated regression coefficients in the Cox
regression analysis (18), as follows:

Risk Score =

N∑

i=1

β∗

i (Expression level of Genei) (1)

Where N represents the number of finally enrolled genes,
β indicates the coefficient of Genei obtained from the first-
step Cox regression analysis. The risk score of each patient
included in this study was calculated by this formula, with which
patients were assigned into high- or low-risk group by using
the corresponding median risk score as the cutoff value. The
heatmaps and clustering analyses were generated by the use of
pheatmap package.

Comparison of Enriched Oncogenic
Pathways
Identification of differentially expressed genes (DEGs) between
the high- and low-risk groups was conducted using package
limma (12). Fold change > 1.0 and adjusted P < 0.05 were
considered as the cutoff criteria to screen for DEGs. Functional
enrichment analyses on the detected DEGs were performed
with the clusterProfiler package (19). Gene ontology (GO) terms
were identified with a strict cutoff of adjusted P < 0.01 and
false discovery rate (FDR) <0.05. Meanwhile, to explore the
enrichment pattern of other relevant biological processes, we
employed gene signatures proposed by Liberzon et al. for single
sample gene set enrichment analysis (ssGSEA, from GSVA
package) (20, 21).

Estimation of Immune Cell Abundance by
ssGSEA
To construct a compendium of microenvironment genes related
to specific microenvironment cell subsets, we systematically
searched the published papers and combined the gene signatures
respectively proposed by Angelova et al. (22), Newman et al.
(23), and Becht et al. (24), which consisted of 384 genes
representing 28 microenvironment cell subsets from both innate
and adaptive immunity, including T cells, eosinophils, mast
cells, endothelial, dendritic cells, B cells, macrophages, NK cells,
MDSC, neutrophils, monocytes, and fibroblasts. Subsequently,
we used ssGSEA in GSVA package based on deconvolution
algorithm to estimate the relative infiltration level of each
cell population in each LUAD sample with expression data.
Several other immune associated factors comparison between
two groups, including tumor purity, leukocyte fraction, TGF
response, INF-gamma response, cytotoxic cell fraction, PDCD1,
CD274, CTLA4 expression differences, were also performed as
previously reported (9, 25–27).

Statistical Analysis
All statistical analyses were conducted using R software (Version
3.5.3; R Foundation for Statistical Computing, Vienna, Austria)
(28, 29) and Stata (Version 13.0, Stata Corp, College Station,
TX, USA). A description and comparison of the baseline
characteristics of the patients from different risk groups was

conducted in which categorical variables were compared by the
chi-square test and Fisher’s exact test when appropriate. Kaplan–
Meier survival curves visualized by ggplot2 package and log-
rank tests were used to compare the OS and between different
populations. Receiver operating characteristic (ROC) analyses
were conducted to evaluate the sensitivity and specificity of the
survival predicting model based on the risk score and other
clinical factors. In the chi-square test, Fisher’s exact test and
log-rank test, the P < 0.05 was considered as significant.

RESULTS

LUAD Patients’ Data Preparation and
Description
The overall study design was shown in Figure 1A. After
systematically searching for LUAD gene expression data and
corresponding clinical information that were publicly available,
a total of 954 patients from four independent LUAD cohort
were finally enrolled in the present study: GSE31210 (n =

204), GSE41271 (n = 182), GSE50081 (n = 127), and TCGA
(n = 441). We assigned the 204 patients in GSE31210 to the
discovery group, 309 patients in GSE41271, and GSE50081
to the GEO external validation group and the remained 441
patients to the TCGA external validation group. The median
overall survival time of patients in the discovery group, GEO
external validation group, and TCGA validation group were,
respectively, 60.5 months (range from 7.4 to 128.8), 45.1 months
(range from 0.3 to 134.2), and 20.85 months (range from 4 to
241.6). The clinical data of the patients enrolled were provided
in Tables S1–S3.

Identification of Prognostic Genes and
Construction of the Risk-Score System
We employed different algorithms, including multivariable Cox
and random survival forest, to identify prognostic genes from the
1,811 immune-relevant gene list in the discovery dataset. First,
by fitting the expression data in GSE31210 into multivariable
Cox regression proportional hazards regression analysis one-
by-one in combination with the adjustments of age, gender,
TNM stage and smoking, the optimal cut-off value for each
gene’s expression level were, respectively, determined by the
use of “Survminer” packages and the corresponding HR and p-
value were also computed. Basing on the result of Cox analysis,
we primarily detected 336 significant genes whose p-value
were <0.05 (Table S4). The 336 genes were then analyzed by
random survival forest-variable hunting (RSF-VH) algorithm for
further screening. Finally, 12 gene were selected out as variable
importance was larger than 0.01. The permutation p-values, HR,
coefficient from the univariable analysis, and the corresponding
VIMP were shown in Table S5.

In order to establish a clinically applicable risk assessment
model for different populations of LUAD patients, a risk-score
system was built based on the expression of these 12 genes and
corresponding coefficient generated from the univariable Cox
regression analysis. The formula is as follows: Risk score =

(1.009∗ expression level of S100A7) + (1.482∗ expression level
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FIGURE 1 | (A) The overall design of this study. (B–D) Kaplan–Meier curves for overall survival (OS) stratified by risk-group in GSE31210 cohort (B), GSE41271 and

GSE50081 cohort (C), and TCGA cohort (D).
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TABLE 1 | The baseline clinical and pathological information of patients from the two groups in the discovery cohort.

Variables Total (n = 204) Low-risk (n = 102) High-risk (n = 102) P-value

Age 61 (55–63) I61 (56–63) 60 (54–63) 0.389

Sex

Female 109 (53%) 63 (62%) 46 (45%) 0.025

Male 95 (47%) 39 (38%) 56 (55%)

Smoking

No 105 (51%) 63 (62%) 42 (41%) 0.005

Yes 99 (49%) 39 (38%) 60 (59%)

Pathological stage

Stage I 162 (79%) 96 (94%) 66 (65%) <0.001

Stage II 42 (21%) 6 (6%) 36 (35%) <0.001

of R3HDML) + (1.312∗ expression level of IL19) + (2.409∗

expression level of NRAS) + (1.764∗ expression level of BMP1)
+ (0.887∗ expression level of S100A11) + (1.494∗ expression
level of HMOX1) + (1.969∗ expression level of PAK1) +

(2.292∗ expression level of S100A16) + (1.563∗ expression level
of VEGFA) + (1.088∗ expression level of NDRG1) + (1.115∗

expression level of CSF1). We then computed the risk-score
for each patient in the discovery group and set the median of
the risk score (−2.65) as optimal cutoff value to classify cases
into high risk and low-risk groups. The baseline clinical and
pathological information of patients from the two groups were
summarized in Table 1 (102 patients in high-risk group and
102 in low-risk group, data available in Table S1). As shown
in Figure 1B, the Kaplan–Meier survival demonstrated that the
patients in high-risk group had significantly worse OS than
those in low-risk group in the discovery dataset (HR = 10.6,
95%CI = 3.21–34.95, log-rank P < 0.001). The distribution
of the expression level of these 12 genes among the patients,
and corresponding risk score, risk group, vital status, and TNM
stage were shown in Figure 2A, which displayed the all-round
relative enrichment of these genes in high-risk group, indicating
that the 12 immune relevant genes were all associated with
worse survival.

Moreover, in the univariable Cox regression analyses, the risk
group was a strong variable correlated with worse prognosis
(Figure 3A). After multivariable adjustment by other clinical
factors including age, gender, smoking, and TNM stage, the
risk group remained a significant and independent prognostic
indicator in the discovery group (Figure 3B).

Next, we performed ROC analysis to assess the sensitivity
and specificity of the risk score system, age, gender, smoking,
and TNM stage. The area under receiver operating characteristic
(AUCROC) for 5-year OS was calculated to comprehensively
depict the prognostic accuracy of these factors and the combined
formula. As shown in Figure 4A, the AUCROC of the 12-genes
risk score (blue) (AUCROC = 0.854, 95%CI = 0.79–0.92) was
significantly superior than that of other variables (AUCROC =

0.57, 0.559, 0.567, and 0.653 for age, gender, smoking, and stage,
respectively, all P < 0.01). Additionally, when combining all
these factors together, the model with the strongest power for OS
predictive ability could be achieved (AUCROC = 0.869, 95%CI
= 0.81–0.93).

Assessing the Performance of the
12-Genes Model in GEO and TCGA
Validation Cohorts
To further evaluate the robustness of the risk score system based
on the 12 immune relevant genes, we performed similar analyses
in the GEO and TCGA external validation cohorts using the
median score of the validation cohorts as the cut-off value (high
score group: n = 154 in GEO and n = 221 in TCGA; low score
group: n = 155 in GEO and n = 221 in TCGA). In consistence
with the findings mentioned above, high risk score group was
significantly associated with worse survival outcomes in both
of the two validation cohorts (in GEO: HR = 1.66, 95%CI =
1.15–2.39, log-rank P = 0.005, Figure 1C; in TCGA: HR =

1.93, 95%CI = 1.39–2.68, log-rank P < 0.001, Figure 1D). In
the multivariable cox regression model that the risk group was
analyzed in combination with age, gender, smoking, and stage,
similar correlation could be observed, indicating that the risk
group based on the 12 genes was a robust and independent
prognostic factor in different populations (Figures 3C,D). Since
there are only stage I and II cases in GSE31210, we also test in
validation datasets when only included stage I and II cases, which
still demonstrated consistent result (Figures 3E,F).

The distribution of the expression level of these 12 genes and
corresponding clinical factors in patients from GEO validation
cohort and TCGA cohort were, respectively, exhibited in
Figures 2B,C, which also showed consistent enrichment pattern
with the discovery cohort. The expression of these 12 immune
relevant genes showed positively correlation with the risk score.
Meanwhile, the ROC analyses in the two validation groups also
demonstrated the superiority of the risk score as a prognostic
factor when considering the model’s sensitivity and specificity,
especially when combined the risk score with other factors
together (AUCROC= 0.969, 95%CI= 0.63–0.76 inGEO external
validation cohort, Figure 4B; AUCROC= 0.661, 95%CI= 0.60–
0.76 in TCGA cohort, Figure 4C).

Differentially Expressed Genes and
Relevant Biological Pathways Associated
to the 12-Genes Based Risk Score
To further characterize the gene expression profiles of patients
in high and low-risk score group, we performed differentially
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FIGURE 2 | Heatmaps presenting the relative expression level of the 12-gene

signature and corresponding risk score in patients from GSE31210 cohort (A),

GSE41271 and GSE50081 cohort (B), and TCGA cohort (C).

Clinicopathological information including TNM stage, vital status, as well as

risk group, are shown in annotations above.

expressed gene (DEG) analyses. The result of DEG analyses was
visualized in Figure 5A, where the important tumoral driver
genes were annotated with their name. Gene Ontology (GO)

functional enrichment demonstrated that expression alterations
of these genes could activate not only tumor progression relevant
pathways such as extracellular structure organization and nuclear
division but also immune related processes like complement
activation and regulation of monocyte extravasation (Figure 5B).

Furthermore, we performed ssGSEA using a series of
known gene-signatures in each patient’s expression profile.
As shown in the heatmap (Figure 5C) where red region
indicated the activation of corresponding pathways, we could
observe both the up-regulation of several cancer related
processes like hypoxia, epithelial mesenchymal transition,
angiogenesis or PI3K-AKT-MTOR signaling, and immune-
related pathway including interferon (IFN) γ response or
complement cascade. The result of ssGSEA served as a
supplementation of that of GO functional enrichment analysis.
We inferred that complicated interaction exists among the 12
immune related genes and the mentioned pathways. Meanwhile,
similar results were noticed in the two external validation
cohorts (Figures 5D,E).

Different Immune Infiltration Pattern
Considering the important role these 12 genes played in immune
infiltration in the tumor microenvironment, we employed a
reference microenvironment compendium that included 597
genes representing 28 immune cell subsets, to systematically
characterize the immune infiltration pattern for patients from
different risk group. We then estimated the relative abundance
of the 28 immune cell populations in each sample using ssGSEA
algorithm and compared the distribution of them across the
high and low-risk score group. As exhibited in Figures 6A,B,
the activation and recruitment of these immune cells were more
frequently observed in patients from high-risk group, especially
for Th1, Th2, Th17, MDSC, macrophages, which were mostly
from innate immune response. Several other immune related
parameters were also compared between the high and low-risk
group. We found the up-regulation of cytotoxic cells, CD274
(PD-L1), PDCD1, CTLA-4, HAVCR2, IFN-γ, and so on in high-
risk group, whereas opposite result was observed only in absolute
tumor purity. Higher tumor mutation load was also found
(Figures 6C–E). Therefore, we could propose that the patients
with high-risk score had a distinct immune infiltrating pattern
and might benefit more from immune-checkpoint inhibitor.
These findings were validated in the GEO and TCGA external
validation cohorts, where the results were in consistent with the
findings above (Figures S1, S2).

DISCUSSION

During the past decades, advances in bioinformatics, including
the widely used machine learning algorithms, have enabled
researchers to analyze the large-cohort mRNA sequencing
or microarray data from a completely new perspective (15,
30). In the present study, nearly 1,000 (n = 954) samples
in total were enrolled, which to our knowledge is the
largest cohorts used for establishing an immune relevant
gene-signature-based prognostic scoring system in LUAD. To
promise the consistency among different data sets, we only
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FIGURE 3 | Univariable and multivariable analyses based on risk group and other clinical factors in GSE31210 cohort [Univariable (A), Multivariable (B)], GSE41271

and GSE50081 cohort [Univariable (C), Multivariable (D)], and TCGA cohort [Univariable (E), Multivariable (F)].
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FIGURE 4 | ROC curves measuring the predictive value of the risk score and other clinical factors in GSE31210 cohort (A), GSE41271 and GSE50081 cohort (B),

and TCGA cohort (C).

adopted the gene microarray data generated by Affymetrix
Human Genome U133 Plus 2.0 Array, the most commonly
used commercial microarrays platform in human cancer
profiling (31), thus to some extent eliminating the intra-
cohort heterogeneity. Cox regression analysis and random
survival forest algorithm were conducted to select the most
representative and robust survival associated genes from the
large gene list, as the unfiltered high-dimension data might
lead to a high risk of overfitting and limit the usability
when the model was applied to another independent data
set. Basing on these methods, we established a 12-gene-based
risk score system for predicting prognosis for patients with
LUAD individually.

According to the risk score value, LUAD patients were
classified into high- and low-risk score groups. Considering
the batch effect among different datasets, especially when
different gene-expression evaluating approaches were used, like
RNA sequencing and microarray, we used different cutoff
value for each dataset included in this study to eliminate
potential heterogeneity, as suggested by previous studies (4).
In our study, we found that patients in high-risk group
tend to have worse overall survival compared with those
who have lower risk score. The prognostic value of this
factor remained robust in the two external validation cohorts,
while the independence of the factor was further confirmed
by multivariable Cox analysis after adjusting for age, gender,
smoking status, and TNM stage. Therefore, we suggest a
more frequent clinical surveillance and follow up plan for
those patients.

As exhibited in the heatmap, it is not difficult to notice
the relative enrichment of the 12 signature genes in patients
from high-risk group. It has been reported that some of
these genes were involved in the formation and regulation of
tumor microenvironment. For example, colony-stimulating
factor 1 (CSF1) regulates macrophage differentiation via the
CSF1 receptor (32). As we know, in several cancer type,
tumor-associated macrophages (TAMs) and monocytes
can promote immune-suppressive microenvironments to
counteract immune evasion (33, 34). By secreting cytokines
such as CSF1, tumors are able to recruit macrophages and

support tumorigenesis by enhancing angiogenesis, tumor cell
invasion, intravasation, and metastases via the secretion of
metalloproteinases and inhibiting antitumor immunity by
secreting immunosuppressive cytokines, such as IL10 (35–
38), thus accelerating cancer development. In addition to its
primary role in heme catabolism, HMOX-1 also modulates
tumor microenvironment and impacts cancer progression
through its anti-oxidative and anti-inflammatory functions
(39). Meanwhile, its role in tumor cell migration capability has
also been reported in lung cancer (40). VEGFA, an important
member of vascular endothelial growth factor signaling
pathway, mediates the tumoral angiogenesis, and results in
the progression and metastasis of NSCLC (41, 42). Besides,
Liu et al. (43) demonstrated that the co-expression of VEGFA
and PD-L1 exhibited a worst overall survival in patients with
resected LUAD, indicating the potential complicated interaction
between VEGFA expression and immune checkpoint inhibitor
therapy. The critical role TGFβ/BMP signaling pathway played in
tumor cell growth, stemness, epithelial-mesenchymal transition,
invasion, and migration in triple-negative breast cancer has
also been published (44, 45). Although some of biological
functions of the 12 genes have not been reported in LUAD,
their role in tumorigenesis and cancer immunity still needs
further investigation.

Recently, several novel multi-gene-based signatures in LUAD
have been proposed. For instance, Wang and colleagues
developed a 4-genes signature as an independent factor to
classify LUAD patients with lymph nodes metastasis into low-
and high-risk groups. The signature consisting of LDHA,
ABAT, FAM117A, and INPP5J was generated by Least Absolute
Shrinkage and Selection Operator (LASSO) algorithm and
has been validated in an independent external dataset (46).
Another research conducted by Li et al. (4) also reported
a 16-genes signature by integrating several machine learning
strategies. In addition, similar statistical method has been applied
to miRNA and DNA methylation signature, as mentioned
in the articles by Li et al. (47) and Wang et al. (48).
However, none of these studies investigated the immune
infiltration pattern associated with the risk group. Although
several immune-associated prognostic biomarkers have been
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FIGURE 5 | (A) Volcano plot presenting the differentially expressed genes (DEGs) between the high- and low-risk group. Red dots indicate immune-related genes and

green indicate non-immune-related genes in GSE31210 cohort. (B) Gene Ontology (GO) functional enrichment analysis of the DEGs. (C–E) Heatmaps showing the

enrichment score of a series of known gene-signatures by single sample gene set enrichment analyses in GSE31210 cohort (C), GSE41271 and GSE50081 cohort

(D), and TCGA cohort (E).
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FIGURE 6 | (A) The heatmap showing the infiltration pattern of 28 types of immune cell in patients from GSE31210 cohort. (B) The fraction of immune cells in high-

and low-risk group in patients from GSE31210 cohort. Within each group, the thick lines in the boxes represents the median value. The bottom and top of the boxes

(Continued)
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FIGURE 6 | are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of two risk

groups was compared through the Wilcoxon test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (C) Comparison of cytotoxic cells in the two risk groups.

The statistical difference was compared through the Wilcoxon test. (D) The boxplots presenting the expression level of 4 immune checkpoint molecules (CD274,

PDCD1, CTLA4, and HAVCR2) in high- and low-risk group from GSE31210 cohort. (E). The boxplots presenting the level of 4 important immune-related parameters

(absolute purity, IFN-gamma response, neoantigens, and non-silent mutation rate) in high- and low-risk group from GSE31210 cohort.

proposed in gastric cancer and melanoma (49, 50), the study
concentrating on immune related signature is still absent
in LUAD.

The importance of understanding the immunological
landscape of LUAD in a large cohort should never be neglected,
since this observation might reveal the underlying mechanism
of response and resistance to specific immunomodulatory
agents and help to guide a more effective and precise
immunotherapy regimen (51). Therefore, here we used a
combinational omics strategy to comprehensively evaluate
the tumor microenvironment of the LUAD samples in
high- and low-risk score group. Based on functional
analysis, our findings suggested that the high-risk group
were enriched for genes involved in extracellular matrix
organization, angiogenesis, and epithelial mesenchymal
transition, which are considered T-cell suppressive and
immune-evasion assistant (52–54). Besides, we found the
enrichment of hypoxia-relevant genes in patients in high-
risk score group, indicating that the intratumoral hypoxia
might modulate the tumoral immune response in many
ways. Most evidence suggests that HIFs (hypoxia-inducible
factors) exert a tumor-promoting effect by immunosuppression,
including the attraction of myeloid-derived suppressor cells like
macrophages and the inhibition of tumor-infiltrating cytotoxic
T-lymphocyte activity (55), which was further supported by
our findings that the infiltration level of macrophages were
significantly increased in high-score group. We believe the
combination of HIF inhibitors and immunotherapy would
serve as a useful approach for clinical testing to further
improve outcomes.

Next, using ssGSEA based immune signature, enrichment of
both innate and adaptive immune cells like CD8+ T cells, B
cells, macrophages, and NK cells was demonstrated in high-
risk score group. This observation was further supported by
the lower tumoral purity and higher intratumoral heterogeneity
in such group. The phenomenon of the co-infiltration of
cytotoxic cells and immune-suppressive cells including Treg,
MDSCs, and tumor-associated macrophages has been reported
in many cancer types (56–59) and likely reflects the negative
feedback mechanism embedded in the systemic nature of
immune regulation (60). Although the accumulation of CD8+
T cells has been identified by Bremnes et al. as a negative
prognostic factor in LUAD (61), the presence of intratumoral
CD8+ T cells and high PD-L1 expression in both tumor
cells and stroma were strongly correlated to good responses
to immune checkpoint inhibitors. Such tumors are defined
as “hot” tumors with antitumor immunity and the “hot”
immune infiltration has been demonstrated to be driven by
higher tumor mutation load or neoantigen load (25, 62, 63).

Meanwhile, considering the high-expression of several immune
markers including PD-1 (PDCD1), PD-L1 (CD274), CTLA-4,
and TGF-β, we could speculate that the patients in the high-risk
score group might benefit more from anti-PD-1/PD-L1/CTLA-
4 treatment. Taken into together, we suggested that the 12-
gene signature and the corresponding risk score could serve
as an indicator for predicting the response to immune therapy
in LUAD.

The major limitation of this study is its retrospective
nature. Moreover, since the expression data from the three
GEO datasets involved in this study were all generated
by the same microarray, some other immune-relevant
genes might be missed. Meanwhile, because of the lack of
expression data on patients receiving immune checkpoint
inhibitors treatment and the unavailability of information
regarding to immunotherapy outcome in TCGA and GEO
database, we failed to verify our speculation that the 12-
genes signature predicts response rate in patients with LUAD.
Studies integrating RNA-sequence and clinical outcome for
immune-checkpoint inhibitor treated LUAD patients is needed
in the future. Further prospective and comprehensive studies
are warranted to validate our findings, and experimental
research on these genes may provide new insight into their
biological functions.

CONCLUSIONS

A risk score system was established based on a 12 immune
relevant genes signature in LUAD, in which a high score was
independently associated with significantly worse prognosis.
When combined with several other clinical information, the
scoring model could serve as a powerful and accurate tool for
predicting survival of LUAD patients individually. Meanwhile,
the tumors in high-risk score group tends to exhibit an
up-regulated immune infiltration level, thus providing new
insights into the interaction between infiltrating immune cells
and tumor cells. Our findings were all validated in two
independent external cohorts and may facilitate clinicians to
choose the optimal therapeutic regimen for patients with LUAD
more precisely.
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Figures S1 | (A) The heatmap showing the infiltration pattern of 28 types of

immune cell in patients from GSE41271 and GSE50081 cohort. (B) The fraction of

immune cells in high- and low-risk group in patients from GSE41271 and

GSE50081 cohort. Within each group, the thick lines in the boxes represents the

median value. The bottom and top of the boxes are the 25th and 75th percentiles

(interquartile range). The whiskers encompass 1.5 times the interquartile range.

The statistical difference of two risk groups was compared through the Wilcoxon

test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001. (C) Comparison of

cytotoxic cells in the two risk groups. The statistical difference was compared

through the Wilcoxon test. (D) The boxplots presenting the expression level of 4

immune checkpoint molecules (CD274, PDCD1, CTLA4, and HAVCR2) in high-

and low-risk group from GSE41271 and GSE50081 cohort.

Figures S2 | (A) The heatmap showing the infiltration pattern of 28 types of

immune cell in patients from TCGA cohort. (B) The fraction of immune cells in

high- and low-risk group in patients from TCGA cohort. Within each group, the

thick lines in the boxes represents the median value. The bottom and top of the

boxes are the 25th and 75th percentiles (interquartile range). The whiskers

encompass 1.5 times the interquartile range. The statistical difference of two risk

groups was compared through the Wilcoxon test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, and ∗∗∗∗p < 0.0001. (C) Comparison of cytotoxic cells in the two risk

groups. The statistical difference was compared through the Wilcoxon test. (D)

The boxplots presenting the expression level of 4 immune checkpoint molecules

(CD274, PDCD1, CTLA4, and HAVCR2) in high- and low-risk group

from TCGA.

Table S1 | The baseline information, expression data, and corresponding risk

group of lung adenocarcinoma patients in GSE31210.

Table S2 | The baseline information, expression data, and corresponding risk

group of lung adenocarcinoma patients in GSE41271 and GSE50081.

Table S3 | The baseline information, expression data, and corresponding risk

group of lung adenocarcinoma patients in TCGA database.

Table S4 | The 336 immune-relevant genes selected by Cox regression.

Table S5 | The 12 immune-relevant genes selected by random forest algorithm.
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