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ABSTRACT
During the development of the central nervous system (CNS), extremely large numbers of neurons 
are produced in a regular fashion to form precise neural circuits. During this process, neural 
progenitor cells produce different neurons over time due to their intrinsic gene regulatory 
mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role 
in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown 
that a series of temporal transcription factors are sequentially expressed in neural progenitor cells 
and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar 
mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, 
it is difficult to elucidate the function of numerous molecules in many different cell types solely by 
molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other 
methods has been used to study the Drosophila nervous system on a large scale and is making 
a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In 
this article, recent findings on the temporal patterning of neurogenesis and the contributions of 
cutting-edge technologies will be reviewed.
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Introduction

During the development of the brain in various 
animals, extremely large numbers of neurons are 
produced to form precise neural circuits. The pro-
cess of producing various neurons from neural 
progenitors is precisely controlled both spatially 
and temporally [1–5]. Spatial control is achieved 
by controlling the properties of neural progenitors 
and neurons according to pattern formation 
mechanisms, such as positional information pro-
vided by morphogens. Temporal regulation, on 
the other hand, is controlled by a series of tempo-
rally-expressed transcription factors or temporal 
gradients of RNA-binding proteins in neural pro-
genitors, and epigenetic mechanisms also play 
important roles in this process.

Drosophila melanogaster has been used as 
a model system for a variety of biological phenom-
ena, but it has played a particularly important role 
in elucidating the mechanisms of time-dependent 
regulation of neural diversity. In the embryonic 
central nervous system (CNS), a series of temporal 

transcription factors (TTFs) are sequentially 
expressed over time in neural progenitor cells 
called neuroblasts (NBs; Figure 1) [6]. Although 
NBs in embryonic CNS enter quiescent period at 
the end of embryogenesis, they are reactivated in 
the beginning of larval development in a nutrient 
dependent manner [7,8]. These larval NBs produce 
a wide variety of neurons that establish neural 
circuits in the adult CNS [9].

During development of the medulla in the larval 
optic lobe (OL), NBs are produced row by row on the 
surface of the brain, following a wave of differentia-
tion called the proneural wave (Figure 2) [10–13]. 
Here, a completely different group of TTFs is 
expressed in NBs than in the embryonic CNS, and 
different types of neurons are produced towards the 
inner side of the brain over time [14,15]. This results 
in the formation of a concentric pattern, with early- 
born neurons located deep inside the brain 
(Figure 2a) [16,17]. The lobula and lobula plate of 
the optic lobe also produce a variety of neurons in 
a time-dependent manner [18].
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During larval central brain (CB) development, in 
addition to Type I NBs, which are similar to NBs 
found in the embryonic CNS and medulla in the OL, 
there are Type II NBs, which produce the transit 
amplifying neural progenitors called intermediate 
neural progenitors (INPs), which undergo limited 
rounds of asymmetric division to produce GMCs 
and neurons (Figure 3). In Type II NBs, the expres-
sion of TTFs changes over time not only in the NBs 
but also in the INPs generated from Type II NBs, 
which produce a greater variety of neurons than 
Type I NBs (Figure 3b, c) [19,20]. The NBs in the 
embryonic CNS, larval VNC and medulla in the 
larval OL are considered as Type I NBs.

Genetic techniques of Drosophila have been used 
to promote these studies by identifying various TTFs 
and their interactions. However, it is unlikely that all 

transcription factors can be identified by such classi-
cal methods, and furthermore, non-transcription 
factors such as noncoding RNAs may also be 
involved. Recently, next-generation sequencing 
technologies such as single-cell RNA-seq (scRNA- 
seq) have made it possible to obtain gene expression 
profiles of all cells that constitute the nervous system 
[21–29]. This has led to the identification of a large 
number of factors that have not been identified using 
conventional methods and has further advanced our 
understanding of the mechanisms that regulate neu-
rogenesis in a time-dependent manner. In this 
review, we will focus on the embryonic CNS, the 
medulla in the larval OL, and the larval CB and 
VNC, and review the temporal mechanisms of neu-
rogenesis in each system and the latest findings 
based on cutting edge technologies.

Figure 1. Temporal patterning in the embryonic CNS (a) NBs in the VNC and brain in the embryonic CNS produces GMCs and 
neurons and/or glial cells. (b) During embryonic CNS development, a NB, differentiated from a NE cell, is delaminated from the 
embryonic epithelia. A Type I NB produces multiple GMCs through asymmetric cell divisions. A GMC divides to produce two cells that 
give rise to either neuron or glial cell. A Type 0 NB directly produces nerons. (c) Spatial distribution of NBs in an embryonic 
hemisegment. A broken line indicates the midline. MNB, midline neuroblast. (d) A series of temporal transcription factors, Hb, Kr, 
Pdm, Cas and Grh, are sequentially expressed in a NB due to the feed-forward and feed-back gene regulatory network. Additionally, 
Svp regulates the transition from Hb to Kr expression.

Figure 2. Temporal patterning in the optic lobe (a) During medulla development in the OL, NBs are sequentially differentiated from 
NEs behind the proneural wave, which is marked by the expression of Lsc. A NB produce a GMC, which divides to produce neurons 
and/or glial cells inside the brain. Sequential TTF expression in NBs enables sequential production of different types of cells in the 
brain. (b) Hth expressed in NEs and the youngest NBs triggers the expression of Dscam1 and the production of Hth/Bsh-positive 
neurons. Dl expressed at the proneural wave front activates Notch signalling at the wave front and NBs distant from the wave front. 
The Notch activity in NBs triggers the expression of Klu and the production of Run-positive neurons. (c) Multiple temporal 
transcription factors are sequentially expressed in NEs and NBs. Erm and Opa are expressed twice forming a gap between the 
two expression domains. Lola is expressed throughout NBs to control the speed of the temporal cascade progression.
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Temporal patterning in embryonic CNS 
neuroblasts

The ventral nerve cord (VNC) of the embryo is 
considered to be the organ equivalent of the mam-
malian spinal cord and is the region where the 
concept of temporal patterning of neurogenesis 
was first discovered [6,30]. In the VNC of the 
embryonic CNS, NBs delaminate from the neu-
roectoderm and are arranged in a regular matrix 
of 30 cells in each hemisegment (Figure 1a-c) 
[31,32]. Pioneering work by the Doe lab has 
shown that Hunchback (Hb), Krüppel (Kr), 
Nubbin and Pdm2 (Pdm), and Castor (Cas) are 
each transiently expressed in NBs (Figure 1d) 
[6,30]. In addition, after Cas, grainy head (Grh) 
was found to be expressed in NBs [33].

Functional analysis of these TTFs has focused 
on NB7-1, which generates five different motor 
neurons U1-U5 in the first five cell divisions 
(Figure 1c). Hb and Kr are early expressed TTFs 
that are necessary and sufficient for the fate of 
early motor neurons [6]. The competence of 
embryonic NB7-1 (and NB3-1) to produce moto-
neurons under the control of Kr are restricted by 
Polycomb repressor complex (PRC) [34]. Thus, 
the functions of TTFs may be influenced by the 
epigenetic state of NBs. Pdm is necessary and 
sufficient for the fate of U4 motor neurons in 
NB7-1 and, together with Cas, is involved in the 
fate of U5 motor neurons [35].

The role of Cas and Grh has been analysed in 
detail in another lineage, NB5-6 (Figure 1c) [36]. 
In this lineage, Cas is expressed in NBs until the 
end of embryogenesis, and different types of neu-
rons are produced during the period of Cas 
expression. In the last four cell divisions of NB5- 
6, Cas induces the expression of Collier/Knot and 
Squeeze, thereby specifying Apterous-positive neu-
rons. Thus, temporal patterning generated by 
TTFs is further subdivided by subtemporal factors 
[36,37]. Grh has been shown to be required for the 
fate of late-producing FMRFamide-positive neu-
rons [36].

While a Type I NB produces a GMC that divides 
once to generate daughter cells, it is transformed to 
a Type 0 NB that directly produces neurons in the 
embryonic CNS (Figure 1b) [38]. The Type I > 0 
switch is triggered by Dacapo, an evolutionarily con-
served cell cycle inhibitor, under the control of Cas 
and Antennapedia, one of the Hox genes. The fol-
lowing cell cycle exit is regulated by Grh in addition 
to Cas and Antennapedia.

The molecular mechanism that switches the 
expression of these TTFs remains unclear. Ectopic 
expression experiments have shown that each gene 
induces the next TTF to be expressed, and it 
represses the expression of the previously expressed 
TTF (Figure 1d). Additionally, it represses the fol-
lowing target of the next TTF. However, the loss of 
each TTF does not affect the expression of the next 

Figure 3. Temporal patterning in the central brain (a) Type I and Type II NBs in the CB and Type I NBs in the VNC in the larval CNS. 
NBs in the OL are not shown. (b) In the developing central brain, a Type I NB sequentially differentiate over time and produce 
multiple GMCs and neurons (and/or glial cells). A Type I NB sequentially expresses Cas, Svp, Chinmo/Imp/Lin28 and Broad/E93/Syp. 
(c) A Type II NB sequentially expresses Cas/D, Svp, Chinmo/Imp/Lin28 and Broad/E93/EcR-B1/Syp producing multiple INPs. An INP 
then sequentially expresses D/Sp1, Grh/Hbn/TfAp2, Ey/TfAp2 and Scro. Younger INPs and their progeny tend to express Bsh, D and 
Sp1 (light green box). Older INPs and their progeny tend to express Toy, Repo, TfAp2 and Fas3 (dark green box). Bsh-positive 
neurons are produced from younger INPs that derive from older NBs (Orange box). Repo-positive glial cells are produced from older 
INPs that derive from younger NBs (light blue box).
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TTF, suggesting the existence of independent regu-
latory mechanisms [6]. It is known that cytokinesis 
and the expression of seven up (Svp), an orphan 
nuclear receptor, in NBs are essential for the transi-
tion from Hb to Kr in NBs, and the transition to the 
Kr temporal window occurs when Svp represses the 
expression of Hb (Figure 1d) [39,40]. Subnuclear 
genome reorganization is also involved in silencing 
the expression of Hb [41]. However, the molecular 
mechanism regulating the transition of Kr, Pdm, Cas 
and Grh temporal windows remains elusive.

Understanding of the mechanisms that establish 
the sequential TTF expression through activator 
and repressor cross-regulations requires theoreti-
cal as well as molecular genetic approaches 
(Figure 1d). A theoretical study suggested that 
repressor-decay acts as a more robust timer com-
pared with activator-relay mechanism [42]. This 
prediction was experimentally validated compar-
ing the temporal changes in TTF expression in 
control and mutant backgrounds.

Dam methyltransferase is an E. coli-derived ade-
nine methyltransferase. When a fusion protein of 
a transcription factor of interest and Dam is 
expressed, adenine in the 5´-GATC-3´ sequence 
near the target sequence is methylated by Dam 
[43]. Targeted DamID (TaDa), a cell type-specific 
DNA binding protein targeting the Dam fusion 
protein under the control of the Gal4/UAS system, 
was developed by the Brand laboratory and used 
for target identification of transcription factors 
[44–50]. Using TaDa, the DNA binding pattern 
of the transcription factor of interest can be quan-
titatively analysed in terms of adenine methylation 
frequency. Since adenine methylation occurs only 
in cells expressing Dam fusion proteins, the ana-
lysis can be performed without cell sorting. By 
PCR amplification of the methylated DNA frag-
ments and deep sequencing, the binding of the 
transcription factor of interest with the target 
sequence can be quantified [45].

TaDa was used to analyse how target binding of 
Hb differs between NBs in the embryonic CNS 
(Figure 1c, d). A fusion protein of Hb and Dam 
was specifically expressed in NB5-6 and NB7-4, 
and their binding to the target chromatin region 
was compared. Its binding to the gooseberry (Gsb) 
locus was stronger in the former and weaker in the 
latter, and correspondingly, Gsb expression was 

induced only in the former NBs [51]. This result 
indicates that the state of chromatin is regulated 
according to spatial information, which modifies 
the output of Hb.

MicroRNAs (miRNAs) are a type of small non-
coding RNA that are involved in various posttran-
slational controls. On the other hand, long 
noncoding RNAs (lncRNAs) are also known to 
be involved in neuronal cell typing. FACS sorting 
and scRNA-seq analysis of cells expressing NB 
markers revealed multiple miRNAs and lncRNAs 
that are expressed specifically and selectively in 
NBs [21]. Future studies will reveal the potential 
roles of miRNAs and lncRNAs in the temporal 
regulation of neurogenesis.

Temporal patterning following the proneural 
wave in the larval optic lobe

Among the four parts of the OL, lamina, medulla, 
lobula, and lobula plate, temporal patterning of 
NBs has been extensively studied in the medulla 
[4]. At the beginning of medulla development, 
neuroepithelial cells (NEs) are arranged in sheets, 
and only several embryonic NBs are present [52]. 
Most medulla NBs are produced by the wave of 
differentiation, proneural wave, starting from the 
medial edge of the OL adjacent to the CB towards 
the lateral side of the brain (Figures 2a, 3a). 
Behind the wave front of the proneural wave, 
NEs differentiate into NBs row by row 
(Figure 2a, b) [10]. Thus, NBs located on the 
medial side are older NBs, while those located on 
the lateral side are newly differentiated; therefore, 
each row of NBs has different temporal informa-
tion. NBs produce multiple neurons towards the 
centre of the medulla so that the early-born neu-
rons are located in the centre and the later-born 
neurons are located outside [16].

We and the Desplan lab have identified several 
TTFs in medulla NBs that are different from the 
set of TTFs found in embryonic VNC (Figure 2c) 
[4,12,14,15,37]. In medulla NBs, Homothorax 
(Hth), Klumpfuss (Klu), Eyeless (Ey), Sloppy 
paired 1 and 2 (Slp), Dichaete (D), and Tailless 
(Tll) are sequentially expressed overlapping with 
each other (Figure 2c). These TTFs are expressed 
in almost all NBs except those located at the pos-
terior edge of the developing medulla [53]. The 
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molecular mechanism of the switch in the expres-
sion of each TTF is unknown for Hth and Klu, but 
for the other TTFs such as Ey, Slp, and D, it has 
been shown that the previously expressed TTF 
induces the expression of the next TTF, and con-
versely, the latter represses the expression of the 
previously expressed TTF [14,15].

The inner part of the developing medulla is 
divided into concentric zones according to the 
expression of transcription factors, each of which 
differentiates into one or several different type(s) 
of neurons: Hth is expressed in the innermost part 
of the medulla; brain-specific homeobox (Bsh) is 
expressed in the outer half of the Hth region; Runt 
(Run) is expressed outside the Hth/Bsh region; 
and Drifter (Drf) is expressed outside the Run 
region [12,16]. The role of each TTF was investi-
gated using the expression of these transcription 
factors as markers [14,15,54]. During the period of 
Hth expression in medulla NBs, Bsh-positive neu-
rons are produced, and Hth is necessary and suffi-
cient for the production of Bsh-positive neurons 
(Figure 2b) [15,16]. Ectopic expression of Klu 
increases the number of Run-positive neurons 
(Figure 2b), but Klu mutant cells show a tumour- 
like phenotype precluding us from examining their 
physiological function. Ey is necessary and suffi-
cient to suppress the production of Run-positive 
neurons and to induce the production of Drf- 
positive neurons [14,15]. In contrast, Slp is neces-
sary and sufficient to suppress the production of 
Drf-positive neurons. Recent studies have shown 
that Slp and D are required for the production of 
neurons expressing Sox102F and Ets65A [55]. In 
addition, it has been reported that the number of 
glial cells is reduced in mutant clones of either Ey 
or D in the medulla. Thus, TTFs are involved in 
the fate determination of glial cells as well as 
neurons [54].

Temporal patterning of neural development is 
important not only for cell type specification but 
also for neural circuit formation [11]. Indeed, 
Hth temporally upregulates the transcription of 
the Down syndrome cell adhesion molecule, 
Dscam1 (Figure 2b) [56]. The Drosophila 
Dscam1 gene has three alternative exons and 
produces as many as 20,000 different ectodo-
mains. Only identical Dscam1 isoforms can 

bind with each other and produce a repulsive 
signal. As a result, neurons expressing the same 
Dscam1 isoforms repel each other [57–59]. Its 
temporal transcription in Hth-positive NBs and 
Dscam1 protein accumulation along the axons of 
their daughter neurons cause axonal repulsion 
between neurons of the same lineage. This pro-
cess, lineage-dependent repulsion, is essential for 
the formation of the columnar structure, 
a structural and functional unit of the brain 
[60]. Thus, Hth regulates column formation 
through the temporal regulation of Dscam1 
expression.

Among the temporal transcription factors in 
medulla NBs, the mechanism of the transition 
through Hth, Klu and Ey remains elusive. No 
genetic interaction has been found between the 
three factors [14,15]. On the other hand, proneural 
wave progression is positively and negatively con-
trolled by EGF and Notch signalling, respectively 
[13,61]. Although the Notch signal is activated at 
the wave front of the proneural wave to repress its 
progression, it is activated again in NBs behind the 
proneural wave. Interestingly, the second peak of 
Notch activation coincides with Klu expression 
and upregulates its expression (Figure 2b) [62]. 
Similarly, Notch signalling controls the expression 
of Slp in medulla NBs [50]. The temporal 
dynamics of Notch signal activity may control 
the temporal regulation of neurogenesis in other 
developmental contexts.

Several scRNA-seq analyses have been per-
formed in the OL, revealing gene expression pro-
files in a large number of neurons [22–26,63]. In 
addition, scRNA-seq analysis has been performed 
focusing on the developing OL, which has led to 
a better understanding of the temporal patterning 
of neurogenesis [27,29]. As a result, many TTFs 
were newly identified in medulla NBs, and their 
regulatory network was revealed.

SoxN and Dmrt99B are expressed in NEs and 
younger NBs overlapping with the Hth domain 
and are required for the production of Bsh- 
positive neurons (Figure 2c) [27]. While Hth and 
SoxN are not required to turn on the expression of 
later TTFs, Dmrt99B turns on the expression of 
a subsequent TTF, Odd-paired (Opa), which then 
represses the previous TTF, Hth.
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Earmuff (Erm; ortholog of mammalian Fezf2) 
and Opa show striped expression patterns with 
two expression domains. Erm expression 
domains in NEs and NBs are separated with 
a gap found in the youngest NBs, where the 
first Opa domain is found (Figure 2c) [27]. 
The second Opa domain is found in NBs sub-
sequent to the second Erm domain. The first 
Opa stripe is required for the repression of the 
previous TTF, Hth, and activation of the subse-
quent TTFs, Ey and Erm. On the other hand, 
the second Erm peak represses Opa expression 
to form its gap.

Klu was suggested to control the production 
of Run-positive neurons based on the results of 
its overexpression experiment. However, its loss 
of function caused overproliferation of NBs, 
masking its involvement in Run-positive neuron 
production [15]. In contrast, Opa was shown to 
be necessary for the production of Run-positive 
neurons in a loss-of-function experiment [27]. It 
is possible to speculate that Klu and Opa act 
together to control the production of Run- 
positive neurons.

Hbn and Scro were found to be expressed in the 
regions of Ey- and Slp-positive NBs. They promote 
the transition from Ey- to Slp-positive NBs 
[27,29]. These TTFs have been identified as target 
genes of Ey by TaDa analysis using the Ey-Dam 
fusion protein [50].

Two redundant homeobox transcription fac-
tors, BarH1 and BarH2 (collectively Bar), are 
expressed in NBs between the D and Tll 
domains. D promotes Bar expression, while Bar 
represses D and promotes Tll expression, sug-
gesting that D, Bar and Tll form a gene regula-
tory network that controls their sequential 
transition in NBs [27]. Bar promotes Glial cells 
missing (Gcm) as well as Tll expression. Gcm 
then represses Tll expression and promote glio-
genesis and cell cycle exit through Dacapo 
expression. Together with Gcm, Nerfin is also 
required in the oldest NBs to promote gliogen-
esis and cell cycle exit.

Finally, Lola is uniformly expressed in the 
medulla NBs. In the absence of Lola, the temporal 
progression of TTF expression becomes slower in 
NBs. Thus, Lola may belong to a unique type of 

TTF that controls the speed of temporal cascade 
progression [27].

Temporal patterning in neuroblasts in the 
larval CNS

Besides Type II NBs, there are Type I NBs in the 
larval CB including mushroom body (MB) and 
antennal lobe (AL). Additionally, there are multi-
ple Type I NBs in the larval VNC (Figure 3a). 
Robotic sorting of Type I NBs in MB and AL 
and Type II NB in CB were combined with 
scRNA-seq analysis to reveal the difference of 
temporal patterning mechanisms among different 
NBs [64]. The difference and similarity between 
Type I and Type II NBs in the larval CNS (CB and 
VNC) should be unveiled in the future.

It was revealed that the temporal pattering of 
Type I and Type II NBs in the larval CNS is 
established by a unique mechanism that involve 
the expression of two RNA binding proteins: IGF- 
II mRNA binding protein (Imp) and Syncrip (Syp) 
(Figure 3b, c) [65,66]. Imp is highly expressed in 
NBs during early larval stages and is gradually 
decreased as they age. In contrast, Syp expression 
gradually increases over time and facilitates termi-
nation of neurogenesis [67,68]. This transition 
from Imp+ to Syp+ period is indispensable for 
the competence of NBs to respond to ecdysone 
released from the ring gland during early pupal 
stage to terminate neurogenesis [67,69].

In addition to Imp and Syp, Chronologically 
inappropriate morphogenesis (Chinmo), Lin-28, 
Broad complex (Br), and Ecdysone-induced pro-
tein 93 F (E93) are temporally expressed in Type 
I and Type II NBs of larval CB and VNC 
(Figure 3b, c) [66,70,71]. Chinmo and Lin-28 are 
found in Imp+ NBs during early larval stage, while 
Br and E93 appear in Syp+ NBs during late larval 
stage. Cas and Svp also appear in the NBs in larval 
CNS prior to the beginning of Imp/Chinmo/Lin- 
28 expression [70,72]. While Hb/Pdm/Cas have no 
role in an AL Type I NB lineage (adPN), Kr is 
required for one temporal fate during embryonic 
stage, while Cas is required for multiple temporal 
fates in later embryonic and larval stages [73].

How is the temporal transition from Imp/ 
Chinmo/Lin-28 to Syn/Br/E93 regulated? In the 
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absence of Svp, Imp/Chinmo/Lin-28 expression is 
maintained in the NBs even during late larval stage 
[70]. Ecdysone is released from a ring gland and 
control temporal progression of the NBs from early 
to late temporal window cell non-autonomously. 
Chinmo expression is maintained in Type I and 
Type II NBs during late larval stage in ecdysoneless 
mutant larvae, which show lowered level of haemo-
lymph ecdysone titre [71]. The temporal action of 
Ecdysone and temporal gradients of proteins have 
been reported in Type I NBs in MB [74–76] and 
Type II NBs in CB [64,71,77], and may be one of 
general mechanisms to produce diverse neurons in 
the Drosophila CNS. Although some clues have been 
found, molecular mechanisms that regulate the tem-
poral transition from Imp/Chinmo/Lin-28 to Syn/ 
Br/E93 period are largely unknown.

A secreted signalling molecule, Hedgehog (Hh), 
is also involved in the temporal patterning of Type 
I NBs in the larval CB by promoting their cell cycle 
exit [78]. Hh expression is promoted by Cas and 
Hh acts as an autocrine or paracrine to regulate 
the cell cycle exit of NBs together with Grh. 
Temporal regulation of neural progenitors by non- 
autonomous feed back signalling from postmitotic 
neurons remains to be examined in the Drosophila 
CNS [79].

As demonstrated in the embryonic NBs, the 
functions TTFs may be influenced by the epige-
netic state of NBs [34]. Using TaDa technique, 
epigenetic states of chromatin were systematically 
analysed in larval NBs, GMCs and neurons [80]. 
In combination with molecular genetic studies, 
similar approaches may reveal the interplay 
between TTFs and epigenetic mechanisms during 
temporal patterning of NBs.

Changes in energy metabolism during develop-
ment is one of the key events to govern temporal 
progression in the NBs [66,69,81]. The NBs mainly 
gain energy via glycolytic pathway during larval 
stages, while they utilize oxidative phosphorylation 
to produce more energy in pupal stages [66,69]. 
Although the larval NBs partially rely on oxidative 
phosphorylation for energy production, the meta-
bolic pathway is still important for successful tem-
poral patterning and consequent initiation of the 
terminal phase of NB proliferation [81]. Syp, one 
of the late temporal factors, is involved in the 
regulation of metabolic genes [66], suggesting 

that bidirectional interactions exist between tem-
poral factors and metabolic pathways.

Temporal patterning of neuroblasts and 
intermediate progenitors in the larval central 
brain

The dorso-medial (DM1-DM6) and dorso-lateral 
(DL1-DL2) NBs of larval CB are called Type II 
NBs and show a unique division pattern 
(Figure 3a). These Type II NBs differ from other 
NBs in that they produce transit amplifying neural 
progenitors called INPs, which undergo multiple 
asymmetric divisions to give rise to 4–6 GMCs 
(Figure 3c) [82–84]. INPs initially give rise to 
Bsh/D-positive neurons and later produce Twin 
of eyeless (Toy)-positive neurons and glial cells. 
Therefore, temporal patterning of neurogenesis 
occurs in INPs in CB as in Type I NBs in embryo-
nic VNC and medulla. Three TTFs, D, Grh, and 
Ey, have been identified in CB INPs (Figure 3c) 
[19]. In the INPs, D is expressed early and 
switches to Ey expression late, while Grh is 
expressed late in the D window and early in the 
Ey window. Loss of function of D or Grh results in 
the loss of Bsh-positive neurons, which are pro-
duced early in development. Similarly, loss of 
function of Ey causes a decrease in the number 
of Toy-positive neurons and glial cells produced 
later in development [19]. Thus, younger INPs and 
their progenies tend to express D and Bsh, respec-
tively, while the progenies of older INPs tend to 
express Toy and Repo. In addition, a recent study 
identified neurons produced by younger INPs 
(P-EN, P-FN) and neurons produced by older 
INPs (E-PG, PF-R) in the central complex in the 
larval CB, and reported that each type of neuron 
increases and decreases, respectively, in the loss-of 
-function of Ey, which specifies the late state of 
INPs [85].

In addition to the mutual regulation between 
TTFs, two different factors have been identified 
as regulators of TTF expression by RNAi screening 
[86]. Osa, a component of SWI/SNF chromatin- 
remodelling complex, and its target Hamlet are 
essential for D expression and suppression of 
Grh in the INPs, respectively.

INPs give rise to different types of cells early 
and late in development (Figure 3c) [19], 
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suggesting that temporal factors are also expressed 
in Type II NBs and determine the nature of the 
INPs they produce. In fact, it has been reported 
that Cas/D is initially expressed in younger Type II 
NBs, followed by the switch to Svp expression 
(Figure 3c) [19]. Bsh-positive neurons are pro-
duced from younger INPs derived from older 
NBs, while Repo-positive glial cells are produced 
from older INPs derived from younger NBs.

The transcriptome analysis of Type II NBs was 
performed using the TU-tagging method developed 
by the Doe lab, and several temporal factors were 
identified [71]. First, Type II NBs can be divided into 
early stage, when Cas, Svp, Chinmo, Imp and Lin28 
are expressed, and late stage, when Ecdysone recep-
tor B1 (EcR-B1), Syp, Broad and E93 are expressed 
(Figure 3c). Svp, one of the early TTFs, is necessary 
for the expression of the late temporal factors EcR- 
B1, Syp, Broad and E93 and for the suppression of 
Chinmo and Imp expression. Importantly, EcRB1 
acts as an ecdysone receptor and controls target 
gene transcription. Ecdysone has been recognized 
as an exogenous factor that regulates temporal pat-
terning in type II NBs [71,77].

Compared with the embryonic CNS and OL, 
relatively fewer TTFs have been identified in 
Type II NBs in the CB. Type II NBs were speci-
fically labelled and FACS sorted to perform Type 
II NB-specific scRNA-seq analyses [28]. The 
pseudotime analysis confirmed the temporal cas-
cade of TTFs in INPs proposed in the previous 
genetic studies [19,20]. Furthermore, additional 
temporal factors were identified. Sp1 is expressed 
in the D-positive younger INPs, which produce 
Bsh-, D- and Sp1-positive progenies (Figure 3c). 
TfAp2 is expressed in Grh- and Ey-positive older 
INPs, which produce Toy-, TfAp2- and Fas3- 
positive neurons and Repo-positive glial cells. 
Further genetic analysis is necessary to reveal 
the gene regulatory network between these TTFs.

scRNA-seq analyses only provide RNA expres-
sion profiles. TaDa may be a powerful approach 
that identifies direct transcriptional targets of 
TTFs. NanoDam is an improved version of 
TaDa, which enables TaDa analysis for endogen-
ously GFP-tagged proteins without generating 
a Dam fusion construct, and can be used to search 
for new TTFs [87]. By using a fusion protein of 
anti-GFP antibody and Dam that binds with the 

GFP-tagged transcription factor, the transcrip-
tional targets of TTFs can be efficiently and sys-
tematically identified. Using this method, 
transcriptional targets of D, Grh and Ey were 
investigated, and the results were compared with 
the scRNA-seq dataset to identify new TTFs in 
INPs such as Hbn and Scro.

Hbn is a target of D, Grh and Ey according to 
the TaDa analysis and is expressed in Grh-positive 
middle-aged INPs (Figure 3c). Hbn activates the 
subsequent TTF, Ey, which then terminates Hbn 
expression in the older INPs. Scro is expressed in 
the oldest INPs. Consistent with the results of 
TaDa analysis, Scro is a target of Ey and is upre-
gulated by Ey. Scro represses Ey expression to 
promote the transition to the oldest temporal win-
dow of INPs. Interestingly, Hbn and Scro similarly 
act as TTFs in the medulla NBs (Figure 2c) 
[27,29,87].
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regulatory network. Noncoding genes such as miRNAs and 
lncRNAs may also play important roles in the temporal 
cascade of neurogenesis. Combined with techniques such as 
TaDa and NanoDam, scRNA-seq analysis can systematically 
reveal direct targets of TTFs. Ultimately, however, direct 
confirmation by genetic approaches, which requires signifi-
cant efforts, is necessary. Further integration with innovative 
technologies will be required to elucidate the complex 
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cell types, including Type I NBs, Type II NBs and INPs.
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