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MOTIVATION Single-cell and spatial transcriptomics assays are commonly used to profile the molecular
signatures of biological systems, yielding high-dimensional datasets that can be used to model gene regu-
lation across cell types, cell states, and spatial niches. Many statistical tools for high-dimensional transcrip-
tomics data analysis focus on individual features rather than the underlying network structure, ignoring po-
tential interactions between transcripts or genes. Here, we introduce hdWGCNA, a comprehensive
methodological framework for the inference, analysis, and interpretation of gene co-expression networks
in high-dimensional transcriptomics data. hdWGCNA is implemented as an open-sourceRpackage that ex-
tends the Seurat ecosystem of data analysis tools.
SUMMARY
Biological systems are immensely complex, organized into a multi-scale hierarchy of functional units based
on tightly regulated interactions between distinct molecules, cells, organs, and organisms. While experi-
mental methods enable transcriptome-wide measurements across millions of cells, popular bioinformatic
tools do not support systems-level analysis. Here we present hdWGCNA, a comprehensive framework for
analyzing co-expression networks in high-dimensional transcriptomics data such as single-cell and spatial
RNA sequencing (RNA-seq). hdWGCNA provides functions for network inference, gene module identifica-
tion, gene enrichment analysis, statistical tests, and data visualization. Beyond conventional single-cell
RNA-seq, hdWGCNA is capable of performing isoform-level network analysis using long-read single-cell
data. We showcase hdWGCNA using data from autism spectrum disorder and Alzheimer’s disease brain
samples, identifying disease-relevant co-expression network modules. hdWGCNA is directly compatible
with Seurat, a widely used R package for single-cell and spatial transcriptomics analysis, and we demon-
strate the scalability of hdWGCNA by analyzing a dataset containing nearly 1 million cells.
INTRODUCTION

The development and widespread adoption of single-cell and

spatial genomics approaches has led to routine generation of

high-dimensional datasets in a variety of biological systems.

These technologies are frequently used to study developmental

stages, evolutionary trajectories, disease states, drug perturba-

tions, and other experimental conditions. Despite the inherent

complexity and interconnectedness of biological systems,

studies leveraging single-cell and spatial genomics typically

analyze individual features (genes, isoforms, proteins, etc.) one

by one, greatly oversimplifying the underlying biology. These da-

tasets provide an opportunity for investigating and quantifying
Cell R
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the relationships between these features to further contextualize

their roles across biological conditions of interest.

Here we developed hdWGCNA, a framework for co-expres-

sion network analysis1 in single-cell and spatial transcriptomics

data. Co-expression networks are based on transformed pair-

wise correlations of input features, resulting in a quantitative

measure of relatedness between genes.1,2 Hierarchical clus-

tering on the network structure allows us to uncover functional

modules of genes whose expression profiles are tightly inter-

twined,3,4 which typically correspond to specific biological pro-

cesses and disease states. Considering that unique cell types

and cell states have distinct gene expression programs, we de-

signed hdWGCNA to facilitate multi-scale analysis of cellular and
eports Methods 3, 100498, June 26, 2023 ª 2023 The Author(s). 1
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spatial hierarchies. hdWGCNA provides a rich suite of functions

for data analysis and visualization, providing biological context

for co-expression networks by leveraging a variety of biological

knowledge databases. To maximize usability among the geno-

mics community, the hdWGCNA R package extends the data

structures and functionality of the widely used Seurat pack-

age,5–7 and we developed an extensive documentation website

for hdWGCNA demonstrating its use on new datasets. Further,

we used hdWGCNA to analyze a single-cell RNA sequencing

(scRNA-seq) dataset consisting of 1 million cells, showcasing

the scalability of hdWGCNA in large datasets.

In this study, we applied hdWGCNA in a variety of high-dimen-

sional transcriptomics datasets from different technologies and

biological conditions. As a common use case, we first performed

iterative network analysis of the major cell types in the human

prefrontal cortex (PFC), identifying shared and specific network

modules in each cell type. We constructed co-expression net-

works in anterior and posterior mouse brain sections profiled

with 103 Genomics Visium spatial transcriptomics (ST), and

found distinct spatial patterns of these gene expression pro-

grams. Using long-read scRNA-seq data from the mouse hippo-

campus,8 we uncovered splicing isoform co-expression net-

works in the radial glia lineage involved in cell fate

specification. Network analysis of inhibitory neurons from pub-

lished single-nucleus RNA sequencing (snRNA-seq) in autism

spectrum disorder (ASD) donors9 revealed modules disrupted

in ASD containing key genetic risk genes such as SCN2A,

TSC1, and SHANK2. We performed consensus co-expression

network analysis of microglia from three Alzheimer’s disease

(AD) snRNA-seq studies,10–12 yielding multiple gene modules

corresponding to disease-associated microglia and polygenic

risk of AD. Finally, we used hdWGCNA to project gene modules

from two bulk RNA-seq studies of AD patients into an snRNA-

seq dataset of the AD brain, showing that our approach allows

for interrogation of gene modules and networks that have been

previously identified.

RESULTS

Constructing co-expression networks from high-
dimensional transcriptomics data
Here we describe hdWGCNA, a comprehensive framework for

constructing and analyzing co-expression networks in high-

dimensional transcriptomic data (Figure 1A). Given a gene

expression dataset as input, co-expression network analysis

typically consists of the following analysis steps: computing pair-

wise correlations of input features, weighting correlations with a

soft-power threshold ðbÞ, computing the topological overlap be-

tween features, and unsupervised clustering via the Dynamic

Tree Cut algorithm3 (Figure S1 and STARMethods). The sparsity

and noise inherent in single-cell data can lead to spurious gene-

gene correlations, thereby complicating co-expression network

analysis. Additionally, the correlation structure of single-cell or

spatial transcriptomic data varies greatly for different subsets

(cell types, cell states, anatomical regions). A typical hdWGCNA

workflow in scRNA-seq data accounts for these considerations

by collapsing highly similar cells into ‘‘metacells’’ to reduce spar-

sity while retaining cellular heterogeneity and by allowing for a
2 Cell Reports Methods 3, 100498, June 26, 2023
modular design to perform separate network analyses in speci-

fied cell populations.

Metacells are defined as small groups of transcriptomically

similar cells representing distinctive cell states. There are

several approaches to identify metacells from single-cell geno-

mics data.13–16 We leverage a bootstrapped aggregation

(bagging) algorithm for constructing metacell transcriptomic

profiles from single-cell datasets by applying K-nearest neigh-

bors (KNN) to a dimensionality-reduced representation of the

input dataset (STAR Methods, Algorithm 1). This approach

can be performed for each biological replicate to ensure that

critical information about each sample (age, sex, disease sta-

tus, etc.) is retained for downstream analysis. We computed

gene-gene correlations in the normalized gene expression ma-

trix from the single-cell dataset and metacell expression

matrices while varying the number of cells to collapse into a

single metacell (the KNN K parameter). The distribution of these

gene-gene correlations displays a spike at zero for the single-

cell expression matrix, with flattened distributions corresp-

onding to more non-zero correlations in the metacell matrices,

indicating that metacell expression profiles are less prone to

noisy gene-gene correlations compared with the single-cell

matrix (Figure 1B) (STAR Methods). We note that sparsity

(defined in Equation 1) is greatly reduced in the metacell

matrices for each cell type compared with the single-cell

matrices, with over a 10-fold reduction in some cases (Fig-

ure 1C). We applied hdWGCNA to a dataset of CD34+ hemato-

poietic stem and progenitor stem cells16 using two additional

metacell approaches14,16 and found that all approaches were

suitable for downstream network analysis (Figure S2; Data

S1). Metacell algorithms strive to retain biologically meaningful

signals spanning a spectrum of cell states in a tissue of interest;

therefore, it is necessary to carefully apply these approaches to

avoid obscuring these cell states. For example, the hdWGCNA

metacell algorithm requires a dimensional reduction of the input

expression matrix, but these reductions often contain technical

artifacts. The choice of dimensionality reduction method and

handling of technical artifacts would then influence the effec-

tiveness of metacell construction. Further, the optimal number

of cells to merge together to form a single metacell may differ

across cell types and tissues, attempting to balance between

increasing information content of the aggregated group while

avoiding merging of dissimilar cells. Aside from metacell ap-

proaches, pseudo-bulk aggregation of all cells in a given pop-

ulation have yielded favorable results in benchmarks of differ-

ential gene expression tests,17 suggesting that, given a

sufficient sample size, pseudo-bulk expression profiles are

likely suitable for co-expression network analysis.

While co-expression modules consist of many genes, it is

convenient to summarize the expression of the entire module

into a single metric. Module eigengenes (MEs), defined as the

first principal component of the module’s gene expression ma-

trix (STAR Methods, Algorithm 2), describe the expression pat-

terns of entire co-expression modules. hdWGCNA computes

MEs using specific accommodations for high-dimensional

data, allowing for batch correction and regression of continuous

covariates (STAR Methods, Algorithm 2). Optionally, hdWGCNA

can use alternative gene scoring methods such as or UCell18 or
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Figure 1. Overview of the hdWGCNA workflow and application in the human prefrontal cortex

(A) Schematic overview of the standard hdWGCNA workflow on a scRNA-seq dataset. UMAP plot shows 36,671 cells from 11 cognitively normal donors in the

Zhou et al. human prefrontal cortex (PFC) dataset. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons;MG,microglia; ODC, oligodendrocytes; OPC,

oligodendrocyte progenitor cells.

(B) Density plot showing the distribution of pairwise Pearson correlations between genes from the single-cell (sc) expression matrix and metacell expression

matrices with varying values of the K-nearest neighbors parameter K.

(C) Expression matrix density (1, sparsity) for the sc, pseudo-bulk (pb), and metacell matrices with varying values of K in each cell type.

(D) Heatmap of scaled gene expression for the top five hub genes by kME in INH-M6, EX-M2, ODC-M3, OPC-M2, ASC-M18, and MG-M14.

(E) snRNA-seq UMAP colored by module eigengene (ME) for selected modules as in (D).

(F) UMAP plot of the ODC co-expression network. Each node represents a single gene, and edges represent co-expression links between genes andmodule hub

genes. Point size is scaled by kME. Nodes are colored by co-expressionmodule assignment. The top two hub genes permodule are labeled. Network edgeswere

downsampled for visual clarity.

(G) snRNA-seq UMAP as in (A) colored by MEs for the 10 ODC co-expression modules as in (F).

(H) Module preservation analysis of the ODC modules in the Morabito et al.12 human PFC dataset. The module’s size versus the preservation statistic (Z

preservation) is shown for each module. Z < 5, not preserved; 10>ZR 5, moderately preserved; ZR10, highly preserved.
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Seurat’s AddModuleScore function, and we show that these

scores are correlated with MEs (Figure S3).

We demonstrate hdWGCNA in single-cell transcriptomic data

through an iterative network analysis of six major cell types in the

Zhou et al. human PFC snRNA-seq dataset of 11 cognitively

normal donors (Figure 1A).11 We constructed metacells and per-

formed co-expression network analysis for each major cell type

in the humanPFCdataset11 using the standard hdWGCNAwork-

flow, yielding distinct network structures and sets of gene mod-

ules (Data S2 and S3). Networks were constructed using meta-

cell expression matrices for each cell type separately, but we

computed MEs for each module using the entire snRNA-seq da-

taset, allowing us to interrogate the cell-type specificity of these

modules’ expression programs across all cell types. This itera-

tive network analysis revealed 96 co-expressionmodules across

the six major cell types. Through differential module eigengene

(DME) analysis, we found shared and distinct module expression

patterns across different cell types (Data S2; STAR Methods),

and we highlight specific modules from each cell type (Figures

1D and 1E). Further, we performed a pairwise gene set overlap
analysis of the 96 co-expression modules, and, while we did

find that some modules had significant overlaps across the

different cell types, the gene sets comprising these modules

were overall quite distinct, with a maximum Jaccard index be-

tween two modules of 0.297 and a median of 0.005 (STAR

Methods and Figure S4). The expression of module hub genes,

which are highly connected members of the co-expression

network ranked by eigengene-based connectivity (kME), tend

to display cell-type-specific patterns, such as the myelination

genes CNP and PLP1 in oligodendrocyte (ODC) module ODC-

M3 (Figure 1D). However, some co-expression modules may

correspond to cellular processes common to multiple cell types,

in which case the hub genes may be widely expressed. We in-

spected the MEs of selected cell-type-specific modules and

found that the overall expression patterns were similar to that

of their constituent hub genes (Figures 1D and 1E).

We showcase some of the downstream functionalities of

hdWGCNA using the ODC co-expression network (Figures 1F–

1H). For network visualization,weusedUniformManifoldApprox-

imation and Projection (UMAP)19 to embed the co-expression
Cell Reports Methods 3, 100498, June 26, 2023 3
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Figure 2. Runtime, memory usage, and performance of hdWGCNA

(A and B) We ran the main co-expression network analysis functions of the hdWGCNA R package on 65,415 neuronal cells in a human brain dataset9 from 54

samples, and tracked the runtime (A) and memory usage upper bound (B) for different-sized subsets of the data ranging from 1,000 through 50,000 cells.

(C) Violin plots showing distributions of EGAD23 neighbor-voting area under the receiver operating characteristic curve (AUC) scores in each of the cell-type-

specific co-expression networks from the human PFC dataset.11

(D) Violin plots showing distributions of multifunctionality AUC scores in each of the cell-type-specific co-expression networks from the human PFCdataset. ASC,

astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells.

(E) Performance of the XGBoost regularized regressionmodels used to predict gene expression based on the expression of the top 10module hub genes for all 96

co-expression modules from the Zhou et al.11 human PFC dataset. Violin plots showing the test set root-mean-square error (RMSE) comparing the predicted

expression with observed for each gene, split by each co-expression module. Modules are ordered within each cell type from lowest mean RMSE to highest.
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network topological overlapmatrix (TOM) into a two-dimensional

manifold, using the topological overlap of each gene with the top

hub genes from each module as input features (STAR Methods;

Figure 1F). We found that eight of the 10 ODC modules were

specifically expressed in ODC cells based on their MEs (Fig-

ure 1G; Wilcoxon rank-sum test Bonferroni-adjusted p <0.05).

Finally, we performed module preservation analysis20 to test the

reproducibility of these modules in an independent dataset12

and found that all of the ODC-specificmodules were significantly

preserved (Z summary preservationR5). In sum, these network

analyses in the humanPFCdataset shows the core capabilities of

the hdWGCNA workflow (Figure S1). Finally, we performed a

similar iterative network analysis on a peripheral blood mononu-

clear cell (PBMC) scRNA-seq dataset of nearly 1M cells, high-

lighting the scalability of hdWGCNA in large datasets (Figure S5;

Data S1).

Runtime, memory usage, and evaluation of hdWGCNA
Wemeasured the runtime and memory usage of hdWGCNA as a

function of the number of input cells. Using the 65,415 neuronal
4 Cell Reports Methods 3, 100498, June 26, 2023
cells from the Velmeshev et al.9 human PFC snRNA-seq dataset

(54 samples), we ran hdWGCNA on different-sized subsets

ranging from 1,000 to 50,000 cells to test the runtime and mem-

ory consumption of the main network analysis steps (Figures 2A

and 2B). We report the memory upper bound in gigabytes

measured throughout the duration of each function. The runtime

of the MetacellsByGroups function increased steadily with the

number of cells, but the memory usage plateaus. This function

attempts to construct a target number of metacells within each

biological replicate and each cell population, and the algorithm

terminates early if this target is reached, thus explaining the

plateau in the memory usage graph. While TestSoftPowers

generally had a low memory footprint, it was the slowest individ-

ual function based on these tests. Importantly, TestSoftPowers

can be sped up by using a subset of the data, or by testing fewer

soft-power thresholds than the default. The efficiency of

ConstructNetwork varies both with the number of input cells

and features, where this calculation will slow down as more cells

and features are included. ModuleEigengenes uses the implicitly

restarted Lanczos bidiagonalization algorithm (IRLBA)21 for fast
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singular value decomposition (SVD) of sparse matrices, and the

runtime andmemory usage of this function both linearly increase

with the number of cells in the dataset. Optionally,

ModuleEigengenes can employ the harmony22 algorithm follo-

wing SVD, which increases runtime but not memory usage.

Further, the efficiency of this function varies with the number of

co-expression modules detected and with the number of fea-

tures in each modules. Finally, ModuleConnectivity computes

eigengene-based connectivity as product-moment correlation

coefficients between the sparse gene expression matrix and

the MEs matrix, which resulted in fast calculations with low

memory usage.

We next sought to evaluate the co-expression networks iden-

tified by hdWGCNA using a functional coherence analysis. We

used the EGAD neighbor-voting algorithm23 to predict known

biological pathway associations of genes based on the co-

expression network structure using the cell-type-specific co-

expression networks from the Zhou et al.11 human PFC dataset.

In principle, we expect that co-expressed genes are involved in

similar biological processes, and therefore co-expression

network structures should be predictive of biological pathway

membership. Briefly, EGAD performs a 3-fold cross-validation

classification by occluding the pathway labels of a subset of

genes and then attempting to predict the pathway membership

of those occluded genes based on their labeled neighbors in

the network. We used EGAD to test the functional coherence

of our hdWGCNA co-expression networks for a set of Gene

Ontology (GO) terms, reporting area under the receiver operating

characteristic curve (AUC) value for each term (Figure 2C). We

report a similar level of functional coherence in these co-expres-

sion networks to a previous study that evaluated co-expression

networks derived from scRNA-seq data with different measures

of gene-gene association.24 The inhibitory neuron network

performed the best for functional coherence with a median

neighbor-voting AUC of 0.592, while the lowest-performing

network was from the oligodendrocytes with a median AUC of

0.549. We tested whether there was a bias toward genes that

were multifunctional based on the frequency that they appeared

in the annotated set of GO terms, and we found that multifunc-

tional genes did not bias the co-expression functional coherence

results (Figure 2D).

In principle, genes within the same co-expression modules

derived from specific cell types should be functionally related

or co-regulated. The expression of module hub genes, which

exhibit the highest intramodular connectivity, may be predictive

of the expression of other module member genes if the network

is well defined and contains meaningful structures. For each of

the 96 cell-type PFC co-expression modules, we sought to pre-

dict the expression of each gene using the top 10 module hub

genes as the input features to a XGBoost25 regularized regres-

sion model. In this analysis, we performed 5-fold cross-valida-

tion, and we report the performance as root-mean-square error

(RMSE) of the test set averaged over each fold (Figure 2E).

Overall, we found that module hub gene expression was gener-

ally predictive of module member gene expression across all

modules in the six cell-type co-expression networks, where

the module with the best performance had an average test

set RMSE of 0.0159 and the module with the worst perfor-
mance had an average test set RMSE of 0.209 (Figure 2E).

This analysis and our functional coherence analysis provide

support that hdWGCNA co-expression networks and gene

modules capture biologically relevant information in specific

cell types.

Spatial co-expression networks represent regional
expression patterns in the mouse brain
ST enables the investigation of biological patterns that might

otherwise be hidden in other -omics technologies, such as

scRNA-seq or bulk RNA-seq.26,27We used hdWGCNA to identify

spatial co-expression network modules in the murine brain using

a publicly available Visium transcriptomics dataset from 103Ge-

nomics (Figure 3A). This ST dataset consists of one posterior and

one anterior slice originating from a sagittal brain section from a

single male mouse at 8 weeks of age. Sequencing-based ST ap-

proaches such as Visium yield transcriptome-wide gene expres-

sion profiles localized to individual ‘‘spots’’ where a single spot

likely contains multiple cells, and this dataset is composed of

2,696 spots in the anterior slice and 3,353 spots in the posterior

slice. Data sparsity is also inherent to the current generation of

these technologies, therefore we propose a metaspot aggrega-

tion approach prior to network analysis (Figure S6). Evenly

spaced spots throughout the input ST slide are used as principal

spots, with at least one other spot in between twoprincipal spots.

The transcriptomes of the principal spots and their direct neigh-

bors are aggregated into metaspot expression profiles, contain-

ing at most seven ST spots (Figure S6A). Similar to metacells in

scRNA-seq, the sparsity of the metaspot expression matrix

was reduced compared with the original ST matrix (Figure S6B),

and the distribution of gene-gene correlations in the metaspot

expression matrix was less concentrated at zero (Figure S6C).

hdWGCNA is capable of processing any number of ST samples

in the same co-expression network analysis by constructing

metaspots separately for each sample.

We applied hdWGCNA in the mouse brain Visium dataset,

identifying 12 spatial modules (SM1-12; Figure S7; Data S1),

andwe embedded the co-expression network in two dimensions

using UMAP (Figure 3B). DME analysis showed that spatial co-

expression modules displayed distinct regional expression pro-

files based on their MEs (Figure 3C; Data S3), encompassing a

wide array of cellular processes such as the myelination module

SM1 in the white matter tracts, and synaptic transmission mod-

ules SM7, SM9, SM11, and SM12 (Figure S7C; Data S2). For

example, DME analysis showed that expression of SM4 was

localized to the ventricles and cortical layer 1 near the blood-

brain barrier (Figure 3C). Further, the hub genes of SM4 include

hemoglobin subunits (Hba-a1, Hba-a2, Hbb-bt), and we show

that SM4 was enriched for biological processes associated

with brain vasculature (Figures 3B and S7C). We compared

these gene modules with cluster marker genes from a whole-

mouse-brain snRNA-seq dataset28 and found significant corre-

spondences, such as the striatum module SM7 and medium

spiny neurons (Fisher’s exact test false discovery rate [FDR]

<0.05; Figure S7D). Additionally, we performed network analysis

on a subset of this dataset containing cortical layers 2–6 (Fig-

ure S8), identifying additional fine-grained spatial co-expression

modules localized to specific cortical layers (Data S1 and S2).
Cell Reports Methods 3, 100498, June 26, 2023 5
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Figure 3. Spatial co-expression networks represent regional expression patterns in the mouse brain

(A) Visium spatial transcriptomics (ST) in anterior (left, 2,696 spots) and posterior (right, 3,353 spots) mouse brain sections, colored by Louvain clusters annotated

by anatomical regions.

(B) UMAP plot of the mouse brain ST co-expression network. Each node represents a single gene, and edges represent co-expression links between genes and

module hub genes. Point size is scaled by kME. Nodes are colored by co-expressionmodule assignment. The top five hub genes permodule are labeled. Network

edges were downsampled for visual clarity.

(C) ST samples colored by MEs for the 12 spatial co-expression modules. Gray color indicates an ME value less than zero.
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Isoform-level co-expression networks reveal cell fate
decisions in the radial glia developmental lineage
Different isoforms of the same gene are often involved in distinct

biological processes.29 Conventional single-cell transcriptomics
6 Cell Reports Methods 3, 100498, June 26, 2023
assays capture information at the gene level, thereby missing

much of the biological diversity and regulatory mechanisms that

occurs at the isoform level.30 Emerging long-read sequencing ap-

proaches enable us to profile cellular transcriptomes at isoform
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Figure 4. Isoform co-expression network analysis reveals fate-specific expression programs in the hippocampal radial glia lineage

(A) UMAP plot of cells from the mouse hippocampus ScISOrSeq dataset.8 Major cell types are labeled and the cells used for co-expression network analysis are

colored. This dataset contains expression information for 96,093 isoforms and 31,053 genes in 6,832 cells from one mouse brain sample. ASC, astrocytes; CPX,

(legend continued on next page)
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resolution,8,31–33 thus providing new opportunities to model the

relationships between isoforms using co-expression network

analysis.

We used hdWGCNA to perform isoform co-expression

network analysis in radial glia lineage cells from the mouse hip-

pocampus at postnatal day 7 (P7) profiled with single-cell iso-

form RNA sequencing (ScISOrSeq)8 (Figure 4A; STARMethods).

This dataset contains isoform-level and gene-level expression

data from 6,832 nuclei derived from a single mouse hippocam-

pus sample. Radial glia, which share transcriptomic similarities

with mature astrocytes, are progenitor cells that give rise to

numerous distinct cell fates, including neuronal cells, astrocytes,

oligodendrocytes, and ependymal cells.34,35 To model this

developmental process, we applied Monocle336 pseudotime to

2,190 radial glia lineage cells (Figure 4B). We identified three tra-

jectories corresponding to distinct cell fates, termed the ependy-

mal (EPD) trajectory, astrocyte (ASC) trajectory, and the neural

intermediate progenitor cell (NPC) trajectory.

Isoformco-expressionnetworkanalysis revealed11modules in

the radial glia lineage (Figure 4C; Data S1). Of the genes retained

for network analysis, 61.5%had a single isoform, 18.2%hadmul-

tiple isoforms that were all assigned to the same module, and

20.4%hadmultiple isoforms spread across severalmodules (Fig-

ure 4D). Thus, these network modules capture information about

the roles of different isoforms of the same gene in distinct biolog-

ical processes. We inspected module eigenisoform (MEiso) pat-

terns throughout the developmental lineage, thereby uncovering

isoform modules critical for cell fate decisions (Figure 4E; Data

S2 and S3). Increased expression of modules RGL-M1 and

RGL-M2,whichwere enriched ciliumassembly genes (Figure 4F),

was associated with the transition from a radial glia to an ependy-

mal cell state. A steady expression level of module RGL-M5 (glial

development, astrocyte differentiation) was found in the transition

from radial glia to astrocytes, while a decreased expression of

RGL-M5 led to alternative fates. Four modules (RGL-M3, RGL-

M8, RGL-M9, and RGL-M11) displayed an increase in expression

in the neuronal trajectory, containing genes associated with

cellular processes such as non-canonicalWnt signaling, neuronal

synaptic plasticity, and RNA splicing (Figure 4F).

We inspected the isoforms of three selected genes that had

hub isoforms in different co-expression modules: Gfap, H3f3b,
choroid plexus epithelial cells; EPD, ependymal cells; EX, excitatory neurons; GRN

intermediate progenitor cells; MG, microglia; OPC, oligodendrocyte progenitor c

(B) UMAP plot of the radial glia lineage, colored by Monocle 337 pseudotime ass

jectory; bottom left, neuronal intermediate progenitor cell (NPC) trajectory.

(C) UMAP plot of the radial glia lineage isoform co-expression network. Each node

isoforms andmodule hub isoforms. Point size is scaled by kMEiso. Nodes are colo

for visual clarity.

(D) Donut chart showing the percentage of geneswith one isoform, withmultiple is

are spread across more than one module.

(E) Module eigenisoforms (MEiso) as a function of pseudotime for each co-ex

smoothing (LOESS) regression line is shown for each developmental trajectory.

(F) Dot plot showing selected GO term enrichment results for each co-expressio

(G) Gene models for selected isoforms of Gfap, colored by co-expression modu

(H) Gene models for selected isoforms of H3f3b, colored by co-expression modu

(I) Top: gene models for selected isoforms of Cd9, colored by co-expression mo

splicing isoforms. Splice sites and transcript start/end sites are represented as no

two isoforms are distinguished by alternative TSS usage. Gene models from the G

panels (G)–(I).
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and Cd9 (Figures 4G–4I). Gfap encodes a key intermediate fila-

ment protein in astrocytes that is involved in astrocytic reactivity

during central nervous system (CNS) injuries or neurodegenera-

tion,39 and we found that modules RGL-M4 and RGL-M6 con-

tained hub isoforms of Gfap featuring alternative splicing, alter-

native transcription start site (TSS) usage, and alternative

transcription end site (TES) usage (Figure 4G). Different isoforms

of the histone H3.3 subunit gene H3f3b were hubs for modules

RGL-M1 and RGL-M11, which were associated with ependymal

and neuronal cell fates respectively, suggesting that alternative

TES usage in H3f3b plays a role in regulating epigenetic factors

in murine hippocampal development (Figure 4F). Cd9 encodes a

transmembrane protein and is a known glioblastoma bio-

marker,40 and we found subtle differences in the TSS between

hub isoforms in modules RGL-M6 and RGL-M9 that we show

as a splicing summary graph38 (Figure 4I), supporting functional

changes mediated by small isoform differences.

Co-expression network analysis of inhibitory neurons in
ASD
Co-expression networks can be interrogated to further under-

stand the molecular phenotypes of complex polygenic diseases

in primary human tissue samples. We applied hdWGCNA to

20,249 inhibitory neurons (INHs) from an snRNA-seq dataset of

the human PFC in 22 ASD patients, 24 age-matched controls,

and eight epilepsy patients9 (Figures 5A and S10; Data S1).

The INH network contained 14modules, andwe showhub genes

that have a known association with ASD in the SFARI database

on the co-expression UMAP (Figure 5B). The MEs showed that

some modules were primarily confined to a single INH cluster

(INH-M3, INH-M1) while others were spread across multiple

neuronal groups (Figure 5C). Furthermore, DME analysis re-

vealed significant differences between MEs in ASD and control

samples for all modules except INH-M4 in at least one INH sub-

population (Figure 5D; Data S3; Wilcoxon rank-sum test Bonfer-

roni-adjusted p <0.05). However, by focusing on the DME results

with an absolute average log2 (fold change) R0:5, we note that

many of the largest differences were found in the SST+ inhibitory

neuron clusters. Furthermore, three co-expression modules

(INH-M11, INH-M13, and INH-M3) were significantly enriched

in ASD-associated genes from the SFARI database and the
, granule neurons; INH, inhibitory neurons;MAC,macrophages; NPC, neuronal

ells; RGL, radial glia; VASC, vasculature cells.

ignment. Top left, ependymal (EPD) trajectory; top right, astrocyte (ASC) tra-

represents a single isoform, and edges represent co-expression links between

red by co-expressionmodule assignment. Network edges were downsampled

oforms that are all assigned to the samemodule, andwithmultiple isoforms that

pression module. For each module, a separate locally estimated scatterplot

n module.

le assignment.

le assignment.

dule assignment. Bottom: Swan38 graphical representation of Cd9 alternative

des; introns and exons are represented as connections between nodes. These

ENCODE VM23 comprehensive transcript set are shown below transcripts in
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Figure 5. Co-expression network analysis of inhibitory neurons in Autism spectrum disorder

(A) UMAP plot of 121,451 nuclei from the cortex of 22 ASD donors, 24 controls, and eight epilepsy donors profiledwith snRNA-seq. Inhibitory neuron subtypes are

highlighted. ASC, astrocytes; EX, excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells.

(legend continued on next page)
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latest genome-wide association study (GWAS) of ASD41 (Fig-

ure 5E), but we note that all of these modules contained several

ASD-associated SFARI genes.

INH-M11 was enriched for genes associated with synaptic

transmission, ion transport, glutamate receptor signaling, and

nervous systemdevelopment (Figure 5F; Data S2), and thismod-

ule was downregulated in ASD for five of the six INH subtypes

(Figure 5D). Similarly, INH-M13 was associated with RNA pro-

cessing (Figure 5F) andwas downregulated in ASD in all INH sub-

types except PVALB+ neurons (Figure 5D). One of the INH-M13

hub genes isCHD2, whose de novo variants have been identified

in individuals with ASD.42,43 CHD2 is part of the CHD family of

chromatin-modifying proteins and can alter gene expression by

modification of chromatin structure. Similarly, rare loss-of-func-

tion mutations have been reported in the SCN2A gene, a hub

gene of the INH-M11 module.44 We also find enrichment of

several ASD-associated genes such as TSC1 (INH-M8),

SMARCA4 (INH-M8), SHANK2 (INH-M4), and CPEB4 (INH-M1),

highlighting that these modules are functional and provide new

insights into the role of inhibitory neurons in ASD. Finally, we

tested for the preservation of these modules in 19,425 inhibitory

neurons from an snRNA-seq dataset of the PFC from donors

with major depressive disorder (MDD) and controls45 (34 sam-

ples), and we found substantial evidence of preservation across

all modules except INH-M1 (Figures S10C–S10E).

Consensus network analysis of microglia in AD
Microglia, the resident immune cells of the brain, are implicated

in the pathology and genetic risk of several CNS diseases,

including AD.46–49 Transcriptomic and epigenomic studies in hu-

man tissue and AD mouse models have identified multiple cell

states of microglia, representing a spectrum between homeo-

static and disease-associated microglia (DAMs).12,50,51 Our

previous study defined a set of transcription factors, genes,

and cis-regulatory elements involved in the shift between ho-

meostatic and DAM cell states in human AD, identifying shared

and distinct signatures compared with the DAM signature from

5xFAD mice.12 Here we sought to expand on previous work by

providing a systems-level analysis of gene expression

throughout the spectrum of microglia cell states.

We modeled the cell-state continuum between homeostatic

and DAM-like microglia by employing a pseudotime analysis of

microglia from three human AD snRNA-seq datasets10–12

(Figures 6A, 6B, and S11). Next, we performed consensus co-

expression network analysis using microglia integrated from

three human AD snRNA-seq datasets,10–12 identifying four

consensus modules (Figure 6C; Data S1). Consensus network

analysis is an approach that performs network analysis sepa-
(B) Gene co-expression network derived from inhibitory neurons, represented a

colored by module assignment. Module hub genes with prior evidence of ASD ass

between genes and module hub genes. Network edges were downsampled for

(C) Gene overlap analysis comparing ASD-associated genes from SFARI and INH

was not significant (FDR > 0:05).

(D) snRNA-seq UMAP plots as in (A) colored by MEs for INH co-expression mod

(E) Violin plots showing MEs in each INH cluster. Two-sided Wilcoxon test was us

excluded in this comparison. Not significant (ns), p > 0.05; �p% 0:05; **p%0:01;

(F) Selected GO enrichment results for each co-expression module.
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rately for each dataset, followed by a procedure to retain struc-

tures common across the individual networks, and thus it is well

suited for analyzing microglia co-expression from these different

sources (STAR Methods).

Classical markers of homeostatic microglia, such as CSF1R,

CX3CR1, and P2RY12, were members of MG-M2, while known

DAM genes, including APOE, TYROBP, and B2M, were mem-

bers of MG-M1. GO term enrichment analysis associated MG-

M2 with homeostatic microglia functions such as cell migration,

synapse organization, and response to colony-stimulating fac-

tor, contrasting disease-related processes enriched in MG-M1

including amyloid fibril formation, microglial activation, mainte-

nance of blood-brain barrier, and cytokine production (Figure 6D;

Data S2). Together, this suggests that MG-M1 comprises the

gene network underlying DAM activation in AD, while MG-M2

represents the network of homeostatic microglia genes. The

MEs for MG-M1 and MG-M2 display opposing patterns thro-

ughout the microglia pseudotime trajectory, contextualizing

this trajectory as the transcriptional shift from homeostatic mi-

croglia (start) to a DAM-like cell state (end) (Figures 6E and 6F).

Furthermore, DME analysis revealed significant changes in these

modules between AD and control brains in evenly spaced win-

dows throughout the microglia trajectory (Figure 6G; Wilcoxon

rank-sum test Bonferroni-adjusted p <0.05; Data S3). Co-

expression networks behave as functional biological units;

therefore, we reason that the hub genes and other members of

MG-M1 represent candidates for an expanded set of human

DAM genes including ACTB, TPT1, and EEF1A1.

Aside from modules MG-M1 and MG-M2, which contained

well-known microglia gene signatures, we also identified mod-

ules MG-M3 and MG-M4 containing genes associated with

key microglial processes such as axon guidance, phagocytosis,

and myeloid cell differentiation (Figures 6C and 6D). CD163, a

hub gene of MG-M4, is known to be involved in the breakdown

of the blood-brain barrier.53,54 The trajectory of MG-M4, contain-

ing CD163 as a hub gene, was consistent with that of DAM-like

module MG-M1, and was enriched for processes including

phagocytosis, myeloid cell differentiation, and neutrophil activa-

tion (Figure 6D); therefore, it is possible that MG-M4 represents

an alternative microglial activation module.55 We performed sin-

gle-cell polygenic risk enrichment for AD risk in the microglia

trajectory,46,52 and identified a significant increase throughout

the trajectory, revealing an enrichment of AD genetic risk sin-

gle-nucleotide polymorphisms (SNPs) in DAMs (Figure 6H;

STAR Methods; Data S3). We show that expression of these

modules was significantly correlated with AD genetic risk (Pear-

son correlation p <0.05), with the strongest correlation in alterna-

tive activation module MG-M4 (Figure 6I).
s a two-dimensional UMAP embedding of the TOM. Nodes represent genes,

ociation from SFARI are labeled. Edges represent co-expression relationships

visual clarity.

co-expression modules, using Fisher’s exact test.3 indicates that the overlap

ules.

ed to compare ASD versus control samples. Nuclei from epilepsy donors were

***p% 0:001; ****p% 0:0001.
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To ensure that these microglial modules were reproducible

across other datasets and inmousemodels of AD, we performed

module preservation analysis20 (STAR Methods; Figure 6J). We

projected the microglial consensus modules into a dataset of

the PFC in aged human samples,56 the superior frontal gyrus

(SFG) and entorhinal cortex (EC) in AD samples,57 the occipital

cortex (OC) and the occipitotemporal cortex (OTC) in human

AD samples,58 the PFC from 5xFAD mice,11 and whole-brain

samples from 5xFAD mice28 (Figure 6H). Additionally, we pro-

jected these modules into an snATAC-seq dataset of the PFC

in human AD,12 using gene activity59 as a proxy for gene expres-

sion from chromatin accessibility data. These module preserva-

tion tests showed the microglia consensus modules were

broadly preserved and reproducible across brain regions and

in mouse models of AD, providing further support that this

network is relevant in AD biology and microglial activation.

Projecting network modules from bulk RNA-seq cohorts
into relevant single-cell datasets
hdWGCNA allows for interrogating co-expression modules in-

ferred from a given reference dataset in a query dataset. Mod-

ules can be projected across datasets by computing MEs in

the query dataset, and preservation of the network structure

can be assessed via statistical testing.20 For example, modules

can be projected between different species to link transcrip-

tomic changes between mouse models and human disease pa-

tients, or modules can be projected across data modalities from

single-cell to spatial transcriptomics to provide regional context

to cellular niches.

To date, it remains cost-prohibitive for most researchers to

perform high-dimensional -omics studies of large patient co-

horts, but there are numerous large-scale disease-relevant

bulk RNA-seq datasets containing thousands of samples from

consortia such as the Encyclopedia of DNA Elements

(ENCODE),60 the Genotype-Tissue Expression (GTEx) project,61

and The Cancer Genome Atlas (TCGA).62 By projecting co-

expression modules derived from bulk RNA-seq patient cohorts

into single-cell datasets, we can layer disease-related informa-

tion onto the single-cell dataset and attribute cell-state-specific
Figure 6. Consensus network analysis of microglia in AD

(A) Left: table showing the number of samples and the number of microglia nuc

analysis. Right: integrated UMAP plot of nuclei from three snRNA-seq datasets.

(B) UMAP plot of microglia, colored by Monocle 337 pseudotime assignment.

(C) UMAP plot of themicroglia co-expression network. Each node represents a sin

hub genes. Point size is scaled by kME. Nodes are colored by co-expression m

additional genes of interest. Network edges were downsampled for visual clarity

(D) Selected Gene Ontology (GO) terms enriched in co-expression modules. Bar

(E) MEs as a function of pseudotime; points are averaged MEs in 50 pseudotime

interval.

(F) Microglia UMAP colored by ME.

(G) Differential module eigengene (DME) results in 10 pseudotime bins of equal size

(positive fold change) and control samples. 3 symbol indicates that the test

value > 0.05).

(H) Top: microglia UMAP colored by AD single-cell disease relevance score (scDR

averaged scDRS Z scores in 50 pseudotime bins of equal size. Line represents l

(I) Heatmap of Pearson correlations of MEs and scDRS Z scores, split by cells fr

(J) Abbreviations denote the following brain regions: SFG, superior frontal gyru

**Highly preserved (Z R 10); �moderately preserved (10> Z R5); x, not preserve
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expression patterns to the bulk RNA-seq data. We demonstrate

projecting modules in this manner using co-expression modules

from two bulk RNA-seq studies of AD56,63 as the references and

a human AD snRNA-seq dataset12 (57,950 nuclei from AD 11

samples and seven control samples of the PFC) as the query.

These studies both used AD samples and controls from the

same patient cohorts (Religious Orders Study and Memory and

Aging Project, Mayo Clinic, Mount Sinai School of Medi-

cine),64–66 but they took unique approaches for co-expression

network analysis. The AMP-AD study from Wan et al.63 per-

formed network analysis separately from each brain region,

while, in our previous study,56 we performed consensus network

analysis across the different brain regions. We projected these

modules into a snRNA-seq dataset of AD and control samples

from the PFC (Figure 7A), and we found distinct cell-type-spe-

cific expression patterns based on their MEs (Figures 7B and

7C). This analysis demonstrates hdWGCNA’s ability to transfer

co-expression information across datasets to uncover otherwise

unseen biological insights.

DISCUSSION

Classical bioinformatic approaches for transcriptomics analysis

such as differential gene expression are useful for finding indi-

vidual genes that are altered in a particular disease or condition

of interest, but they do not provide information about the

broader context of these genes in specific pathways or regula-

tory regimes. For example, biological processes such as devel-

opment or regeneration require coordination of distinct sets of

genes in certain cell types with spatial specificity. Therefore, to

understand these complex processes, we must look beyond in-

dividual genes. We developed hdWGCNA to provide a succinct

methodology for investigating systems-level changes in the

transcriptome in single-cell or ST datasets. We designed

hdWGCNA to be highly modular, allowing for multi-scale ana-

lyses of different cellular or spatial hierarchies in a technol-

ogy-agnostic manner.

In this study, we demonstrated that hdWGCNA is compatible

with single-cell and ST datasets and can be easily adapted
lei from published AD snRNA-seq datasets used for co-expression network

gle gene, and edges represent co-expression links between genes andmodule

odule assignment. The top 10 hub genes per module are labeled, as well as

.

plots show the log-scaled enrichment of each term.

bins of equal size. Line represents LOESS regression with a 95% confidence

. For each pseudotime bin, we performed DME analysis between cells from AD

did not reach significance (Wilcoxon rank-sum test Bonferroni-adjusted p

S)52 Z score. Bottom: scDRS Z score as a function of pseudotime, points are

inear regression with a 95% confidence interval.

om AD and control samples.

s; EC, entorhinal cortex; OC, occipital cortex; OTC, occipitotemporal cortex.
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Figure 7. Projecting bulk RNA-seq co-expression modules into a single-cell dataset

(A) UMAP plot of 57,950 nuclei from an snRNA-seq dataset of the human PFC from AD (N = 11) and control (N = 7) PFC samples.12 Cells are colored by major cell

type assignment.

(B) Multi-region consensus co-expression modules from Morabito et al.56 bulk RNA-seq analysis projected into the snRNA-seq dataset as in (A).

(C) Co-expression modules from the AMP-AD bulk RNA-seq dataset63 projected into the snRNA-seq dataset as in (A). CBE, cerebellum; DLPFC, dorsolateral

PFC; FP, frontal pole; IFG, inferior frontal gyrus; PHG, parahippocampal gyrus; STG, superior temporal gyrus; TCX, temporal cortex; ASC, astrocytes; EX,

excitatory neurons; INH, inhibitory neurons; MG, microglia; ODC, oligodendrocytes; OPC, oligodendrocyte progenitor cells; VASC, vascular cells.
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for novel transcriptomics approaches such as ScISOrSeq.

Co-expression networks have been successful for analyzing

bulk proteomics datasets in human disease samples,67,68 and

we expect that hdWGCNA could be swiftly adapted for sin-

gle-cell and spatial proteomics datasets as the technology ma-

tures and becomes more widely available.69 hdWGCNA in-

cludes built-in functions to leverage external biological

knowledge sources to provide insight for co-expression net-

works, for example by comparing gene modules with functional

gene sets such as disease-associated genes from GWAS

expression quantitative trait loci (eQTLs), or transcription factor

target genes. Unlike other network analysis pipelines such as

single-cell regulatory network inference and clustering

(SCENIC)70 or CellChat,71 hdWGCNA is a purely unsupervised

approach and does not require prior knowledge or databases

in the inference procedure. The co-expression information

computed by hdWGCNA can be easily retrieved from the

Seurat object to facilitate custom downstream analyses beyond

the hdWGCNA package. hdWGCNA allows for comparisons

between experimental groups via DME testing and module

preservation analysis, which allowed us to identity inhibitory

neuron modules that were dysregulated in ASD and enriched

for ASD genetic risk genes, and microglial modules that were

dysregulated in AD and enriched for DAM genes. Our network

analyses of the ASD and AD datasets shows that hdWGCNA is

capable of uncovering expanded disease-relevant gene sets

via the interaction partners of known disease-associated genes

such as the ASD SFARI genes or the AD DAM genes. We

showed that the co-expression networks inferred by

hdWGCNA were highly reproducible in unseen datasets, indi-

cating that this is a robust methodology that reflects the under-
lying biology of the system of interest rather than picking up on

technical artifacts. Further, hdWGCNA sheds new light on pre-

viously identified co-expression networks and gene modules by

allowing modules to be projected from a reference dataset to a

query dataset. The hdWGCNA R package directly extends the

familiar Seurat pipeline and the SeuratObject data structure,

enabling researchers to rapidly incorporate network analysis

into their own workflows, going beyond cell clustering and

differential gene expression analysis toward systems-level

insights.

Limitations of the study
Transcriptomic measurements of single cells are generally noisy,

imposing challenges and limitations in the analysis of these data-

sets. Technical noise may arise from dropout events or from

various steps in the experimental protocols, potentially making

downstream data analysis and interpretation more difficult.

hdWGCNA explicitly tries to handle the issues of technical drop-

outs and data sparsity by constructing networks in metacell or

metaspot transcriptomic profiles rather than directly using the

single-cell data. Furthermore, we show that module preservation

statistical testing can assess the reproducibility of a co-expres-

sion network in external validation datasets, giving additional

confidence in the results from hdWGCNA.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE
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B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Bootstrapped aggregation of single cell transcrip-

tomes to form metacells

B Aggregation of neighboring spatial transcriptomic

spots to form metaspots

B Computing co-expression networks

B Computing module eigengenes

B Projecting co-expression modules in unseen data

B Implementation of the hdWGCNA R package

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Reprocessing published datasets

B Iterative network analysis of major cell types in the hu-

man cortex

B Comparison of hdWGCNA with alternative metacell

approaches

B Application of hdWGCNA to a one million cell scRNA-

seq dataset

B Runtime and memory usage of hdWGCNA

B Evaluating performance of hdWGCNA co-expression

networks

B Spatial co-expression network analysis in the mouse

brain

B Isoform co-expression network analysis in the mouse

hippocampus

B Co-expression analysis network of inhibitory neurons

in autism spectrum disorder

B Consensus co-expression network analysis of micro-

glia in Alzheimer’s disease

B Analysis of bulk RNA-seq co-expression modules in

single-cell data

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2023.100498.

ACKNOWLEDGMENTS

Funding for this work was provided by National Institutes on Aging, Neurolog-

ical Disorders and Stroke, and Drug Abuse grants 1RF1AG071683,

P01NS084974- 06A1, 1U01DA053826, U54 AG054349-06 (MODEL-AD), and

3U19AG068054-02S, Adelson Medical Research Foundation funds to V.S.

This work utilized the infrastructure for high-performance and high-throughput

computing, research data storage and analysis, and scientific software tool

integration built, operated, and updated by the Research Cyberinfrastructure

Center (RCIC) at the University of California, Irvine (UCI). We thank Anoushka

Joglekar for providing the ScISOrSeq dataset.

AUTHOR CONTRIBUTIONS

S.M. and V.S. conceptualized this study. The manuscript was written by S.M.,

F.R., and E.M. with assistance and approval from all authors. S.M. developed

the hdWGCNA R package. S.M. and F.R. designed the structure of the

hdWGCNA R package. S.M. collected, processed, and performed network

analysis on publicly available sequencing datasets. F.R. performed bioinfor-

matics analysis of the ScISOrSeq dataset. N.R. performed polygenic risk anal-

ysis of the integrated microglia snRNA-seq dataset.
14 Cell Reports Methods 3, 100498, June 26, 2023
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 5, 2022

Revised: February 13, 2023

Accepted: May 16, 2023

Published: June 12, 2023

REFERENCES

1. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for

weighted correlation network analysis. BMC Bioinf. 9, 559. https://doi.

org/10.1186/1471-2105-9-559.

2. Yip, A.M., and Horvath, S. (2007). Gene network interconnectedness and

the generalized topological overlap measure. BMC Bioinf. 8, 22. https://

doi.org/10.1186/1471-2105-8-22.

3. Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a

hierarchical cluster tree: theDynamic TreeCut package for R. Bioinformat-

ics 24, 719–720. https://doi.org/10.1093/bioinformatics/btm563.

4. Dong, J., and Horvath, S. (2007). Understanding network concepts in

modules. BMC Syst. Biol. 1, 24. https://doi.org/10.1186/1752-0509-1-24.

5. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Inte-

grating single-cell transcriptomic data across different conditions, tech-

nologies, and species. Nat. Biotechnol. 36, 411–420. https://doi.org/10.

1038/nbt.4096.

6. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,

W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Compre-

hensive integration of single-cell data. Cell 177, 1888–1902.e21. https://

doi.org/10.1016/j.cell.2019.05.031.

7. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., et al. (2021). Integrated analysis of multi-

modal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/10.

1016/j.cell.2021.04.048.

8. Joglekar, A., Prjibelski, A., Mahfouz, A., Collier, P., Lin, S., Schlusche, A.K.,

Marrocco, J., Williams, S.R., Haase, B., Hayes, A., et al. (2021). A spatially

resolved brain region- and cell type-specific isoform atlas of the postnatal

mouse brain. Nat. Commun. 12, 463. https://doi.org/10.1038/s41467-

020-20343-5.

9. Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S.,

Bhaduri, A., Goyal, N., Rowitch, D.H., and Kriegstein, A.R. (2019). Single-

cell genomics identifies cell type–specific molecular changes in autism.

Science 364, 685–689. https://doi.org/10.1126/science.aav8130.

10. Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S.,

Young, J.Z., Menon, M., He, L., Abdurrob, F., Jiang, X., et al. (2019). Sin-

gle-cell transcriptomic analysis of Alzheimer’s disease. Nature 570,

332–337. https://doi.org/10.1038/s41586-019-1195-2.

11. Zhou, Y., Song, W.M., Andhey, P.S., Swain, A., Levy, T., Miller, K.R., Po-

liani, P.L., Cominelli, M., Grover, S., Gilfillan, S., et al. (2020). Human and

mouse single-nucleus transcriptomics reveal TREM2-dependent and

TREM2-independent cellular responses in Alzheimer’s disease. Nat.

Med. 26, 131–142. https://doi.org/10.1038/s41591-019-0695-9.

12. Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A.C., Head, E.,

Silva, J., Leavy, K., Perez-Rosendahl, M., and Swarup, V. (2021). Single-

nucleus chromatin accessibility and transcriptomic characterization of

Alzheimer’s disease. Nat. Genet. 53, 1143–1155. https://doi.org/10.

1038/s41588-021-00894-z.

13. Baran, Y., Bercovich, A., Sebe-Pedros, A., Lubling, Y., Giladi, A., Chom-

sky, E., Meir, Z., Hoichman,M., Lifshitz, A., and Tanay, A. (2019). MetaCell:

analysis of single-cell RNA-seq data using K-nn graph partitions. Genome

Biol. 20, 206. https://doi.org/10.1186/s13059-019-1812-2.

14. Ben-Kiki, O., Bercovich, A., Lifshitz, A., and Tanay, A. (2022). Metacell-2: a

divide-and-conquer metacell algorithm for scalable scRNA-seq analysis.

Genome Biol. 23, 100. https://doi.org/10.1186/s13059-022-02667-1.

https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1186/1752-0509-1-24
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s41467-020-20343-5
https://doi.org/10.1038/s41467-020-20343-5
https://doi.org/10.1126/science.aav8130
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1038/s41591-019-0695-9
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1038/s41588-021-00894-z
https://doi.org/10.1186/s13059-019-1812-2
https://doi.org/10.1186/s13059-022-02667-1


Article
ll

OPEN ACCESS
15. Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A.,

Daza, R.M., Aghamirzaie, D., Srivatsan, S., Qiu, X., Jackson, D., Minkina,

A., et al. (2018). Cicero predicts cis-regulatory DNA interactions from sin-

gle-cell chromatin accessibility data. Mol. Cell 71, 858–871.e8. https://doi.

org/10.1016/j.molcel.2018.06.044.

16. Persad, S., Choo, Z.-N., Dien, C., Sohail, N., Masilionis, I., Chaligné, R.,
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49. Bellenguez, C., K€uç€ukali, F., Jansen, I.E., Kleineidam, L., Moreno-Grau, S.,

Amin, N., Naj, A.C., Campos-Martin, R., Grenier-Boley, B., Andrade, V.,

et al. (2022). New insights into the genetic etiology of Alzheimer’s disease

and related dementias. Nat. Genet. 54, 412–436. https://doi.org/10.1038/

s41588-022-01024-z.

50. Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-

Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth,

B., et al. (2017). A unique microglia type associated with restricting devel-

opment of Alzheimer’s disease. Cell 169, 1276–1290.e17. https://doi.org/

10.1016/j.cell.2017.05.018.

51. Sala Frigerio, C., Wolfs, L., Fattorelli, N., Thrupp, N., Voytyuk, I., Schmidt,

I., Mancuso, R., Chen, W.-T., Woodbury, M.E., Srivastava, G., et al. (2019).

The major risk factors for Alzheimer’s disease: age, sex, and genes modu-

late the microglia response to A plaques. Cell Rep. 27, 1293–1306.e6.

https://doi.org/10.1016/j.celrep.2019.03.099.

52. Zhang, M.J., Hou, K., Dey, K.K., Sakaue, S., Jagadeesh, K.A., Weinand,

K., Taychameekiatchai, A., Rao, P., Pisco, A.O., Zou, J., et al. (2022). Poly-

genic enrichment distinguishes disease associations of individual cells in

single-cell RNA-seq data. Nat. Genet. 54, 1572–1580. https://doi.org/10.

1038/s41588-022-01167-z.

53. Borda, J.T., Alvarez, X., Mohan, M., Hasegawa, A., Bernardino, A., Jean,

S., Aye, P., and Lackner, A.A. (2008). CD163, a marker of perivascular

macrophages, is up-regulated bymicroglia in simian immunodeficiency vi-

rus encephalitis after haptoglobin-hemoglobin complex stimulation and is

suggestive of breakdown of the blood-brain barrier. Am. J. Pathol. 172,

725–737. https://doi.org/10.2353/ajpath.2008.070848.

54. Pey, P., Pearce, R.K.B., Kalaitzakis, M.E., Griffin, W.S.T., and Gentleman,

S.M. (2014). Phenotypic profile of alternative activation marker CD163 is

different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. Com-

mun. 2, 21. https://doi.org/10.1186/2051-5960-2-21.

55. Nguyen, A.T., Wang, K., Hu, G., Wang, X., Miao, Z., Azevedo, J.A., Suh, E.,

Van Deerlin, V.M., Choi, D., Roeder, K., et al. (2020). APOE and TREM2

regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neu-

ropathol. 140, 477–493. https://doi.org/10.1007/s00401-020-02200-3.

56. Morabito, S., Miyoshi, E., Michael, N., and Swarup, V. (2020). Integrative

genomics approach identifies conserved transcriptomic networks in Alz-

heimer’s disease. Hum. Mol. Genet. 29, 2899–2919. https://doi.org/10.

1093/hmg/ddaa182.

57. Leng, K., Li, E., Eser, R., Piergies, A., Sit, R., Tan, M., Neff, N., Li, S.H., Ro-

driguez, R.D., Suemoto, C.K., et al. (2021). Molecular characterization of

selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24,

276–287. https://doi.org/10.1038/s41593-020-00764-7.

58. Gerrits, E., Brouwer, N., Kooistra, S.M., Woodbury, M.E., Vermeiren, Y.,

Lambourne, M., Mulder, J., Kummer, M., Möller, T., Biber, K., et al.
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Human Alzheimer’s Disease snRNA-seq 2019 Mathys et al., 201910 syn18485175
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Human aging cortex snRNA-seq authors See Morabito et al., 202056
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Parse Biosciences PBMCs in Type 1 Diabetes Parse Biosciences https://resources.parsebiosciences.com/dataset-
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Software and algorithms

hdWGCNA R package this paper https://doi.org/10.5281/zenodo.6835227

data analysis scripts this paper https://doi.org/10.5281/zenodo.7851151

WGCNA CRAN RRID:SCR_003302
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SEACells Persad et al., 202316 https://github.com/dpeerlab/SEACells

Metacell-2 Ben-Kiki et al., 202214 https://github.com/tanaylab/metacells

EGAD Ballouz et al., 201623 https://github.com/sarbal/EGAD

Enrichr https://maayanlab.cloud/Enrichr/ RRID:SCR_001575

XGBoost Chen and Guestrin, 201625 https://xgboost.readthedocs.io/en/stable/

Monocle3 Cao et al., 201936 https://cole-trapnell-lab.github.io/monocle3/

scDRS Zhang et al., 202252 https://github.com/martinjzhang/scDRS

SeuratData Satija Lab https://github.com/satijalab/seurat-data
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Data and code availability
d All of the sequencing data used in this paper were obtained from publicly available sources, and are listed in the key resources

table.

d The hdWGCNA R package has been deposited at Zenodo (see key resources table). The R package code and full tutorials are

available at https://swaruplab.bio.uci.edu/hdWGCNA. The data processing and analysis code has been deposited at Zenodo

(see key resources table) and is available on GitHub at this repository: https://github.com/smorabit/hdWGCNA_paper.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Bootstrapped aggregation of single cell transcriptomes to form metacells
Single-cell gene expression datasets typically contain many more zero valued entries than non-zero valued entries, meaning that

these datasets are sparse. We formally define the sparsity of a gene expression matrix in Equation 1. Given an un-normalized counts

matrix X with genes and Nc cells, sparsity is the sum of all zero valued elements.

sparsity =

PNg

i = 1

PNc

j = 1

�
1 if Xi;j = 0
0 else

Ng 3Nc

(Equation 1)

Complementing sparsity, the density of a single gene expression matrix is the sum of all non-zero valued elements divided by the

total number of matrix elements, such that density = 1 � sparsity. A matrix is considered sparse if sparsity > 0:5. Conventional

single-cell gene expression assays yield sparse gene expression matrices. In general, correlations of sparse vectors may lead to

downstream conclusions that are not robust or reproducible. Thus, as part of the hdWGCNA workflow, we propose a bootstrapped

aggregation (bagging) algorithm to construct a gene expression matrixMwith considerably reduced sparsity prior to performing co-

expression network analysis. Zero valued entries in a gene expression matrix have both biological and technical origins,75 and it is

important to prioritize preserving relevant biological signals while reducing technical noise. For example, a biological zero may be

attributed to a gene that is only expressed in a given cell population, whereas a technical zero may arise from low sequencing depth.

We define the set of unique cell barcodes C and the set of unique genes G such that kCk = Nc and kGk = Ng. Transcriptomically

similar cells are identified in a dimensionally-reduced representationD of the gene expression matrix X using the k-nearest neighbors

(KNN) algorithm,76 yieldingNc sets of k cells. Inherently, there is overlap between theseNc sets of k neighboring cells, and we include

a parameter m to control for the maximum allowable overlap. Cells are uniformly randomly sampled from C, and gene expression

signatures from X are aggregated (sum or average) with their k nearest neighbors. A cell is skipped if its neighbors have too much

overlap with the set of neighbors from previously selected cells, in order to reduce redundancy in the downstream metacell
Algorithm 1. ConstructMetacells

Require: X such that dimðXÞ = Ng;Nc ⊳ gene expression matrix of Ng genes and Nc cells

Require: D such that dimðDÞ = c;d ⊳ dimensional reduction of X, with Nc cells and d dimensions

Require: C ⊳ the set of unique cell barcodes

Require: kR 2

Require: mR 0

Require: tR 1

K)KNNðD; kÞ ⊳ K is a matrix of Nc rows and k columns with the k nearest neighbors of each cell

S)½B� ⊳ list containing barcodes of cells selected for aggregation, initialized as empty

i)0

while i < Nc and kSk< t do

i)i + 1

c)c˛RC ⊳ c is randomly sampled from C

No)maxðkKc� WKj�kcj ˛SÞ ⊳ the maximum number of overlapping neighbors between

c and barcodes in

S

if.

No <m then

S)½S;c�
end if.

C)C\S

end while.

J)½Ks�cs ˛S� ⊳ subset of K with the selected cells S

M)½PS
i = S1

ðX�s where s = Ji�Þ�. ⊳ final metacell expression matrix
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expression matrix. The cell sampling loop converges when there are no more cells that satisfy the m, or when the number of target

metacells t has been reached, yielding a metacell gene expression matrix M. Sparsity of the input and output matrices X and M are

computed to check that sparsity is reduced throughout this process. This metacell bagging algorithm is implemented as part of the

hdWGCNARpackage in the ConstructMetacells function, and the pseudocode for this algorithm is defined in Algorithm 1.We denote

a vector containing the elements of the i-th row of a matrix as Mi� and a vector containing the elements of the i-th column as M�i.

Aggregation of neighboring spatial transcriptomic spots to form metaspots
Sequencing-based ST approaches such as the 103 Genomics Visium platform also yield sparse transcriptomic profiles, thus intro-

ducing the same potential pitfalls as single-cell data for co-expression network analysis. To alleviate these issues, we sought to

develop a data aggregation approach similar to our metacell algorithm. This approach leverages spatial coordinates rather than

the dimensionality-reduced representation (Figure S6). For each ST spot, we obtain a list of physically neighboring spots. We

then devise a grid of ’’principal spots’’, which are evenly spaced spots throughout the input tissue which serve as anchor points

for aggregating neighboring spots. Each principal spot and its neighbors are aggregated into onemetaspot, with at most seven spots

merging into one metaspot and at most two overlapping spots between metaspots. We implemented this procedure as part of the

hdWGCNA R package in the MetaspotsByGroups function. Similar to the MetacellsByGroups function, the user may specify groups

within the Seurat object to perform the aggregation, such that metacells would only be grouped within the same tissue slice, anatom-

ical region, or other annotation. For all downstream analysis with hdWGCNA, the metaspot expression dataset can be used in place

of the metacell expression matrix.

Computing co-expression networks
Following metacell or metaspot construction, hdWGCNA constructs co-expression networks and identifies gene modules, building

off of theWGCNAworkflow.1,4,77,78 The gene-gene adjacencymatrixA is computed by taking the pairwise correlation of genes inG in

the metacell expression matrixM, or in a subset ofM for a specified cell population. Consider the gene expression vectors xi = Mi�
and xj = Mj� for an arbitrary pair of genes ði; jÞ˛G, we compute the signed correlation as:

ai;j =
1+corðxi; xjÞ

2
(Equation 2)

Note that ai;j is a linear transformation that retains the sign of the correlationwhile satisfying 0% ai;j %1.WedefineA as a symmetric

adjacency matrix of size Ng3Ng containing the signed correlations ai;j for all pairs ði; jÞ˛G as in Equation 2. In order to emphasize

strong correlations, we raise the elements of A to a power b, and we refer to this as soft power thresholding.

ai;j = ðai;jÞb
~ai;j = ai;j 3 signðcorðxi; xjÞÞ (Equation 3)

Now we have the gene-gene correlation raised to a power b, and an alternative metric ~ai;j which also retains the sign of the cor-

relation between these genes. The final co-expression network is then computed as a signed topological overlap matrix (TOM).

The TOM describes shared neighbors between the a pair of genes ði; jÞ. We define the signed TOM as

TOMsigned
i;j =

���ai;j+
P

usi;j~ai;u~au;j

���
minðki; kjÞ+1 � ��ai;j

�� (Equation 4)

where ki and kj represent the connectivity between genes i and j

ki =
X
usi

��~au;i�� (Equation 5)

In the signed TOM, negative correlations serve to negatively reinforce the network connection, which is not the case in the unsigned

TOM.

TOMunsigned
i;j =

��ai;j

��+Pusi;j

��~ai;u~au;j

��
minðki; kjÞ+1 � ��ai;j

�� (Equation 6)

Genes are then grouped intomodules based on the TOM network representation using the Dynamic Tree Cut algorithm,3 such that

co-expressionmodules consist of genes with high topological overlap. Dynamic Tree Cut hierarchically clusters genes based on their

dissimilarity in the TOM, denoted as DissTOM = 1 � TOM, thereby yielding a mapping between module assignments and gene

names. The overall process transforming a metacell expression matrix M to a signed TOM co-expression network is implemented

as part of the hdWGCNA R package in the ConstructNetwork function. Here we described the recommended workflow, using a

signed adjacency matrix and a signed TOM, but ConstructNetwork can optionally construct unsigned or signed hybrid networks

as well.
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Computing module eigengenes
Module eigengenes (MEs) are a convenient metric to summarize the gene expression of a given co-expression module. While the co-

expression network was computed using the metacell expression matrixM, we compute MEs in the single-cell expression matrix X,

thus yielding information about the activity of each module in each cell. The expression matrix for the I-th module consisting of genes

GðIÞ3G is XðIÞ = XGðIÞ;�. The ME for module I is then computed by performing singular value decomposition (SVD), such that XðIÞ =

UDVT . Prior to running SVD, XðIÞ must be scaled and centered, and we accomplish this using the Seurat function ScaleData. Impor-

tantly, ScaleData enables us to optionally perform regression to diminish the effects of selected technical covariates prior to

computing MEs. The first column of V , containing the right-singular vectors V ðIÞ = ðvðIÞ1 ;v
ðIÞ
2 ;v

ðIÞ
3 ;.Þ, is the ME of module I.

MEðIÞ = v
ðIÞ
1 (Equation 7)

While SVD or other dimensionality reductions on a single-cell gene expression matrix contains critical biological information, tech-

nical artifacts are also present in these representations. There are many computational methods aiming to reduce technical effects in

a reduced dimensional space, and these methods are often referred to as ‘‘batch-correction’’ or ‘‘integration’’ approaches.79 In

particular, Harmony22 is an algorithm well suited for correcting batch effects that may be present in a dimensionality-reduced sin-

gle-cell expression dataset,79 and here we propose applying Harmony to MEs to maximize the biological information content of

eachME.We implemented theME computation algorithm, as defined in Algorithm 2, as part of the hdWGCNAR package in the func-

tion ModuleEigengenes.
Algorithm 2. ModuleEigengenes

Require: X such that dimðXÞ = Ng;Nc ⊳ normalized gene expression matrix of Ng genes and Nc cells

Require: modules ⊳ the table containing mappings between genes and modules.

Require: mods ⊳ list of modules.

Require: covariates ⊳ covariates to regress.

Require: batches ⊳ batch identity to correct with Harmony, or null to ignore.

ME )½B�
for I in mods do

modules ðIÞ) subset(modules, module = = I)

GðIÞ) modules ðIÞ [,gene]
XðIÞ)XGðIÞ ;�
~XðIÞ) ScaleData(XðIÞ, covariates)
V ðIÞ) SVD ð ~XðIÞÞ
ME ðIÞ)V

ðIÞ
1

if batchessNULL then
~V ðIÞ) Harmony(VðIÞ, batches)
ME ðIÞ) ~V

ðIÞ
1

end if.

ME ) [ ME, ME ðIÞ]
end for.
Projecting co-expression modules in unseen data
In a typical hdWGCNA workflow, we perform metacell bagging, co-expression network analysis, module identification, and ME

computation using the same single-cell gene expression dataset, starting from the expression matrix X. Given the module-gene

assignment table derived from a reference dataset X, we can run the ModuleEigengenes algorithm on a query dataset Y where

the genes in Y must be contained in the set of genes in X such thatGY4GX . We implemented this process in the hdWGCNA R pack-

age as the ProjectModules function. Importantly, we designed ProjectModules to be agnostic towards the data modality or species

used in the reference and query datasets, thereby allowing for a host of comparative analyses. ProjectModules can facilitate cross-

species analysis leveraging a table that maps gene symbols between two genomes. Modules can be projected into epigenomic data

modalities such as single-cell assay for transposase accessible chromatin with sequencing (scATAC-seq) provided a measure of

gene expression estimated from chromatin accessibility, such as Signac59 gene activity or ArchR80 gene scores. This approach

can also be used to project modules from bulk expression datasets into single-cell or spatial transcriptomics datasets.

Implementation of the hdWGCNA R package
hdWGCNAgreatly extends upon scWGCNA,12 our previousmethod for co-expression network analysis in single-cell transcriptomics

data. scWGCNA was originally used to identify co-expression networks using bulk and single-cell RNA-seq together,12 and in

another study we showed that scWGCNA was suitable for network analysis using scRNA-seq alone.28 Contrasting the hdWGCNA
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package, the implementation of scWGCNA was an R package containing a single function for metacell construction, and a single

tutorial to cover the basics of network analysis using the WGCNA package1 with the metacell matrix. We implemented hdWGCNA

as an open-source object-oriented R package that leverages the widely used SeuratObject data structure. The hdWGCNA R pack-

age includes all necessary functions for network inference, data visualization, statistical testing, and downstream analysis such as

pathway enrichment. Further, hdWGCNA includes functions to extract the network data from the SeuratObject to easily facilitate

custom analysis with external Bioconductor or R packages. In order for hdWGCNA to be widely useful across the genomics com-

munity, we developed a detailed documentation website containing tutorials for network analysis in single-cell and spatial transcrip-

tomics data, as well as tutorials for advanced analysis like consensus network analysis and network preservation testing. Unlike

scWGCNA, the metacell construction algorithm (Algorithm 1) in hdWGCNA includes new parameters to avoid redundant metacells,

the module eigengene algorithm in hdWGCNA (Algorithm 2) accounts for batch effects and additional covariates in the input dataset,

and hdWGCNA contains functions to handle spatial transcriptomics datasets. Several key steps in co-expression network analysis,

like calculating module eigengenes and eigengene-based connectivity, have been re-implemented to operate on sparse matrices,

greatly decreasing runtime and memory usage. hdWGNCA is completely technology agnostic, and can be adapted to handle

high dimensional counts matrices from any single-cell or spatial transcriptomics platform. Additionally, hdWGCNA includes a novel

approach for visualizing genes and the underlying network in a two-dimensional manifold of co-expression space using UMAP.19 As

shown throughout this manuscript, hdWGCNA includes functions for projecting co-expression networks into a variety of external da-

tasets. Thewidespread adoption of single-cell genomics has led tomany biologists running their own computational analysis, andwe

designed the hdWGCNA R package with these individuals in mind through our various step-by-step tutorials and detailed

documentation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reprocessing published datasets
The key resources table details the different datasets used throughout this manuscript. We used several published datasets gener-

ated by our own group,12,28,56 and sequencing data was not re-downloaded for these studies. For all human snRNA-seq datasets, we

applied a uniform processing pipeline to process each dataset starting from the raw sequencing data and resulting in an anndata

object72 containing UMI counts, normalized gene expression, cluster identities, and cell type annotations. Parameters used

throughout this processing pipeline vary slightly between different datasets, and all parameters are noted in the data processing

scripts in our github repository. For each biological replicate, we used the kb count function from kallisto j bustools81 to psuedoalign

raw sequencing reads to the reference transcriptome and quantify gene expression attributed to each cell barcode. The human refer-

ence transcriptome (GRch38) was obtained from the 103 Genomics website (version 2020-A, July 2020), and was re-formatted for

use with kallisto j bustools using the kb ref function. For each of the UMI counts matrices, we used the remove-background function

from cellbender74 to simultaneously identify which barcodes corresponded to cells and to remove counts attributed to ambient RNA.

We then used scrublet73 to compute ’’doublet scores’’, the likelihood of each barcode mapping to more than one cell. Counts

matrices from each biological replicate in a given dataset are thenmerged into a single anndata object, and any relevant sample level

meta-data (age, sex, disease status) was stored in the adata.obs table. We performed a percentile filtering of cells that were outliers

from each dataset based on the number of UMI per cell the percentage of UMI attributed to mitochondrial genes per cell, and the

doublet score. Filtering based on these criteria was performed in each sample, as well as dataset-wide. After filtering, downstream

data processing steps were carried out with SCANPY.72 The UMI counts matrix was normalized with lnðCPMÞ using the functions

sc.pp.normalize_total and sc.pp.log1p. Highly variable genes were identified using the function sc.pp.highly_variable_genes, and

these genes are used as the features for downstream analysis steps such as principal component analysis (PCA). The normalized

expression matrix was then scaled to unit variance and centered at zero using the function sc.pp.scale. PCA was performed on

the scaled expression matrix using the function sc.tl.pca. Harmony22 was used to correct the PCA matrix for batch effects using

the function sc.external.pp.harmony_integrate. The harmonized PCA matrix was then used to construct a cell neighborhood graph

using the function sc.pp.neighbors. The cell neighborhood graph was then used to compute a two-dimensional representation of the

data with uniformmanifold approximation and projection19 using the function sc.tl.umap, and to group cells into clusters with Leiden

clustering82 using the function sc.tl.leiden. We inspected the gene expression signatures in each Leiden cluster for a panel of canon-

ical cell-typemarker genes in order to assign a cell-type label to each cluster, and to identify additional doublet clusters thatmay have

escaped the previous filtering steps. The distribution of quality control metrics was inspected in each cluster. We filtered out cells

belonging to clusters that displayed conflicting expression of cell-type marker genes, or were outliers in their quality control metrics.

After filtering these low-quality clusters, we ran UMAP and Leiden clustering again, resulting in the final processed dataset.We used a

custom script to convert the datasets from anndata to SeuratObject by saving the individual components (counts matrix, cell meta-

data, gene meta-data, dimensionality reductions, etc.) in Python and then loading them back into R to create a SeuratObject.

Iterative network analysis of major cell types in the human cortex
We performed an iterative co-expression network analysis of the major cell types (ASC, EX, INH, MG, ODC, OPC) in the human PFC

snRNA-seq dataset from Zhou et al.,11 only including samples from control brains (36,671 cells and 36,601 genes). We retained

genes that were expressed in at least 5% of cells for downstream analysis. Metacells were computed separately for each major
e5 Cell Reports Methods 3, 100498, June 26, 2023
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cell type and each sample using the hdWGCNA function MetacellsByGroups, aggregating 25 cells per metacell. Further, we ran

MetacellsByGroups while varying the K parameter in order to asses the resulting metacell expression matrix sparsity. For each

cell type, we applied the following hdWGCNA commands with default arguments to perform network analysis: TestSoftPowers,

ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. We performed module preservation analysis20

of the ODC co-expression modules in an external snRNA-seq dataset of the human PFC.12 Modules were projected from the refer-

ence to query dataset using the hdWGCNA function ProjectModules, and the module preservation test was performed using

ModulePreservation with 100 permutations.

Comparison of hdWGCNA with alternative metacell approaches
For the purpose of co-expression network analysis, we compared our metacell aggregation approach (Algorithm 1) with two alter-

native approaches, namely Metacell214 and SEACells.16 We ran the three metacell approaches using the recommended settings on

the same dataset, and then ran hdWGCNA on each of the resulting metacell expression matrices. We used a scRNA-seq of 6,800

CD34+ hematopoietic stem and progenitor stem cells included with the SEACells package, and we used the cluster annotations

from the original study. Notably, SEACells and Metacell2 do not account for cell labels in their aggregation procedures, which

may result in a number of metacells containing transcriptomes from differently labeled cells. For the hdWGCNA metacell algorithm,

we aggregated 50 cells per metacell. For the three metacell expression matrices derived from the different algorithms, we performed

co-expression network analysis with the standard hdWGCNA pipeline by sequentially running the following functions with default

parameters: TestSoftPowers, ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. With the same

cluster settings, Dynamic Tree Cut recovered a different number of co-expression modules for the three methods (hdWGCNA: 16

modules; MC2: 13 modules; SEACells: 20 modules). We performed pairwise comparisons between the gene modules detected

with eachmetacell approach using Fisher’s exact test to test module overlaps. Additionally, we performed rank-rank hypergeometric

overlap83 (RRHO) tests using the RRHO function from the R package RRHO (version 1.13.0) to compare the kME ranking between

modules across methods. To compare MEs and Seurat module scores, we ran the AddModuleScore function, and computed Pear-

son correlations between each ME and each module score.

Application of hdWGCNA to a one million cell scRNA-seq dataset
We obtained a publicly available scRNA-seq dataset from Parse Biosciences of 1M peripheral blood mononuclear cells (PBMCs)

from twelve healthy donors and twelve Type-1 diabetic donors generated using the Evercode Whole Transcriptome Mega protocol.

This analysis was performed on a compute cluster with 200 GB of memory and eight CPU cores. The UMI counts matrix and sample

meta data was downloaded from Parse Biosciences’ Website. We processed the counts matrix using SCANPY using a similar pipe-

line as described in the reprocessing published dataset section. For quality control, we excluded cells with greater than 25% mito-

chondrial reads, greater than 5,000 genes, and greater than 25,000 counts. After dimensionality reduction with PCA, Harmony22

batch correction, and Leiden clustering82 (resolution = 1), we annotated cell populations using PBMC marker genes obtained

from Azimuth.7 We excluded clusters with conflicting cell-type markers as potential doublet populations, retaining a total of

965,363 cells and 26,862 genes for downstream analysis. The major cell compartments recovered in this analysis were similar to

those reported by Parse Biosciences in their analysis, including as T-cells, B-cells, monocytes, dendritic cells, basophils, and plas-

mablasts. Following the SCANPY data processing, we wrote the individual components (counts matrix, cell meta-data, gene meta-

data, dimensionality reductions, etc.) to disk so they could be loaded into R and assembled into a Seurat object.

We performed co-expression network analysis iteratively for the plasmablast, T-cell, B-cell, monocyte, and dendritic cell compart-

ments using an hdWGCNA pipeline for each group (Figure S5). Metacells were constructed separately for each sample and each cell

cluster with the hdWGCNA functionMetacellsByGroups, aggregating 50 cells per metacell. Themetacell aggregation step had a run-

time of 85 min and 59 s. For each cell population, we first subset the Seurat object for the cell population of interest and then per-

formed the standard hdWGCNA pipeline by sequentially running the following functions with default parameters: TestSoftPowers,

ConstructNetwork, ModuleEigengenes, ModuleConnectivity, and RunModuleUMAP. We note that for the largest cell population

(T-cells, 555,417 cells), the runtime for the network construction step was 186 s.

Runtime and memory usage of hdWGCNA
We tested the runtime and memory usage of the primary co-expression network analysis functions in hdWGCNA using the Velme-

shev et al. 20199 dataset.We selected the neuronal cell population from the dataset for network analysis, and downsampled the data-

set at different sizes ranging from 1,000 to 50,000 cells to test the runtime and memory usage as a function of the number of cells in

the input dataset. The following functions were tested: SetupForWGCNA, MetacellsByGroups, TestSoftPowers, ModuleEigengenes,

and ModuleConnectivity. We tested ModuleEigengenes with and without Harmony correction. All of these tests were done using

eight parallel threads, and hdWGCNA can be sped up further by increasing the number of parallel threads. Importantly, the number

of input genes and other network analysis parameters also have an effect on runtime and memory usage.

Evaluating performance of hdWGCNA co-expression networks
We tested the functional coherence of hdWGCNA co-expression networks using the Extending ’Guilt-by-Association’ by Degree

(EGAD)23 algorithm. Connected genes in biological networks are potentially involved in the same processes, and EGAD evaluates
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this network property given a set of gene-process annotations.We performed functional coherence testingwith the EGADRpackage

(version 1.18.0) using the six cell-type-specific co-expression networks from the Zhou et al. 202011 human PFC dataset. We down-

loaded a table of gene ontology associations for each gene from ensembl biomart, and formatted this table using the EGAD function

make_annotations. We then ran the functional coherence test with EGAD using the function run_GBA, using the TOM as the input

network, and we report the distributions of area under the receiver operating characteristic curve (AUC) values for each tested bio-

logical process in the six co-expression networks.

We used the xgboost R package25 (version 1.7.3.1) to perform XGBoost regularized regression analysis to predict a given gene’s

expression based on the expression of the top ten module hub genes for the module each gene was assigned to. This analysis was

done using the six cell-type-specific co-expression networks described in the iterative network analysis of major cell types in the

human cortex section. We performed 5-fold cross validation, and measured the performance of the model as a test set root-

mean-square error (RMSE) averaged across the 5-folds. We ran XGBoost for 100 iterations for each individual test, with a maximum

tree depth of 3 and regularization alpha of 0.5.

Spatial co-expression network analysis in the mouse brain
We collected the publicly available 103 Genomics Visium mouse brain dataset using the SeuratData R package. This dataset con-

sists of an anterior and a posterior slice from a sagittal brain section, which we merged into a single Seurat object comprising 6,049

ST spots and 31,053 genes. We processed this dataset using the standard Seurat pipeline by sequentially running the following com-

mands: NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP. The top thirty PCs

were used for Louvain clustering84 and UMAP. While ST spots were clustered based on transcriptomic information alone, we were

able to annotate them based on anatomical features.

Neighboring ST spots were aggregated into metaspots in the anterior and posterior slices using the hdWGCNA function

MetaspotsByGroups. We retained genes expressed in 5% of spots for downstream analysis, totaling 12,355 genes. We tested for

the optimal soft-power threshold b based on the the fit to a scale-free topology using the hdWGCNA function TestSoftPowers.

The co-expression network was constructed using all ST spots spanning both the anterior and posterior slices using the hdWGCNA

function ConstructNetwork with the following parameters: networkType = ‘‘signed’’, TOMType = ‘‘signed’’, soft_power = 5, deep-

Split = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. Module eigengenes and eigengene-based con-

nectivities were computed using the ModuleEigengenes and ModuleConnectivity functions respectively. This approach identified

12 spatial co-expression modules, and we visualized the spatial distributions of these modules by plotting their MEs directly onto

the biological coordinates for each spot. The co-expression network was projected into two dimensions using UMAP with the

hdWGCNA function RunModuleUMAP, and we used the top five hub genes (ranked by kMEs) as the input features for UMAP.

We used the R package enrichR85 (version 3.0) to perform enrichment analysis on the top 100 genes in each module ranked by

kME using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021,

WikiPathway_2021_Mouse, and KEGG_2021_Mouse. We assessed the overlap between genes from these spatial co-expression

modules and differentially expressed genes in each cluster from a recent snRNA-seq study of the whole mouse brain using Fisher’s

exact test implemented in the R package GeneOverlap (version 1.26.0). Finally, we performed a separate network analysis on a sub-

set of the ST dataset only containing the cortical layers 2–6, and we followed an identical hdWGCNA analysis pipeline to the full ST

dataset for the cortical analysis.

Isoform co-expression network analysis in the mouse hippocampus
We performed isoform co-expression network analysis in radial glia lineage cells (radial glia, astrocytes, ependymal cells, and neural

intermediate progenitor cells) from mouse hippocampus ScISOrSeq dataset from Joglekar et al.8 using the hdWGCNA R package.

The gene-level counts matrix for this dataset was obtained from the Gene Expression Omnibus database (GEO: GSE15845), and the

isoform-level counts matrix was obtained directly from the authors of the original study. We formatted this dataset as a Seurat object

with an isoform-level expression assay and a gene-level expression assay. The standard Seurat processing pipeline was used on the

gene-level expression assay, where we sequentially ran the functions NormalizeData, FindVariableFeatures, ScaleData, and

RunPCA with default parameters. The dataset was projected into two dimensions by running UMAP on the PCAmatrix with 30 com-

ponents using the RunUMAP function. For all downstream purposes, the cell-type annotations from the original study were used.

Radial glia cells were selected for network analysis, and isoforms expressed in fewer than 1%of these cells were excluded, yielding

a set of 2,190 cells and 10,375 isoforms from 4,770 genes. We constructed metacells separately for each cell type on the isoform-

level expression assay using the hdWGCNA function MetacellsByGroups with k = 30. We performed a parameter sweep for the

soft-power threshold b using the function TestSoftPowers. The isoform co-expression network was constructed using the

ConstructNetwork function with the following parameters: networkType = ‘‘signed’’, TOMType = ‘‘signed’’, soft_power = 5, deep-

Split = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.5. This approach identified 11 isoform co-expression

modules. Isoform-level module eigenisoforms were computed using the ModuleEigengenes function, and eigenisoform-based con-

nectivity was computed using the ModuleConnectivity function with default parameters. We computed a semi-supervised UMAP

projection of the co-expression network using the hdWGCNA function RunModuleUMAP, with the module labels and the top six
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hub isoforms (by kMEiso) permodule as the input features.We used the enrichR to identify enriched pathways in eachmodule ranked

by using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_Molecular_Function_2021,

WikiPathway_2021_Mouse, and KEGG_2021_Mouse.

To assess isoform co-expression network dynamics throughout the cellular trajectories within the radial glia lineage, we performed

pseudotime analysis using Monocle 336 (version 1.0.0). We computed a UMAP of just radial glia lineage cells using the Monocle 3

function run_umap. A trajectory graph was built on this UMAP representation using the function learn_graph, and pseudotime

was calculated with the function order_cells using the radial glia cells as the starting point. We split the pseudotime trajectory into

three lineages based on the distinct cell fates (astrocyte, neuronal, and ependymal). We grouped cells into 50 evenly-sized bins

throughout each trajectory, and we applied loess regression to the average module eigenisoform of each module in these bins to

inspect the dynamics of each module throughout development. We wrote a custom script to generate a GTF of isoform models

output from the ScISOrSeq pipeline. To visualize expressed isoforms, we plotted isoforms from this GTF on the UCSC genome

browser as well as in Swan.38

Co-expression analysis network of inhibitory neurons in autism spectrum disorder
We selected inhibitory neurons from the Velmeshev et al.9 human autism spectrum disorder (ASD) snRNA-seq dataset for co-expres-

sion network analysis. Of the 121,451 cells in this dataset, 20,249 were labeled as inhibitory neurons based on marker gene expres-

sion profiles. We retained 11,194 genes which were expressed in at least 10% of cells from any cluster, and had non-zero variance in

the inhibitory neuron population. Metacell transcriptomic profiles were constructed separately for each of the 54 samples and each

cell type using the hdWGCNA function MetacellsByGroups, aggregating 50 cells into one metacell. We selected a soft-power

threshold b = 9 based on the parameter sweep performed with the TestSoftPowers function. The co-expression network was

computed with the ConstructNetwork function with the following parameters: networkType = ‘‘signed’’, TOMType = ‘‘signed’’, soft_

power = 9, deepSplit = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. Module eigengenes were computed

using the ModuleEigengenes function, and we applied Harmony22 to correct MEs based on sequencing batch. Eigengene-based

connectivity for each gene was computed using ModuleConnectivity. The co-expression network was embedded in two dimensions

using UMAP with the RunModuleUMAP function with the top five genes (ranked by kMEs) per module as the input features. Distri-

butions of MEs were compared between ASD and control samples for each inhibitory neuron subpopulation using a two-sided Wil-

coxon rank-sum test with the R function wilcox.test. We used the enrichR85 to perform enrichment analysis on the top 100 genes in

each module ranked by kME using the following databases: GO_Biological_Process_2021, GO_Cellular_Component_2021, GO_

Molecular_Function_2021, WikiPathway_2021_Human, and KEGG_2021_Human. Furthermore, we computed the overlap between

co-expression modules and ASD-associated genes from the SFARI Gene database using the R package GeneOverlap, which cal-

culates the overlap between sets of genes using Fisher’s exact test.

Consensus co-expression network analysis of microglia in Alzheimer’s disease
Weperformed consensus co-expression network analysis of microglia in Alzheimer’s disease (AD) using three published snRNA-seq

datasets.10–12 The individually processed datasets were merged into a single Seurat object comprising 189,127 nuclei, and the data-

sets were integrated into a common dimensionally-reduced space using PCA and Harmony.22 We retained all nuclei labeled micro-

glia for network analysis based on expression of canonical marker genes such as CSF1R (9,904 nuclei), and genes expressed in at

least 5% of microglia from any of the three studies were retained (7,900 genes). Metacells were constructed in groups of cells based

on AD diagnosis status and study of origin, aggregating 25 cells per metacell. Within hdWGCNA, we used the SetMultiExpr function

to create a list of expression matrices containing the selected genes and metacells for the three studies. We performed a separate

parameter sweep for the three expression matrices using the hdWGCNA function TestSoftPowerConsensus, ensuring that we used

an appropriate b value for each dataset (Mathys et al.: b = 6, Zhou et al.: b = 8,Morabito &Miyoshi et al.: b = 6). The consensus co-

expression network was contructed using the hdWGCNA function ConstructNetwork using the consensus = TRUE option. Individual

TOMs were computed for each dataset, and they were scaled based on the 80th percentile in order to alleviate different statistical

properties specific to each dataset rather than the underlying biology. A consensus TOM was computed by taking the element-wise

minimum of the individual TOMs from each dataset. Therefore, large topological overlap values between two genes, which indicate a

strong co-expression relationship, are supported across all three datasets in the consensus TOM. We performed hierarchical clus-

tering on the consensus TOM, andwe used the Dynamic Tree Cut algorithm3 was used to identify consensus co-expression modules

based on the hierarchy. Module eigengenes were computed using the ModuleEigengenes function, and we applied Harmony22 to

correct MEs based on the dataset of origin. Eigengene-based connectivity for each gene was computed using

ModuleConnectivity. We visualized the network using UMAP with the top ten hub genes (ranked by kMEs) per module as the input

features, annotating the hub genes and known disease-associated microglia genes.50 We used the enrichR85 to perform enrichment

analysis on the top 100 genes in each module ranked by kME using the following databases: GO_Biological_Process_2021, GO_

Cellular_Component_2021, GO_Molecular_Function_2021, WikiPathway_2021_Human, and KEGG_2021_Human.

We sought tomodel the transcriptional dynamics governing the shift between homeostatic and activatedmicroglia in AD, therefore

we performed pseudotime analysis using Monocle 336 to build a continuous trajectory of microglia cell states. A trajectory graph was

built on the microglia UMAP using the function learn_graph, and pseudotime was calculated with the function order_cells. We ori-

ented the start of pseudotime based on the expression of homeostatic microglia marker genes, such as P2RY12, CX3CR1, and
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CSF1R. We grouped cells into 50 evenly-sized bins throughout each trajectory, and we applied loess regression to the averagemod-

ule eigengene of each module in these bins to inspect the dynamics of each module throughout the microglia trajectory.

To link the integrated microglia snRNA-seq dataset with polygenic risk of disease for individual cells, we used the scDRS python

package (version 1.0.0).52 This pipeline takes 1) a set of putative disease genes derived from GWAS summary statistics and 2) a

scRNA-seq dataset as inputs, and outputs disease enrichment statistics for a given disease (raw and normalized disease scores,

cell-level scDRS p value, and Z-scores converted from the p values). GWAS summary statistics of 74 diseases and complex traits

supplied by scDRS were utilized as gene sets, among which a gene set by Jansen et al.46 provided the set of genes associated with

AD.We then visualized the AD scDRS Z-scores in the integrated ADmicroglia trajectory, and we correlated the scDRS score with the

trajectory using a Pearson correlation.

We performed module preservation20 analysis in a variety of external datasets from human and mouse11,12,28,56–58 to test for the

reproducibility of the consensus AD microglia modules in the microglia population from each dataset. We used the hdWGCNA func-

tion ProjectModules to compute module eigengenes for the consensus AD microglia modules for each query dataset. The module

preservation test was performed using the hdWGCNA function ModulePreservation with 100 permutations, and we reported the

preservation Z-summary statistics in a heatmap. For the Morabito & Miyoshi et al. snATAC-seq dataset, we used the gene activity59

representation as a gene-level summary of chromatin accessibility in order to assess the module preservation at the epigenomic

level.

Analysis of bulk RNA-seq co-expression modules in single-cell data
We projected gene co-expression modules from two bulk RNA-seq studies of AD56,63 into a published snRNA-seq study of AD to

assess their expression patterns within various cell populations. While both of these studies used the samples from the same

bulk RNA-seq cohort, the set of modules from Morabito et al. 202056 was based on a consensus network analysis across six brain

regions while the other set of modules from the AMP-AD study63 were constructed separately for seven different brain regions. Mod-

ule eigengenes were computed for each of these bulk RNA-seq modules in the snRNA-seq dataset using the hdWGCNA function

ProjectModules, using Harmony to correct MEs based on sequencing batch. We visualized the MEs of the projected modules in

the snRNA-seq dataset using the Seurat function DotPlot.
e9 Cell Reports Methods 3, 100498, June 26, 2023
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