
Deficiency of a Niemann-Pick, Type C1-related Protein in
Toxoplasma Is Associated with Multiple Lipidoses and
Increased Pathogenicity
Bao Lige1, Julia D. Romano1, Veera Venkata Ratnam Bandaru2, Karen Ehrenman1, Jelena Levitskaya1,

Vera Sampels1, Norman J. Haughey2, Isabelle Coppens1*

1 Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America,

2 Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States

of America

Abstract

Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the
phylogenetically conserved ‘sterol-sensing domain’ (SSD). The intracellular parasite Toxoplasma possesses at least one gene
coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid
regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related
protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease.
We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement
of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause
overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to
flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and
properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the
role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses
on the DNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters,
sphingomyelins and ceramides. DNCR1 parasites are also characterized by abundant storage lipid bodies and long
membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple
daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in
mice than the parental strain. These data suggest that the DNCR1 strain has lost the ability to control the intracellular levels
of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division.
Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.
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Introduction

Toxoplasma gondii is an obligate intracellular parasite that resides

in a unique vacuole formed in the cytoplasm of mammalian cells

during invasion. The parasitophorous vacuole (PV) of Toxoplasma

protects the parasite from hostile cytosolic innate immune-

surveillance pathways and potent inflammatory signaling cascades.

Although separated from the nutrient-rich cytosol by the PV

membrane, the parasite has nevertheless evolved efficient

strategies to co-opt multiple host cellular pathways and host

organelles, to acquire essential nutrients and fuel its growth. The

parasite expresses many surface transporters that mediate the

internalization of host molecules [1]. T. gondii contains large

amounts of cholesterol that it scavenges from plasma low-density

lipoproteins (LDL) after processing in host endocytic compart-

ments [2]. Interference with LDL endocytosis or cholesterol egress

from host lysosomes arrests parasite development. We demon-

strated that Toxoplasma can sequester nutrient-filled host lysosomes

within invaginations of the PV membrane, which allows access to

cholesterol supplied by the host endocytic network [3]. Cholesterol

incorporation into the parasite is abolished after treatment with

various proteases [4], and we have recently identified a transport

system of cholesterol to the parasite involving parasite ABCG

proteins [5]. Although much is known about host cholesterol

delivery to Toxoplasma, very little is known about the regulatory

mechanisms and trafficking routes of cholesterol (and other lipids)

within the parasite. We have reported a role for a D-bifunctional

protein containing two sterol-carrier protein-2 domains in

promoting the circulation of phospholipids, cholesterol and fatty

acids between parasite organelles and the plasma membrane in T.

gondii [6].

In higher organisms, intracellular cholesterol transport is a

fundamental process required for cell division, growth and

differentiation. The distribution of cholesterol in different
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subcellular compartments is maintained by a combination of

vesicle-mediated interorganelle transport and protein-mediated

monomeric transfer through the aqueous cytosol [7,8]. Among the

cholesterol-binding proteins, the Niemann-Pick C (NPC) proteins,

NPC1 and NPC2, are required for cholesterol export from

endocytic organelles [9]. Loss of function of either of these proteins

causes the sequestration of LDL-derived cholesterol and other

lipids in these organelles and leads to a progressive neurodegen-

erative disorder: the NPC disease [10]. NPC1 is a multispanning

transmembrane protein residing predominantly in the limiting

membrane of late endosomes/lysosomes while NPC2 is a soluble

lysosomal protein [11,12]. Both proteins operate in the trafficking

of cholesterol in the endo-lysosomal vesicle system; cholesterol

liberated from LDL is first bound to NPC2 that then hands off the

lipid to NPC1 that expels cholesterol out of the lysosomal

compartment [13,14]. NPC2 has a hydrophobic interior contain-

ing small cavities that can accommodate the steroid core while

NPC1 has a high affinity binding domain to cholesterol at the N-

terminus, called the sterol-binding domain (SBD). In addition,

NPC1 has five to six transmembrane regions constituting the

putative ‘sterol-sensing domain’ (SSD) that is common to many

proteins that have key roles in cholesterol homeostasis or

cholesterol-linked signaling [15]. However, while several potential

interaction surfaces of the NPC proteins have been identified, the

molecular mechanism of NPC interaction to transfer cholesterol

remains still elusive.

NPC1 and NPC2 are conserved throughout much of eukaryotic

evolution [16]. An authentic NPC1 ortholog appears in fungi,

worms, insects, slime molds, plants and all mammals. Within the

genome of most multicellular organisms, the NPC1 gene is

represented at least twice. The retention of NPC1 genes

throughout eukaryotic evolution permits the identification of

conserved sequence motifs that include the SSD [15]. In addition

to NPC1, 3-hydroxy-3-methylglutaryl CoA reductase (HMGCoA

reductase, the key enzyme of the mevalonate pathway producing

sterols), SCAP [the sterol regulatory element-binding protein

(SREBP)-cleavage activating protein] (a regulator of the sterol-

dependent transcription of cholesterol biosynthetic genes), 7-

dehydrocholesterol reductase (an enzyme involved in cholesterol

biosynthesis), Patched (a tumor suppressor involved in the signal

transduction cascade mediated by the cholesterol-modified

morphogen Hedgehog), Dispatched (a protein that facilitates the

secretion of Hedgehog) and the Patched-related protein (a protein

closely related in sequence and predicted topology to Patched)

share a SSD. Mutations in the SSD of these proteins in

mammalian cells render insensitivity not only to sterols but also

to other lipids such as oxysterols, fatty acids, sphingolipids and

phospholipids, suggesting that the SSD is a motif for membrane

anchorage that can sense and respond to various agents that

perturb membranes [17–20]. In yeast, a dominant mutation in the

putative SSD of NCR1, a homolog of NPC1, confers resistance to

inhibitors of inositophosphorylceramide and accumulation of

complex sphingolipids, but no defect in sterol metabolism,

pointing to a primary role of yeast NCR1 in sphingolipid recycling

instead of sterol homeostasis [21].

To gain more insight into the key cellular pathways that govern

lipids, e.g., cholesterol movement within T. gondii, we have

characterized a parasite protein harboring a canonical SSD. This

protein is a close relative of human NPC1, and we named it

TgNCR1. When targeted to mammalian endo-lysosomes,

TgNCR1 restores lipid trafficking from these organelles in

mammalian NPC1 mutant cells. We generated a parasite cell line

lacking NPC1 that is viable. The mutant parasites exhibit

perturbations in their content in lipids, e.g. cholesteryl esters and

sphingolipids, but not in free cholesterol. These alterations are

reflected by the amassing of large lipid bodies in the parasite

cytoplasm, and the stimulation of membrane biosynthesis and

parasite replication. This suggests the involvement of TgNCR1 in

monitoring the status of various lipids in Toxoplasma, a regulatory

function likely important for proper parasite growth.

Results

Cloning and molecular characterization of a Toxoplasma
protein that harbors an archetypal ‘sterol sensing-like
domain’ and shares identity with human NPC1

To identify parasite proteins involved in cholesterol homeostasis

in T. gondii, we searched for sequence homology to the sterol-

sensing domain (SSD) in the Toxoplasma genome database

(ToxoDB.org). A gene coding for a transmembrane polypeptide

containing a sterol-sensing-like domain, annotated ‘Patched

transmembrane domain-containing protein’ was retrieved

(TGME49_090870; location on chromosome IX). Another gene

with the same annotation was also present but its expression level

was predicted to be very low (TGME49_120500; location on

chromosome IV). As expected, no genes with homologous

sequences to sterol biosynthetic enzymes, HMGCoA reductase

and 7-dehydrocholesterol reductase, could be identified from the

genomic database of T. gondii. The regulatory SREBP-SCAP

machinery and the Patched/Hedgehog system are also missing

from the parasite genome. The ORF of TGME49_090870 was

amplified by PCR from a sporozoite cDNA library; it is 3,534

nucleotides long, consists of 6 exons and encodes a polypeptide of

1,178 amino acids, predicting a protein of 130.6-kDa (Figure S1).

A parallel search of the Eukaryotic Pathogens Database Resources

(EuPathDB.org) for sequence homology to TGME49_090870

using Jalview 2.6.1 [22] revealed the presence of one or two

versions of NPC1-related protein in several apicomplexan

parasites including Neospora caninum, Cryptosporidium sp. and

Author Summary

The intracellular parasite Toxoplasma is auxotrophic for
several lipids that it scavenges from host organelles.
Several studies focused on deciphering the pathways
implicated in host lipid delivery to the parasite, but less
effort has been devoted to understand how lipids are
regulated in Toxoplasma. The ‘sterol-sensing domain’ (SSD)
is conserved across phyla and present in several mem-
brane proteins involved in cholesterol homeostasis, cell
signaling and cytokinesis. We studied the role of a SSD-
containing protein in Toxoplasma which shows significant
similarity with Niemann-Pick type C1 proteins (NPC1).
Human NPC disease is typified by lysosomal accumulation
of cholesterol and sphingolipids. Expression of the parasite
NPC1-related protein (named TgNCR1) in mammalian
NPC1 mutant cells suppresses lipid accumulation in
lysosomes. However, Toxoplasma never internalizes host
cholesterol into lysosomes, which predicts a function for
TgNCR1 unrelated to exogenous sterol transport. Indeed,
genomic deletion of NCR1 does not result in abnormal
levels of cholesterol in the parasites but in the over-
accumulation of cholesteryl esters and sphingolipids.
TgNCR1-deficient parasites form abundant storage lipid
bodies and multiple parasites per cycle of division. This
suggests that TgNCR1 functions in monitoring the levels of
various lipids within Toxoplasma, which in turn impacts the
parasite’s lipid homeostasis and growth rate.

Role of NCR1 for Lipid Regulation in Toxoplasma
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Plasmodium sp. but no NPC1 homolog in any species of Theileria or

Babesia (Figure S2).

Analysis of the deduced amino acid sequence of the sterol

sensing-like domain of TGME49_090870 reveals high similarity to

the SSD of the members of the cholesterol-sensing protein family

(Figure 1A). The parasite sterol sensing-like domain encompasses

180 amino acids and is organized into five membrane spanning a-

helices (Figure S3). This domain shares 31% identity and 51%

similarity with the SSD of human NPC1. Interestingly, the sterol

sensing-like domain in the Toxoplasma protein contains many

residues implicated in the human NPC disease [23–26]. Of the

miscoding mutations identified in the SSD of human NPC1 that

are responsible for severe biochemical defects in patients, seven

amino acids (70%) are identical between the parasite protein and

human NPC1 (Y-634, G-660, G-673, P-691, D-700, D-786 and

R-789). Figure 1A highlights the SSD containing a number of

conserved amino acids that have been implicated in the NPC

disease and that are present in the Toxoplasma protein.

In addition to a putative SSD, TGME49_090870 has multiple

membrane spanning domains and two Patched Homology

Domains (PHD) that typify the NPC family (Figure 1B). The

parasite sequence does not possess endosomal targeting signals

such as a C-terminal di-Leu motif [27], probably due to the lack of

endocytic compartments in the parasite. The N-terminal sequence

of human NPC1 harbors the sterol-binding domain (SBD) on

luminal loop-1 that is known to interact with cholesterol and

oxysterols with high affinity [28,29]. Sequence alignment of the N-

terminal ends of TGME49_090870 and human NPC1 encom-

passing the SBD reveals the presence of 35 identical residues

(22%), which suggests that the N-terminus of the parasite protein

may have potential sterol binding activity (Figure 1C). Moreover,

several conserved Pro and Gly residues present in the parasite

amino-terminal sequence are critical residues whose substitutions

correspond to naturally occurring mutations in patients with NPC

disease. At the protein level, the parasite full-length sequence has

37% identity and 61% similarity with human NPC1; 61 of the

functionally important residues (59%) for the sterol transfer

function are present, and 47 of those are identical to human

NPC1. Based on these observations, we therefore renamed the

protein, TgNCR1 (for NPC-related gene 1). A schematic

representation of the topology of TgNCR1 and human NPC1

shown in Figure 2A highlights their structural similarities.

Expression of TgNCR1 corrects the cholesterol-trafficking
defect in NPC1 mutant cells

To test the functional equivalence of TgNCR1 and mammalian

NPC1, we planned to express TgNCR1 in a CHO cell line lacking

functional NPC1 and examine the potential ability of the parasite

protein to restore NPC1 activity in the mutant cells, namely the

abatement of lipid accumulation in endo-lysosomes. However, as

Toxoplasma does not possess an endocytic membranous system

involved in the internalization of extracellular cholesterol,

TgNCR1 does not contain any targeting information for endocytic

organelles as found on human NPC1. We first analyzed the

intracellular localization of TgNCR1 when ectopically expressed

in mammalian cells. CHO cells were transfected with pHA-

TgNCR1 and immunolabeled with antibodies against HA

(Figure 2B). A fluorescence pattern corresponding to cortical and

perinuclear ER was discernible. Expectedly, no staining was

observed on endo-lysosomal compartments. We therefore decided

to engineer a chimeric protein to correctly address TgNCR1 to

endo-lysosomes in mammalian cells. Mammalian NPC1 localiza-

tion to endo-lysosomes is mediated by several COOH-terminal

motifs [26]. We constructed a hybrid protein in which the last 64

residues of human NPC1 that encompass most of the functional

endosomal targeting motifs (hNPC11214-1278) were fused to

TgNCR1 lacking its last 78 amino acids (TgNCR1D1101-1178) as

schematized in Figure 2A. A myc tag was introduced at the N-

terminus of the chimeric protein designated myc-TgNCR1-

hNPC1. The expression construct was transfected into CHO cells

for double immunofluorescence assays (IFA) using antibodies

against myc and various markers of endosomes or lysosomes

(Figure 2C). Results show that the TgNCR1-hNPC1 fusion

protein largely localized to structures positively labeled for

EEA1, LAMP1 or LysoTracker, indicating delivery of the

exogenous protein to endocytic organelles.

We used the somatic 2-2 mutant of CHO cells as a model of

NPC1 mutant cells. These cells are characterized by the excessive

accumulation of lipids including cholesterol in endocytic compart-

ments [30]. We confirmed this phenotype by staining the 2-2

mutant cells with filipin, a fluorescent compound that binds to the

b-hydroxyl group of sterols, and data revealed enlarged, filipin-

positive structures corresponding to perinuclear lysosomes (Figure

S4A). Our ultrastructural observations of sterol-overloaded

lysosomes in filipin-treated 2-2 mutant cells illustrated the

corrugated aspect of membranes as a result of the formation of

sterol-filipin complexes (Figure S4B). The 2-2 mutant cells were

transfected with pmyc-TgNCR1-hNPC1 to assess sterol transport

by filipin staining and fluorescence microscopy. We first confirmed

the localization of the TgNCR1-hNPC1 fusion protein to

perinuclear structures in 2-2 mutant cells (Figure 3A). Expression

of the TgNCR1-hNPC1 fusion protein largely restored cholesterol

clearance from endo-lysosomes (Figure 3B) as quantified by a ,4-

fold reduction in filipin intensity levels in endo-lysosomes of the

transfected cells with TgNCR1-hNPC1 compared to mock-

transfected cells (Figure 3C). Fluorescence levels in mutant cells

expressing TgNCR1-hNPC1 were not significantly different from

those associated with endo-lysosomes in wild-type cells (Figure 3C).

Thin layer chromatography (TLC) analysis of a neutral lipid

fraction of cellular extracts of TgNCR1-hNPC1-expressing

mutant cells confirmed that the levels of free cholesterol have

returned to normal (Figure 3D). No change has been observed in

the levels of esters of cholesterol between wild-type cells, NPC1

mutant cells and mutant cells expressing TgNCR1-hNPC1 (Figure

S5). The 2-2 mutant cells expressing TgNCR1 did not show any

decrease in endo-lysosomal filipin staining, in accordance to the

mislocalization of TgNCR1 in the ER. Negative controls for these

experiments included mutant cells transfected with a truncated

construct containing a short sequence of the C-terminus of

TgNCR1 (from residues 978 to 1100) combined with the C-

terminal end of hNPC1 containing the endosomal targeting motifs

(Tr.TgNCR1-hNPC1). This chimeric construct localized both to

endocytic compartments and the ER, and the filipin fluorescence

levels in these cells were similar to those in TgNCR1-expressing

cells.

The subcellular accumulation of sphingolipids, particularly

gangliosides (e.g., GM1), is another characteristic of the NPC1

syndrome [31]. TLC analysis of an acidic lipid fraction from

cellular extracts confirmed that these 2-2 mutant cells contained

high levels of GM1, whereas in CHO wild-type cells the levels of

this lipid were undetectable (Figure 3D). TgNCR1-hNPC1

expression in mutant cells caused an obvious decrease in the

levels of GM1 compared to NPC1 mutant cells, and quantitative

measurement indicated a reversion of the GM1 accumulation by

,6-fold.

Altogether, these results suggest that, when provided with the

correct localization motif for endocytic compartments, the

TgNCR1constructs functions in a similar way as human NPC1

Role of NCR1 for Lipid Regulation in Toxoplasma
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Figure 1. Characteristic features of the predicted sequence of TGME49_090870 displaying a sterol-sensing-like domain and some
conserved critical motifs of the NPC1 family. A. Multiple sequence alignment of the predicted SSD of TGME49_090870 with the human
sequences of NPC1 (GI:38649260), Patched (GI:1381236) and SCAP (GI:66932902) using the CLUSTALW program, revealing the presence of many

Role of NCR1 for Lipid Regulation in Toxoplasma
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to promote LDL-cholesterol and GM1 release from endocytic

organelles, which indicates a conserved activity of the two proteins.

TgNCR1 localizes to the inner membrane complex in the
parasite

Our data showed that in mammalian cells, the parasite and

human NPC1 are interchangeable with respect to LDL-cholesterol

transport from endocytic compartments. However, Toxoplasma

never internalizes host cholesterol into endo-lysosomes, which

predicts a function for TgNCR1 unrelated to exogenous sterol

transport. This raises an intriguing issue about the biochemical

function of TgNCR1 in T. gondii. As the first step towards

understanding the molecular function of TgNCR1 in the parasite,

we decided to examine its intracellular localization. For this

purpose, a recombinant peptide corresponding to residues 162 to

501 of TgNCR1 was produced in E. coli to generate polyclonal

antibodies in rabbits (Figure S6). Using anti-TgNCR1162-501

antibodies, immunofluorescence of intracellular wild-type parasites

showed a diffuse peripheral staining along the parasite body,

which seemed to be excluded from the apical and basal extremities

of the parasite (Figure S7). Despite several attempts to purify these

antibodies, a high level of fluorescence background remained both

on the parasites and in host cells, which precluded the use of these

antibodies for in-depth morphological studies.

To circumvent this issue and have a better resolution of the

TgNCR1 localization, we created a stable line of the parasite

expressing, under the tubulin promoter, TgNCR1 with a HA tag

at the N-terminus. Lysates of transgenic parasites were resolved in

SDS-PAGE and immunoblot analysis using anti-HA antibodies,

confirming the expression of exogenous HA-TgNCR1, which

migrated as a single band at ,140-kDa (Figure 4A). Immunoflu-

orescence of intracellular HA-TgNCR1-expressing T. gondii

showed a peripheral staining along the parasite body as observed

on wild-type parasites labeled with anti-TgNCR1162-501 antibodies

(Figure 4B). The apical and basal extremities of the parasite

transfectants clearly excluded the staining, and this pattern is

reminiscent of resident proteins of the inner membrane complex

(IMC). EM observations reveal that the IMC is a continuous

patchwork of flattened vesicular cisternae located beneath the

plasma membrane and overlying the cytoskeletal network [32,33].

The IMC arises from vesicles derived from the secretory pathway

which flatten during parasite maturation to form large membra-

nous sheets that envelop the parasite, leaving only a small gap at

both parasite ends. TgNCR1 localization was further confirmed

by immunoEM staining showing gold particles on the IMC

(Figure 4C). Toxoplasma divides by endodyogeny, a mode of

replication in which two daughter cells are produced within an

intact mother parasite [34,35]. A critical step in building daughter

cells is the construction of their IMC, which forms a bud into

which replicated organelles are packaged. Figure 4D reveals

TgNCR1 labeling on the cone-shaped cistern forming nascent

IMC, indicating the association of the protein with the daughter

parasites at the onset of their formation. Immunogold staining

confirmed an association of TgNCR1 with the IMC of nascent

parasites (Figure 4E). Interestingly, the presence of gold particles

was also visible on vesicles adjacent to the IMC (Figure 4F).

Quantitative distribution of gold particles on various parasite

compartments indicated that more than 80% of the gold staining

was associated with both the IMC and vesicles, while the ER

counted for 8% of the gold labeling density (Figure 4G). Finally to

corroborate this IMC localization, we engineered two other

constructs: TgNCR1, under the NTPase promoter, tagged at its

N-terminus with the HA epitope and TgNCR1, under the tubulin

promoter, tagged at its C-terminus with the HA epitope. Parasites

were transiently transfected with each construct, and the original

localization of TgNCR1 on the IMC was confirmed in these

transgenic parasites expressing HA-TgNCR and TgNCR1-HA

(Figure S8).

Parasites expressing dominant negative mutants of
TgNCR1 have no striking phenotype

As the second step towards clarifying the role of TgNCR1 in the

parasite, we expressed in the wild-type T. gondii four different

dominant negative mutants derived from HA epitope-

tagged TgNCR1: HA-TgNCR1D571N, HA-TgNCR1P913A, HA-

TgNCR1I957T and HA-TgNCR1L1100V. These mutants are

predicted to be dominant negative based on identified mutations

in NPC1 patients [24–26]. When transiently transfected in the

parasite for 16 h to 24 h, these constructs produced a signal that

localized to the IMC/ER. The four dominant negative mutants

were viable and gave no unusual phenotype, such as the abnormal

accumulation of lipids based on TLC analysis, which precludes

further functional studies (data not shown). It is possible that

dominant negative mutants have lower expression levels than

TgNCR1 wild-type protein, which renders the dominant-negative

effect silent. Another possibility could be that the time-course for

lipid accumulation takes longer than 24 h before giving a clear

phenotype. While the expression level of the mutant proteins or

the timing of the lipid accumulation phenotype may effect the lack

of phenotype, it is also plausible that the amino acids mutated in

the TgNCR1 sequence are not critical for its function in the

parasite, which may be viewed as evidence that TgNCR1 plays

distinct roles from human NPC1.

Depletion of NCR1 does not affect parasite replication
As the third approach to study the function of TgNCR1 in T.

gondii, we focused on genetically disrupting NCR1 using a fusion

PCR-based method to replace NCR1 in the parasite genome with a

selectable HXGPRT marker. Clones were tested by PCR and

Southern blotting for the absence of NCR1 and the presence of a

single copy of the HXGPRT cassette (Figure 5 and Figure S9).

Clones lacking NCR1 were obtained, demonstrating that TgNCR1

was not necessary for the in vitro propagation of T. gondii. In

fibroblasts, the DNCR1 strain formed large vacuoles that

associated with host organelles, e.g., mitochondrion, as observed

for wild-type parasites (Figure S10). The knockout parasites were

organized in rosettes. During normal endodyogeny, the cytoplasm

of the mother parasite is equally distributed between the daughter

cells; a cleavage furrow is initiated at the anterior pole and extends

between the daughters throughout the mother cell, leaving only a

residual body at the posterior end connecting the two daughters.

The residual body contains mother cell components that are not

conserved identical (black boxes) and similar (grey boxes) amino acids in these proteins. Asterisks show some amino acids that are critical for SSD
function and responsible for the human NPC disease if mutated or missing. B. Schematic of the domain structure of TGME49_090870 (obtained after
cloning), human NPC1 and yeast Ncr1p (GI:259150148), showing the position of the predicted SSD, PHD (Patched Homology Domain) and
transmembrane domains (in black). The sequence of TGME49_090870 lacks the Leu zipper present in the high affinity sterol-binding domain (SBD)
and the endosomal targeting motifs identified in the human NPC1 sequence. C. Sequence alignment of the predicted N-terminal sequences of
TGME49_090870 and human NPC1 comprising the SBD, showing a high proportion of identical amino acids.
doi:10.1371/journal.ppat.1002410.g001

Role of NCR1 for Lipid Regulation in Toxoplasma
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Figure 2. Localization of TgNCR1 in mammalian cells after transfection. A. Schematic representation of the NPC1 constructs: human NPC1
(hNPC1) showing the endosomal targeting motif in purple, full lengthTgNCR1 or TgNCR1 modified in which the last 78 amino acids have been
deleted and replaced by the last 64 amino acids of hNPC1, designed TgNCRC1-hNPC1. B–C. Fluorescence microscopy of CHO cells expressing the
TgNCR1 constructs with either HA or myc tags at the N-terminus. After transfection of pHA-TgNCR1 in B or pmyc-TgNCR1-hNPC1 in C, cells were fixed
and immunostained with anti-HA or anti-myc antibodies to localize the TgNCR1 constructs. A pattern corresponding to the ER was identified for
TgNCR1 while TgNCR1-hNPC1 was mainly expressed in endo-lysosomal compartments, which were identified by immunostaining of endogenous
markers (EEA1, an early endosome-associated protein or LAMP1, a lysosomal-associated membrane protein), or by labeling with Lyso-Tracker (LysoT).
In blue, DAPI staining; n, nucleus.
doi:10.1371/journal.ppat.1002410.g002

Role of NCR1 for Lipid Regulation in Toxoplasma
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Figure 3. Decrease in sterol accumulation in NPC1 mutant cells expressing TgNCR1-hNPC1. A. Immunofluorescence microscopy of 2-2
mutant CHO cells expressing TgNCR1-hNPC1. 2-2 mutant cells have been transiently transfected with pmyc-TgNCR1-hNPC1, fixed and immunostained
using anti-myc antibodies. Myc-TgNCR1-hNPC1 shows staining in perinuclear lysosomes. B. Filipin staining of 2-2 mutant cells expressing TgNCR1-
hNPC1, TgNCR1 full-length or a truncated version of the C-terminal end of TgNCR1-hNPC1 (tr. TgNCR1-hNPC1). After transient transfection with
pmyc-TgNCR1-hNPC1, pmyc-TgNCR1 or pmyc-tr.TgNCR1-hNPC1, cells were stained with anti-myc antibodies to detect tagged protein expression and
with filipin to visualize sterols in transfected cells. Representative pictures are shown for each construct. Only the TgNCR1 construct that localizes to
endo-lysosomes (TgNCR1-hNPC1) was able to facilitate cholesterol egress from these organelles. C. Quantitative measurement of filipin fluorescence
levels associated with 2-2 mutant cells transfected with the indicated TgNCR1 constructs in comparison to wild-type CHO cells. Fluorescence intensity
collected on 45–50 endo-lysosomes per condition was expressed as arbitrary values. Error bars indicate SEM, n = 3 (*, P,0.01 comparing TgNCR1-
hNPC1-transfected cells with vector alone). D. TLC analysis of neutral (upper; FC, free cholesterol) and acidic (lower) fractions of cellular lipid extracts
from CHO cells: wild-type or mutant transfected with either TgNCR1-hNPC1 or vector only. Positions of the standard lipids are indicated (left). After

Role of NCR1 for Lipid Regulation in Toxoplasma

PLoS Pathogens | www.plospathogens.org 7 December 2011 | Volume 7 | Issue 12 | e1002410



incorporated into the daughter parasites, and this structure usually

disappears after the completion of parasite division. Interestingly,

we observed that the progeny of TgNCR1-deficient parasites staid

mostly connected by their posterior ends to a common and

enlarged residual body. Similar prominent residual bodies were

also apparent in light microscope images. Disruption of TgNCR1

did not result in any obvious defect in parasite invasion or egress

(data not shown).

The growth rate of the DNCR1 strain in fibroblasts was

quantified by uracil incorporation assays. Compared to the

parental strain the (DKu80DHXGPRT or DK80), the DNCR1

strain incorporated significantly higher amounts of uracil (1.4-fold

increase) at 16 h, 24 h and 48 h p.i. (Figure 6A). To verify the

specificity of the mutant phenotype, we genetically complemented

the DNCR1 strain with TgNCR1. TgNCR1-complemented clones

were verified by PCR analyses (Figure S11). Values of uracil

incorporation were comparable in the complemented and parental

strains, corresponding to 2,3926504 cpm and 2,6936134 cpm,

respectively, which indicates that the uracil incorporation defect of

the DNCR1 strain was due to the deletion of NCR1.

TgNCR1-deficient parasites are insensitive to excess
cholesterol in the medium and contain normal amount
of free cholesterol

We previously reported that Toxoplasma growth is directly

dependent upon exogenously supplied cholesterol [2]. Mammalian

NPC1 has a primordial function in exogenous sterol distribution

throughout the cell [36]. TgNCR1-deficient parasites were then

exposed to excess amounts of LDL-cholesterol to determine

whether loss of NCR1 has an effect on parasite viability as a result

of the potential accumulation or mislocalization of cholesterol

within mutant parasites. Results show that the addition of excess

LDL in the medium, i.e. 10-times more than normal medium (10%

FBS), did not affect the intravacuolar development of TgNCR1-

deficient parasites (Figure 6B). A ,150% increase in replication rate

was observed for the DNCR1 strain compared to the parental strain

grown in excess LDL, which parallels the increased replication rate

of the DNCR1 strain in normal medium. We showed previously

that exposure of T. gondii to a medium depleted in LDL results in a

slowdown of parasite development as smaller vacuoles were

observed compared to parasites developing in complete medium

[2]. When TgNCR1-deficient parasites were incubated in the

absence of LDL, they grew slower than in medium containing 10%

FBS, but still showed a growth advantage over the parental strain

grown in LDL-free medium (Figure 6C). Thus, the DNCR1 strain

displays no significant change in sensitivity to extracellular

cholesterol compared to parental parasites. This may predict a

primary role for TgNCR1 that is unrelated to cholesterol transport.

The NPC disease is characterized by lysosomal sequestration of

endocytosed LDL-cholesterol, abnormal enrichment of unesteri-

fied cholesterol in trans-Golgi cisternae and anomalies in

intracellular sterol trafficking [9]. We then monitored the

cholesterol status in TgNCR1-deficient parasites compared to

control parasites. In a first set of experiments, parasites were

stained with filipin (Figure 7A). A fluorescence pattern was

associated with the parasite’s pellicle and apical rhoptries in both

the DNCR1 and parental strains when cultivated in 10% FBS.

When excess LDL was added to the medium, TgNCR1-deficient

parasites did not show any major sites of cholesterol accumulation

as is the case in NPC1-deficient mammalian cells. To validate our

microscopic observations, we measured the levels of free

cholesterol molecules, at monomeric and oligomeric states by

mass spectrometry (Figure 7B). Our results established that the

overall concentrations of monomeric, dimeric and trimeric

cholesterol in DNCR1 were similar to the parental strain.

TgNCR1-deficient parasites contain numerous lipid
bodies in their cytoplasm and accumulate several species
of cholesteryl esters

To examine whether the lack of NCR1 might impact the

metabolism of lipids other than cholesterol, TgNCR1-deficient

and control parasites were stained with Nile Red. This dye

fluoresces when trapped inside lipid bodies allowing the exami-

nation of the cytosolic stores of neutral lipids in cells. Data show

the presence of abundant lipid bodies in the DNCR1 strain, which

were greater in size and number than those found in the parental

strain (Figure 8A). The DNCR1 parasites could produce up to nine

lipid bodies, with an average of five lipid bodies per cell whereas

control parasites contained two lipid bodies per cell on average

(Figure 8B). We previously described that Toxoplasma can store

both esters of cholesterol [37] and triglycerides [38] in lipid bodies.

The nature of neutral lipids accumulated in TgNCR1-deficient

parasites was then investigated by mass spectrometry. Quantitative

analysis of the cholesteryl ester species present in wild-type

Toxoplasma was performed in detail (Table 1). As predicted by the

detection of acyl-CoA:cholesterol acyltransferase (ACAT) activities

in the parasite, cholesteryl esters were abundant in the parasite. Of

the 21 molecular species detected in Toxoplasma, cholesteryl oleate

C18:1 (42%) and palmitate C16:0 (26%) were the main esters as is

the case in mammalian cells but the parasite also had uniquely

large amounts of cholesteryl eicosanoate C20:1 (7%). In addition,

the parasite contained to a lesser extent, cholesterol palmitoleate

C16:1, stearate C18:0, linoleate C18:2, arachidonate C20:4 and

some polyunsaturated C22 fatty acids. The other cholesteryl ester

fatty acid species shown in Table 1 represented 3.5% of the total

species. Interestingly, TgNCR1-deficient parasites showed an

overall increase in the cholesteryl ester content, with the greatest

accumulation of cholesteryl linoleate, arachidonate, C20:3 and

some very-long-chain polyunsaturated fatty acids (Figure 9).

In parallel, we examined the triglyceride content of the parasites

(Figure 10). Toxoplasma contained pools of triglycerides with either

palmitate:oleate:stearate or palmitate:oleate:linoleate, and these

lipid species were also detected in TgNCR1-deficient parasites at

similar levels. These results suggest that lipid bodies in the DNCR1

parasites are particularly enriched in cholesterol esters, as a result

of an overproduction of these lipids and/or a dysregulation of the

cholesterol cycle.

TgNCR1-deficient parasites accumulate several species of
very-long-chain fatty acid sphingolipids

The NPC mutation has been also shown to impact the levels of

sphingolipids [21,39]. We then determined the status of sphingo-

lipids in DNCR1 parasites. A previous quantitative study reported

that sphingomyelins and ceramides represent 1.5 and 4.7% of total

polar lipids respectively, in T. gondii [40]. We used quantitative

mass spectrometry analyses to identify 10 different species of

sphingomyelins (Table 2) and 11 species of ceramides (Table 3) in

Toxoplasma controls. The main molecular species of sphingomy-

staining of the TLC plate, the band intensity of FC and GM1 (yellow asterisks) were measured by densitometry. Error bars indicate SEM, n = 3
(*, P,0.05; **, P,0.01 comparing TgNCR1-hNPC1-transfected cells with vector alone).
doi:10.1371/journal.ppat.1002410.g003
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Figure 4. Expression and distribution of TgNCR1 in transgenic T. gondii. A. Immunoblot of T. gondii transfected with pHA-TgNCR1. Western
blots were probed with anti-HA antibodies, revealing a single band at ,140-kDa in transgenic parasites. No band was visible on immunoblots of wild-
type parasites (not shown). B–C. Immunodetection of HA-TgNCR1 in transgenic parasites using anti-HA antibodies for IFA (in B) or immunogold
staining (in C). HA-TgNCR1 is dominantly associated with the IMC. The image in C shows two adjacent parasites (P1 and P2, as represented in the
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elins contained residues of arachidic acid C20:0 (44%), erucic acid

C22:1 (28%) and stearic acid C18:0 (13%). Sphingomyelin species

with eicosenoic acid C20:1 and behenic acid C22:0 were detected

though in lesser abundance. Other species represented about 2%

of the total sphingomyelins, with palmitic acid corresponding to

1%. The main species of ceramides in the parasite was palmitic

acid (83%). Ceramides with stearic acid totaled 8% while the other

ceramide species represented about 10%, with oleic acid less than

1%. Overall, the profiles of sphingomyelins and ceramides in

Toxoplasma were quite different from those in mammalian cells in

which oleic acid and palmitic acid are prominently represented.

The sphingolipid profiles of TgNCR1-deficient parasites showed

significant increases in both sphingomyelin and ceramide species

containing lignoceric acid C24:0 and selacholeic acid C24:1

(Figures 11 and 12). In TgNCR1-deficient parasites, the ceramide

C22:0 and the sphingomyelin containing palmitic acid and

palmitoleic acid were also more abundant compared to the

parental strain. Finally, to provide a complete overview of the lipid

profiles in the DNCR1 strain, the status of phospholipids other

than sphingomyelins was analyzed by quantitative mass spectrom-

etry. It has been previously observed that the parasite phospholipid

class distribution is significantly different from that of mammalian

cells [40,41]. Phosphatidylcholine is the most prevalent lipid,

accounting for 61–75% of total phospholipids. The next most

abundant lipids are phosphatidylethanolamine (10–16%), phos-

phatidylinositol (3.6–7.5%) and phosphatidylserine (5.6–6%). Data

showed no difference in the levels of phosphatidylcholine and

phosphatidylinositol between the DNCR1 and parental strains

(Table S1). Only very few species of phosphatidylethanolamine

and phosphatidylserine were significantly higher (up to a 3-fold

increase) in TgNCR1-deficient parasites as compared to controls.

Altogether, these data suggest that the main role of TgNCR1 in

the parasite is in regulating the homeostasis of many different

lipids.

TgNCR1-deficient parasites shift to the endopolygeny
replication mode

We next examined the morphology of the TgNCR1-deficient

parasites at the ultrastructural level. Astonishingly, nearly all EM

sections demonstrated profiles of dividing parasites, indicating that

these knockout parasites relentlessly underwent endodyogeny

(Figure S10). While images capturing parasite endodyogeny can

also be observed in wild-type parasites, it is at a much lower

frequency. A representative PV containing many dividing

TgNCR1-deficient parasites is shown in panel A of Figure 13, in

which nascent daughter cells were visible within the cytoplasm of

each mother cell. The sequential steps in parasite endodyogeny

were then analyzed in detail (Figure S12). At the onset of daughter

cell formation, the cytoplasm of the mother cell contained one or

two thin, and either elongated (Figure S12, panel a) or horseshoe-

shaped structures (Figure S12, panel b) that had the same electron-

density as the IMC beneath the mother plasma membrane (Figure

S12, panel a). These tubules likely represent the initial pieces of the

new IMC that will assemble to provide the cytoskeletal scaffolding of

developing daughter cells. As endodyogeny progresses, the nascent

IMC extended in size and enveloped the dividing organelles, e.g.,

nucleus (Figure S12, panel c), Golgi and apicoplast (Figure S12,

panel d), and the organelles produced de novo, e.g., rhoptries

(Figure S12, panel Bd-e) and micronemes (Figure S12, panel e). The

plasmalemma then invaginated around the daughters. Concomitant

to the emergence of daughter parasites with an intact pellicle, the

mother mitochondrial network moved to the posterior end of

nascent parasites, bifurcated and entered the daughter scaffolds

(Figure S12, panels f and g). These EM observations did not reveal

any obvious defects in organellar partioning in daughters lacking

NCR1, based on studies tracking fluorescent organelles in wild-type

parasites by time-lapse microscopy. This suggests that the process of

division of the DNCR1 strain occurs in a similar fashion as found for

wild-type parasites.

The frequency of multiple daughter formation is usually rare in

wild-type parasites and is typically in the range of 0.5 to 3% [42,43].

Interestingly, we observed a significant high number of cases in

which more than two daughters were formed within a single mother,

as illustrated by immunofluorescence microscopy using the protein

marker IMC1 to observe the IMC of nascent daughters within the

mother cells (Figure 13B). We could observe the different steps of the

construction of the multiple daughters per mother cell (Figure 13C).

The budding seemed synchronized, and the time for multiple

daughter formation did not reveal and delay compared to parasites

undergoing normal binary division in the same vacuole. Transmis-

sion EM analysis also confirmed the presence of several individu-

alized nuclei encircled by the IMC as a sign of assembly of new

parasites (Figure 13D). To quantify this growth defect, we stained the

DNCR1 and parental strain with DAPI and IMC1 and counted the

PV containing parasites producing more than 2 daughters per

mother (Figure 13E). Data show a dramatic increase in the number

of endopolygeny events in the mutants with some mother parasites

assembling as many as five daughters at the same time.

TgNCR1-deficient parasites have an unusual cell cycle
with a long S phase and short G1 phase

Toxoplasma tachyzoite replication differs from the classic animal

cell cycle as they divide using a three-phase cycle (G2 may be short or

missing) with the G1 interphase period comprising 40–60% of the

parasite’s doubling time [reviewed in 35]. S phase distributions in T.

gondii are also peculiar, with late S phase parasites (1.8 N) being more

numerous than early S phase parasites. Internal daughter budding

appears to initiate in late S phase. We performed flow cytometry

analysis on the DNCR1 strain to examine the cell cycle profiles of

these mutants, in comparison with control parasites and VERO cells

from which these parasites have been isolated (Figure 14). Data show

that the percentages of parasites in G2/M phase were comparable

between the mutant and parental strains and represented consis-

tently a fraction between ,10–12% of the total population.

However, the average percentage of TgNCR1-deficient-parasites

in S phase was significantly higher than for control parasites (about

61% vs. 41%). Consequently, the population of parasite mutants

during the G1 phase corresponded to ,24% only.

demarcated area of the inset showing transgenic parasites stained by IFA) in a PV to emphasize the continuous staining of HA-TgNCR1 along the IMC.
PM, plasma membrane. Bar is 150 nm. D–E. Immunodetection of HA-TgNCR1 in transgenic parasites using anti-HA antibodies for IFA (in D) or
immunogold staining (E). HA-TgNCR1 is also located to the IMC of nascent daughter cells (d cell) as shown by arrows. m cell, mother cell. Bar is
150 nm. F. ImmunoEM on the transgenic parasites showing vesicular staining in addition to the IMC. Several vesicles close to the IMC were also
decorated with gold particles (arrowheads in panels a and b). PM, plasma membrane. Bars are 150 nm. G. Stereological analysis of immunogold
labeling demonstrating the preferential localization of HA-TgNCR1 on the IMC and neighboring vesicles in intracellular T. gondii. Density (gold
particles per mm2) of labeled structures was determined from 30 cryosections. Percentage of individual intracellular compartment density was
determined from the sum of gold density normalized for the variation in expression of TgNCR1. NE, nuclear envelope.
doi:10.1371/journal.ppat.1002410.g004
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The phenotype of TgNCR1-deficient parasites is
associated with long PV membranous extensions

We next wanted to focus our attention to the PV of the DNCR1

strain to detect any peculiar morphological changes compared to

the parental strain. A feature commonly shared by many

intravacuolar pathogens is the formation of membranous tubules

or fibers that extend away from their vacuole to facilitate their

replication [44–46]. These filamentous structures contain many

pathogen-derived proteins. Toxoplasma also forms long tubules

extending from the PV membrane containing proteins released

from dense granules, e.g., GRA7, GRA10, GRA14 proteins [3,45]

(Figure S13). We then examined the morphology of the PV

Figure 5. Validation of the targeted deletion of NCR1from the Toxoplasma genome. A. Top: schematic showing the three primer sets used
to evaluate the parental strain DKu80 and DNCR1 for replacement of NCR1 with the selectable marker HXGPRT; the presence or absence of NCR1 and
HXGPRT is shown on the gel (bottom). B. Southern blot of DKu80 and DNCR1 strains. Genomic DNA was isolated from each strain, digested with AgeI
to excise a 2.2-kb fragment, run on an agarose gel, transferred to a nylon membrane and hybridized with a 0.9-kb probe that is part of the HXGPRT
cassette.
doi:10.1371/journal.ppat.1002410.g005
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membrane, with special emphasis on the tubules emanating from

this membrane by fluorescence microscopy.

Fibroblasts were infected with the DNCR1 or parental strain for

36 h for double IFA to detect GRA3 and GRA7 on the PV

membrane (Figure 15A). Both strains form long extensions

originating from the PV. In multi-infected cells, some of these

tubules were connecting two PV. The fluorescent signal for GRA3

and GRA7 appeared much brighter and homogenous for the

extensions of the PV containing TgNCR1-deficient parasites than

those generated by the parental strain, suggestive of more robust

extensions. Morphometric quantification of the diameter and length

of PV membranous extensions confirmed that they were significantly

thicker and longer for TgNCR1-deficient Toxoplasma (Figure 15B).

Interestingly, we observed that several PV of TgNCR1-deficient

parasites, although located to different host cells, were connected

together by these PV membranous extensions (Figure 16A). In

some occasions, two PV of the parental strain residing in adjacent

cells were also seen joined together by PV tubules, suggesting that

this phenotype plays a physiological role during parasite

development. Close observations of the PV of TgNCR1-deficient

parasites revealed that the closer two PV were to each other, the

thicker the connecting tubules were (Figure 16B, panels a to c). A

plausible scenario would be that the tubular structures bridging

two PV may be generated consequently to the split of a PV into

two vacuoles that stay connected by their PV membrane which

elongates as the two PV separate from each other. Finally, we

observed that these membranous connections between PV were

maintained after host cell division, and dramatically increased in

length as the two PV move apart (Figure 16B, panels d to e). The

tubules originated from the PV membrane are likely made of

lipids. The abundant and thick membranous extensions formed by

TgNCR1-deficient parasites may suggest that these mutants may

have an unusual membrane lipid biogenesis.

Disruption of NCR1 results in increase in virulence in mice
It still remains unclear why TgNCR1-deficient parasites can

generate more than two daughters from one mother cell.

Nevertheless, if mutant daughter cells are viable and infective,

the increase in their production may contribute to the more rapid

expansion of the knockout population in vivo.The fast develop-

ment of TgNCR1-deficient parasites in vitro prompted us to

examine whether the DNCR1 strain is particularly virulent in

mice. To examine the role of TgNCR1 in Toxoplasma infectivity,

mice were infected with either the DNCR1 or parental strain after

intraperitoneal injection, and mice survival was monitored daily.

All mice infected with the parental strain died by day 10

(Figure 17). By comparison, mice parasitized with TgNCR1-

deficient T. gondii showed higher susceptibility to infection as all

mice systematically died one day earlier, as monitored in three

independent trials. This suggests that TgNCR1-deficient parasites

are slightly more virulent than control parasites.

Discussion

As a starting point for studies on lipid transport and regulatory

processes within the parasite, the aim of this work was to

investigate the role of a unique SSD-containing protein, TgNCR1,

expressed by T. gondii. The sequence of TgNCR1 predicts an

uncharacterized Niemann-Pick, type C1-related protein with

significant identity (37%) to human NPC1. The TgNCR1

sequence predicts a 1178-residue protein (131-kDa) with four

potential N-glycosylation sites, and regions homologous to the

Patched Homology Domain (PHD), the SSD and the sterol-

binding domain (SBD) [5]. Hydropathy plots and topology

predictions of TgNCR1 and human NPC1 suggest a striking

conservation of the secondary structure between the two proteins,

in that both have 11 to 12 transmembrane domains whose spacing

is conserved. Interestingly, a NPC1 homolog is present in several

species of apicomplexan parasites and their predicted sequences

are closely related to that of TgNCR1. Mutations in human NPC1

that cause NPC disease lay in residues conserved in TgNCR1.

When expressed in mammalian cells with impaired NPC1 activity,

TgNCR1 can restore the sterol and GM1 trafficking. Overall,

despite the evolutionary distance of mammals and protozoa,

Figure 6. Growth features of TgNCR1-deficient parasites in vitro. Quantification of the replication rate of the DNCR1 and parental strains in
medium with variable amounts of cholesterol. [3H]uracil incorporation was measured using HFF infected with the DNCR1 or parental strain for the
indicated times in (A) medium containing 10% FBS (nominal LDL concentration: 0.1 mg/ml: normal serum), (B) medium containing 10% FBS
containing 1 mg/ml LDL (LDL: rich serum) or (C) medium containing 10% FBS depleted of LDL (LDL-free serum). Values of uracil incorporation are
means 6 SEM from three separate experiments. Differences between values obtained for the two strains were statistically significant (P,0.05).
doi:10.1371/journal.ppat.1002410.g006
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human NPC1 and TgNCR1 are very functionally interchangeable

at least for LDL-cholesterol and sphingolipid movement.

The ability of TgNCR1 to complement a mutant human NPC1

is a priori intriguing given that the core problem of the NPC disease

is an accumulation of cholesterol and other lipids in certain

endocytic organelles [9,47]. T. gondii does not have a process of

receptor-mediated uptake of sterols nor contains degradative

lysosomes. In fact, though T. gondii is auxotrophic for cholesterol

derived from plasma LDL [2], the parasite internalizes this lipid by

using membrane translocators [5]. Nevertheless, the detection of

cholesterol transport activity in NPC1-deficient cells expressing

TgNCR1 implies that the parasite protein can bind cholesterol,

perhaps by its putative SBD, and is maybe recognized by

necessary accessory proteins in mammalian cells, e.g., NPC2 for

cholesterol egress from endo-lysosomes. Though NPC2 proteins

are highly conserved across genera that have clear NPC1

orthologs, a gene encoding a NPC2-like protein could not be

identified in T. gondii. All of these intriguing observations predict

that TgNCR1 would function in an unconventional way in

Toxoplasma, likely distinct from a role in exogenous cholesterol

transport. To explore the function of TgNCR1 in Toxoplasma, a

parasite strain lacking the NCR1 gene was generated. DNCR1

Figure 7. Cholesterol detection and quantification in TgNCR1-deficient parasites. A. Fluorescence microscopy using filipin to visualize the
presence of cholesterol in the membrane of the DNCR1 and parental strains 24 h p.i. in either 10% FBS or 10% LDL-deficient serum (LPDS) containing
1 mg/ml LDL. No major difference in filipin staining is detectable. Arrowheads pinpoint parasite rhoptries revealed by filipin. B. Quantitative analysis
of MRM spectra from the DNCR1 and parental strains showing relative levels of cholesterol monomers (mono), dimers (di) and trimers (tri). No
significant differences could be observed between the two strains. Data are means 6 SD from 3 independent populations of control and mutant
parasites.
doi:10.1371/journal.ppat.1002410.g007
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progeny are viable, indicating that NCR1 is not required for

replication. Altering the environmental cholesterol conditions by

either starving Toxoplasma-infected cells for LDL or feeding

infected cells with excess LDL, did not disturb the growth of

knockout parasites differently than the parental population. The

DNCR1 strain is not overloaded with free cholesterol, as are

mutant mammalian NPC1 cells but instead abnormally accumu-

lates sphingolipids and cholesteryl esters, and to a lesser extent,

phosphatidylethanolamine and phosphatidylserine. Since NPC1

proteins universally function as lipid transporters, the observed

accumulation of lipids in the DNPC1 strain is most likely the

primary effect resulting from the loss of NCR1. Consequently,

TgNCR1 seems to be involved in controlling the intracellular

levels of specific lipids in the parasite. The yeast NPC homolog

(NCR1), which is localized to the vacuole, functions in

sphingolipid recycling and not in sterol transport even though

yeast NCR1 complements the loss of NPC1 in mammalian cells

[21]. NPC1 proteins also bear intriguing similarities to the

Resistance-Nodulation Division (RND) system of bacterial per-

meases, which transport acriflavine and fatty acids [48].

Heterologous expression of RND from Escherichia coli in human

NPC1-deficient fibroblasts results in the accumulation of acrifla-

vine and fatty acids, but not the restoration of the NPC1 sterol

accumulation phenotype. As Toxoplasma, yeast and bacteria do not

internalize sterols from their external environment by endocytosis,

our study here widen the concept proposed by SL Sturley [16] that

in cells that do not ingest exogenous cholesterol in endocytic

organelles, the NPC1 proteins do not primarily function as a

cholesterol sensor/transporter, but as a regulator of the movement

of other lipophilic substrates including sphingolipids. In this case,

the role of NPC1 in higher eukaryotic cells as a cholesterol

transporter might have arisen during evolution concomitantly to

the development of receptor-mediated pathways for sterol uptake.

Nevertheless, it remains possible that the accumulation of

cholesterol in mammalian late endosomes may not be the primary

cause of NPC disease but a secondary effect as a consequence of

impaired transport of other metabolites aside from sterols.

The abnormal lipid accumulation resulting from the loss of

NCR1 in T. gondii leads to secondary defects including the

stimulation of daughter formation, virulence, membrane biosyn-

thesis and lipid body biogenesis. Mutants produce more progeny

parasites than controls. The accumulation of mutant parasites in S

Figure 8. Production of lipid bodies by TgNCR1-deficient parasites. A. Fluorescence microscopy using Nile Red to stain lipid bodies in the
DNCR1 and parental strains showing abundant fluorescent structures in TgNCR1-deficient parasites. B. Quantitative distribution of lipid bodies in the
two parasite strains. Nile Red positive structures were counted, revealing greater number of lipid bodies in the DNCR1 strain. Insets show TgNCR1-
deficient parasites with 4 to 9 large lipid bodies.
doi:10.1371/journal.ppat.1002410.g008
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phase seems attributable to the absence of NPC1 since this

phenomenon has not been observed in the parental strain or wild-

type population of T. gondii. This feature may be linked to the

propensity of TgNCR1-deficient parasites to form multibuds with

multiple nuclear divisions between rounds of S and G2/M phase.

During endopolygeny, the parasites reinitiate DNA synthesis

bypassing G1 checkpoints but then re-coordinate the cell cycle as

they reach the next mitosis. By analogy, mammalian tumor cells

with high proliferation rate, e.g., HeLa cells are also characterized

by cell cycle alterations with the observed accumulation of cells in

S phase and reduction of cells in G1 phase. Such a deregulated cell

cycle in cancer cells is mainly due to defective genome-integrity

checkpoints, leading to abnormal DNA content. Several cell cycle

checkpoints with controllers of cyclin-Cdk activity (G1, START

(G1/S) checkpoints and mitotic controls) have been characterized

in Toxoplasma [35]. However, the synchronization of multibud

formation in the DNCR1 strain precludes the idea that these

parasites escape from the regulatory systems of checkpoints, which

complete mitosis in synchrony and control the quality of progeny.

TgNCR1 localizes to the IMC, a unique cortical system of

membrane cisternae connected to the plasma membrane. As in

mammalian cells, most of the parasite’s cholesterol is concentrated

at the plasma membrane [49]. However, it has also been

documented that the IMC contains cholesterol-rich domains in

which the parasite myosin motor machinery is immobilized [50].

These domains are critical for parasite gliding motility and

attachment to a substrate. The location of TgNCR1 to the parasite

IMC underlines the possibility that TgNCR1 may act as a catalyst

to assemble cholesterol-rich. The highly dynamic properties of the

IMC during parasite replication could facilitate the trafficking and

mobilization of lipids necessary for daughter cell formation.

Disruption of NCR1 results in endopolygeny. This suggests that the

function of TgNCR1 may be relevant in some way for

coordinating normal progeny number and assembly, for example

by delivering appropriate amount of lipids for membrane/

organelle biosynthesis. It has been reported that genetic factors

or local conditions increase the tendency to form multiple

daughters [42]. For example, the ISP1 protein, which is located

to the apical portion of the IMC, is involved in the targeting of

many proteins to the IMC and seems to play a role in

synchronizing endodyogeny [51]. Interestingly, T. gondii lacking

ISP1 also assemble more than two siblings per mother cell.

Observations based on TgNCR1 and ISP1 mutants suggest an

important contribution of the IMC to the regulation of parasite

division pathways, and thus to the control of infectivity.

Deletion of TgNCR1 from parasites leads to an increase in

virulence as mice infected by the mutant strain succumb slightly

faster than mice infected with control parasites. The fitness of

TgNCR1-deficient parasites in vivo may be due to their higher

propensity to produce multiple daughters, and therefore to

disseminate faster within the host. Alternatively, the high content

of sphingolipids inTgNCR1-deficient parasites may lead to

increased virulence for several reasons: i) these lipids may play

an important role to promote the parasite’s intracellular

development, e.g., by the induction of long PV membranous

extensions that facilitate the parasite colonization of host cells; ii)

the sphingolipids may act as immunomodulators during the

progression of the infection; and iii) these lipids may stimulate the

expression of virulence factors. First, the excess sphingolipids may

promote intracellular parasite development as in mammalian cells

it is known that sphingolipids are implicated in the regulation of

cell growth and differentiation via DNA stimulation [52]. These

lipids act as intracellular second messengers, and when added

exogenously, they elicit diverse cellular responses related to cell

division. Second, in different mammalian cell types, sphingolipids

and their derivatives are involved in inflammation and can initiate

parts of the inflammatory process by activating pro-inflammatory

transcription factors [53]. It is known that the overproduction of

pro-inflammatory cytokines, particularly IL-12, INF-c, and TNF-

a by mice infected with virulent strains of T. gondii contributes to

the animal death due to apoptosis in vital organs [54]. Lastly, the

mutant parasites may use its sphingolipids as part of its signaling

machinery to stimulate the expression of virulence factors secreted

into the host cell, e.g. ROP proteins that control the host

transcriptional responses by subverting STAT3 and STAT6

signaling [55].

Though there are widespread disruptions in lipid metabolism in

TgNCR1-deficient parasites, the observed increase in lipid body

biogenesis may represent a bypass pathway utilized by the parasite

to repress the consequences of the loss of NCR1. Bypass pathways

have been described in mammalian cells expressing a mutated

NPC1 protein. For instance, chemicals that activate protein kinase

C or elevate cytosolic calcium can revert the NPC phenotype [47].

In addition, overexpression of Rab7 (involved in early/late

endosome to lysosome transport) or Rab9 (involved in late

endosome to Golgi transport) results in a reduction in the amount

of cholesterol stored in late endosomes. Overexpression of Rab7 or

Rab9 also induces an increase in Nile Red staining, which

presumably reflects an increased storage of neutral lipids,

including cholesterol esters in lipid bodies. The synthesis of

cholesteryl esters, which have lower biological toxicity than free

Table 1. Cholesteryl ester content and relative abundance in
Toxoplasma.

SPECIES % CHOLESTERYL ESTER SPECIES

C18:1 42.4

C16:0 25.5

C20:1 7.2

C16:1 5.5

C18:0 3.4

C18:2 3.0

C20:4 2.6

C22:6 1.9

C22:5 1.8

C22:4 1.7

C20:3 1.5

C16:2 0.6

C24:1 0.6

C22:1 0.5

C20:2 0.4

C18:3 0.3

C22:0 0.3

C22:3 0.3

C24:4 0.2

C20:5 0.2

C24:3 0.1

Quantitative analysis of MRM spectra from T. gondii showing the percent of
species of cholesteryl esters.
Data have been collected from 3 different parasite preparations. Total area
intensity is 2,651,000 cps (100%).
doi:10.1371/journal.ppat.1002410.t001
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Figure 9. Content of cholesteryl esters in TgNCR1-deficient parasites. The levels of various species of cholesteryl esters were quantified from
MRM spectra of the DNCR1 and parental strains. Statistically significant differences in the amounts of several cholesteryl esters were found in
TgNCR1-deficient parasites. The y axes are in cps. Data are means 6 SD from 3 independent populations from each strain.
doi:10.1371/journal.ppat.1002410.g009
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sterols, provides an efficient and readily accessible sink for

cholesterol, and this process can then compensate for the loss of

NPC1 activity. By analogy, the accumulation of additional lipid

bodies and the bulky production of cholesteryl esters in TgNCR1-

deficient parasites may be viewed as a compensatory mechanism

activated by the mutant parasites to circumvent the lipotoxic

effects of free cholesterol accumulation. Although we do not know

whether there is transient accumulation of free cholesterol in

mutant parasites, the high number of cholesteryl ester-containing

lipid bodies would implicate TgNCR1 in cholesterol movement

e.g., delivery of cholesterol to organelles. In fact, the trafficking of

cholesterol to large-size lipid bodies has been observed in human

NPC fibroblasts [56]. The enlargement of lipid bodies is caused by

the abnormal fusion of lipid bodies with one another, but upon

correction of the NPC phenotype by ectopic expression of NPC1,

cholesterol is targeted to small-sized lipid bodies. It has been

proposed that the activity of NPC1 resides in the maintenance of

normal sized lipid bodies, possibly by preventing their fusion. T.

gondii contains two ACAT enzymes located to the ER, which are

both essential for parasite development [37; Lige and Coppens,

data in preparation]. Inventories of cholesteryl esters produced by

Toxoplasma reveal a predominant content of cholesteryl oleate and

palmitate (,70%) as well as other esters with polyunsaturated fatty

acids that are rarely found in mammalian cells. An overall increase

of ,30% in cholesteryl esters is observed in TgNCR1-deficient

Toxoplasma, reflecting that the cycle of esterification/hydrolysis of

cholesterol esters is severely dysregulated in mutant parasites. This

phenotype may result in an impairment of cholesteryl ester

hydrolysis to free cholesterol. The Toxoplasma genome contains a

gene coding for a cholesteryl ester hydrolase homolog

(TgME49_038200) that can be involved in this function.

Alternatively, ACAT activities can be stimulated in mutant

parasites in response to accumulated free cholesterol. Concomitant

to the increase in cholesteryl ester content, the number and size of

lipid bodies are dramatically enhanced in mutant parasites,

probably to collect excess cholesteryl esters. While TgNCR1 has

never been detected on parasite lipid bodies, the accumulation of

lipid bodies and cholesteryl esters in the DNCR1 strain suggest

that TgNCR1 may regulate the cycles of cholesterol esterification

and lipid body content.

Lipidomic analyses reveal that Toxoplasma contains more than

twenty different species of sphingolipids consisting of both saturated

and unsaturated fatty acids. The origin of sphingolipids in the

Figure 10. Content of triglycerides in TgNCR1-deficient parasites. Triglyceride levels were quantified from MRM spectra of the DNCR1 and
the parental strains. Levels of two species of triglycerides: POS (palmitate:oleate:stearate) and POL (palmitate:oleate:linoleate) were similar in the two
parasite populations. The y axes are in cps. Data are means 6 SD from 3 independent populations from each strain.
doi:10.1371/journal.ppat.1002410.g010

Table 2. Sphingomyelin content and relative abundance in
Toxoplasma.

SPECIES % SPHINGOMYELIN SPECIES

C20:0 44.0

C22:1 28.0

C18:0 12.6

C20:1 7.8

C22:0 5.5

C16:0 1.0

C24:1 0.4

C18:1 0.4

C16:1 0.2

C24:0 0.1

Quantitative analysis of MRM spectra from T. gondii showing the percent of
species of sphingomyelins.
Data have been collected from 3 different parasite preparations. Total area
intensity is 158,990,000 cps (100%).
doi:10.1371/journal.ppat.1002410.t002

Table 3. Ceramide content and relative abundance in
Toxoplasma.

SPECIES % CERAMIDE SPECIES

d16:0 82.9

d18:0 8.0

d24:1 3.3

d24:0 2.2

d16:1 0.9

d20:0 0.8

d18:1 0.7

d20:0 0.6

d26:0 0.3

d26:1 0.2

d22:1 0.1

Quantitative analysis of MRM spectra from T. gondii showing the percent of
species of ceramides.
Data have been collected from 3 different parasite preparations. Total area
intensity is 1,808,300 cps (100%).
doi:10.1371/journal.ppat.1002410.t003
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parasite remains unclear. Evidence for de novo sphingolipid

synthesis by Toxoplasma is based on the indirect effect of drugs

known to block sphingolipid biosynthesis in mammalian cells or

fungi but their enzymatic targets have not been identified in the

parasite [57]. Other studies support the active scavenging of host

cell-derived ceramides by Toxoplasma [58; Romano and Coppens,

data in preparation]. Like in NPC1-deficient mammalian cells, the

homeostasis of sphingolipids is altered in TgNCR1-deficientpar-

asites, with a selective accumulation of several species of very-long-

chain fatty acids. A few species of phosphatidylethanolamine and

phosphatidylserine also show increased levels in the mutant

parasites. The cause of this accumulation is unknown. One possible

explanation may be linked to the multiple biosynthetic pathways of

serine. Besides being the precursor of ceramides, serine is involved

in the formation of phosphatidylserine and phosphatidylethanol-

amine through ethanolamine synthesis. Increases in the levels of

phosphatidylethanolamine and phosphatidylserine may be due to

the enhanced synthesis of these phospholipids via the diversion of

serine from sphingolipid pathways. The dysregulation of the

sphingolipid levels in the DNCR1 strain may have an indirect

effect on the metabolism of phospholipids, which use the same

precursor. Interestingly, an accumulation of other phospholipids,

e.g., phosphatidylcholine has been reported in NPC1-deficient

hepatocytes though the mechanism has not been explored [59].

In mammalian cells, sphingolipid metabolism is closely coordi-

nated with that of sterols as these two lipids associate physically and

there is considerable cross-talk between their metabolic pathways

[60]. Among the cooperative activities of cholesterol and sphingo-

lipids is the nucleation of lipid microdomains. Imbalance in either of

these lipids results in disease pathology. It is possible that

perturbations in sphingolipid levels in the DNCR1 mutant parasites

may be related to changes in cholesterol homeostasis, either as feed-

forward or feed-backward sequelae of cholesterol imbalance. In

addition, the accumulation of sphingolipids in the DNCR1 strain

may be due to impaired catabolism, altered vesicular transport of

these lipids and/or of cholesterol, or blockade of sphingolipid

export. In eukaryotic cells, sphingolipids and their metabolites play

key roles both as structural components of membranes and signaling

molecules that mediate responses to physiologic cues and stresses

[61]. Sphingolipids are particularly abundant on the extracellular

face of the plasma membrane, where they participate in cell-cell

communication and host-pathogen interactions [62,63]. The

structural features of sphingolipids can influence the order of the

lipid phase, and impact membrane curvature and thickness [64,65].

The distribution, function and regulation of sphingolipids in

Toxoplasma as well as the contributions of these lipids to parasite

development are unknown. Long extensions derived from the PV

membrane are observed in mutant parasites. It is then tempting to

propose that these extensions may result from the selective

incorporation of sphingolipids, i.e. sphingomyelins in this mem-

brane, which contributes to the stability of the extensions. It might

be of interest to compare the Toxoplasma PV tubules extending into

the host cytoplasm with the tubovesicular network derived from the

PV of intraerythrocytic Plasmodium that also pervades the host

cytosol. Interestingly, the biosynthesis of sphingolipids in the

malaria parasite is an import feature of this tubovesicular network

and its membranes accumulate specific sphingolipids including

sphingomyelin [66,67]. The physiological role of such extensions in

Toxoplasma is still unknown. They may participate in host cell

remodeling by deploying parasite proteins into the host cell and

recruiting host organelles to the PV. These extensions may also

serve as a route for exchange of material between two PV. The

intracellular bacterium Chlamydia trachomatis forms long fibers

extending from the inclusion membrane into the host cytosol

[37], and it has been proposed that the fibers play a role in

facilitating the generation of new infective vacuoles, and therefore

promoting bacteria replication in the host cell. Some PV

membranous extensions can also connect two PV located in

different host cells and our preliminary studies reveal the presence of

these extensions inside nanotubules connecting two mammalian

cells (Romano and Coppens, data in preparation). This feature may

represent an efficient means for Toxoplasma to disseminate among

cells and tissues like C. trachomatis. Nonetheless, the high abundance

of PV membranous extensions in virulent TgNCR1-deficient

parasites leads to the assumption that they could contribute to the

pathogenicity.

In conclusion, the phenotype of NPC1 deficiency in Toxoplasma

mimics in part the defects that have been observed in mammalian

cells and yeast lacking functional NPC1 proteins, regarding the

storage of multiple sphingolipid species. The accumulation of

cholesteryl esters in parasite mutants, as observed in hepatocytes but

not in other mammalian cells [59], is rather intriguing but may

reflect the unusual properties of cholesterol metabolism in the

parasite. Our results suggest that TgNCR1 may be an important

contributor to lipid homeostasis in T. gondii. How precisely this

protein exerts its action, e.g. as a detector of lipid levels in

membranes, lipid translocator or negative regulator of lipid

production, remains to be elucidated. One challenge for the future

is to clarify the source of sphingolipids for the parasite, and the

regulation and coordination of sphingolipid production with regards

to parasite growth and virulence. Lipid molecules play an integrated

role in human disease, and when one of them is misregulated,

pathology frequently ensues. The control of levels of many lipids is

obviously lost in the DNCR1 strain, and yet these parasites can

overcome these lipidic perturbations and remain infective. On the

one hand, these parasites adeptly respond to NCR1 loss by

producing lipid bodies for the storage of excess lipids. On the other

hand, TgNCR1-deficient Toxoplasma seems proficient in using lipids

to build new membranes for organelle biogenesis. The DNCR1

strain provides an attractive model for studying cell division in

Apicomplexa. In pursuit of a deeper understanding of the

coordination of this process, our mutant parasites allow observations

of the dynamics of the IMC and collection of ultrastructural details

about organelle partitioning between descendants.

Materials and Methods

Ethics statement
All animal procedures were approved by the Institutional

Animal Care and Use Committee of the Johns Hopkins University

following the National Institutes of Health guidelines for animal

housing and care.

Chemicals and antibodies
All chemicals were obtained from Sigma (St Louis, MO) or

Fisher (Waltham, MA) unless indicated otherwise. Solvents and

standards for chromatography were of the highest analytical

grade. Silica gel 60 thin-layer chromatography (TLC) plates

Figure 11. Content in sphingomyelins in TgNCR1-deficient parasites. The levels of several sphingomyelin species were determined by the
quantitative analysis of MRM spectra from the DNCR1 and parental strains. Higher levels of C16 and C24 sphingomyelins were measured in TgNCR1-
deficient parasites. Data are means 6 SD from 3 independent populations from each strain.
doi:10.1371/journal.ppat.1002410.g011

Role of NCR1 for Lipid Regulation in Toxoplasma

PLoS Pathogens | www.plospathogens.org 19 December 2011 | Volume 7 | Issue 12 | e1002410



Figure 12. Content in ceramides in TgNCR1-deficient parasites. Levels of ceramide species were determined by the quantitative analysis if
MRM spectra from the DNCR1 and parental strains. Higher levels of several very-long chain fatty acids ceramides in TgNCR1-deficient parasites were
observed. The y axes are in cps. Data are means 6 SD from 3 independent populations from each strain.
doi:10.1371/journal.ppat.1002410.g012
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(Merck KgAG, Darmstadt, Germany) were purchased through

EM Science (Gibbstown, NJ). Radiolabeled reagent [5,6-3H]

uracil (40 Ci/mmol) was purchased from Amersham Corp.

(Arlington Heights, IL, USA). LysoTracker Red DND-99 was

obtained from Invitrogen (Carlbad, CA). Ganglioside, sphingo-

myelin and ceramide standards were purchased from Avanti Polar

Lipids (Alabaster, AL). Primary antibodies used in this study were:

commercial mouse antibodies against HA (Roche Applied

Figure 13. Peculiarities of replication of TgNCR1-deficient parasites. A. Transmission EM of TgNCR1-deficient parasites infecting HFF for
24 h. A. The PV contains many daughter parasites in formation (arrowheads). Replicating parasites were frequently observed for the DNCR1 strain. Bar
is 1 mm. B–C. IFA on DNCR1 parasites infecting HFF for 24 h stained with antibodies against IMC1 as a marker for daughter buds (arrowheads in B).
Parasites lacking NCR1 also assemble .2 daughters per round of division (arrows in B). C illustrates a parasite assembling four daughters. The process
progresses from stage 1 (appearance of cone-shaped cisterns within the cytoplasm) to stage 7 (emergence of fully-formed daughters). Intermediate
stages show that the mother cell has divided its nucleus and is budding new daughters around each separate nucleus (stained with DAPI). D.
Transmission EM of a mutant parasite as described in panel A showing the formation of four daughters (arrowheads) within the mother cell. Each
nascent daughter is delineated by its IMC. n, nucleus. Bar is 1 mm. E. Quantification of the .2 daughter phenotype in the DNCR1 and parental strains.
Parasites undergoing endopolygeny were counted based on their DAPI-stained nuclei number and scored for the percentage of vacuoles in which
parasites were assembling .2 daughters. Most PV contained parasites assembling 3 or 4 daughters in the DNCR1 strain. Values represent means 6
S.D., n = 4 (*, P,0.0005).
doi:10.1371/journal.ppat.1002410.g013
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Science, Indianapolis, IN), myc (Cell Signaling Technology,

Boston, MA), EEA1 (Abcam, Cambridge, MA) and LAMP1 (BD

Biosciences, Palo Alto, CA), commercial rabbit antibody against

myc (Santa Cruz Biotechnology, Santa Cruz, CA), rabbit

polyclonal antibody against TgGRA7 [3] and mouse monoclonal

antibody against TgGRA3 generously provided by J.F. Dubremetz

(University of Montpellier).

Mammalian cell lines, culture conditions and parasite
propagation

Mammalian cell lines used included primary human foreskin

fibroblasts (HFF), Chinese hamster ovary cells (CHO cells) and the

somatic 2-2 mutant CHO cells with defective NPC1 kindly

provided by L. Liscum (Tufts University) [29]. All of these cells

were grown as monolayers and cultivated in a-minimum essential

medium (MEM) supplemented with 10% fetal bovine serum

(FBS), 2 mM glutamine and penicillin/streptomycin (100 units/ml

per 100 mg/ml) as described [2]. The tachyzoite RH strain of

Toxoplasma gondii and modified strains were propagated in vitro by

serial passage in HFF [68]. To evaluate parasite viability, the

measurement of [3H]uracil incorporated into the parasites was

determined as described [69].

Sequence analysis
Nucleotide and amino acid sequences were searched in the T.

gondii database (www.toxodb.org) and the NCBI database using the

BLAST algorithm [70]. Multiple sequence alignments were

created using ClustalW, and the resulting similarities were then

visualized by subjecting the alignment to BioEdit. Percent identity

and similarity were calculated using standard tool for sequence

analysis from NCBI (ncbi.nlm.nih.gov).

Cloning of full-length cDNA encoding TgNCR1
Based on the blast search results of the ToxoDB, the ORF of the

Toxoplasma homolog for NPC1 (TgNCR1: TGME49_090870) was

amplified from a T. gondii sporozoite cDNA library generously

provided by M.W. White (Montana State University) by using the

primers F-TgNCR1-P1 and R-TgNCR1-P2 (see Table S2 for the

Figure 14. Cell cycle analysis of the DNCR1 and parental strains. Flow cytometry-based DNA content measurements of the DNPC1 strain in
comparison with the parental strain and uninfected VERO cells as controls was performed at 15 h p.i. Isolated parasites from both strains and
uninfected cells were fixed in ethanol and stained with the DNA-intercalating fluorescent dye propidium iodide (PI). The histograms show
characteristic DNA distribution patterns in the three major phases of the cell cycle for each condition. The bar graph demonstrates the percentages of
cells in each phase of the cell cycle. Data are means 6 SD of three independent assays. The percentage of TgNCR1-deficient parasites accumulated in
the S phase was significantly higher than that calculated for control parasites (*, P,0.005).
doi:10.1371/journal.ppat.1002410.g014
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sequences of primers used in this study). Amplified fragments

(,3.5-kb) were subcloned into pCR2.1 using the TOPO-TA

cloning protocol (Invitrogen) and the insertion was confirmed by

enzymatic digestion with EcoRI and sequencing. The cDNA

sequence of TgNCR1 has been deposited in GenBank under the

accession number JF836804.

Plasmid constructs for expression in mammalian cells
Three plasmids were engineered for functional and localization

studies of TgNCR1. The pcDNA3.1 vector allowing the

expression of proteins with a myc tag at the C-terminus driven

by a CMV promoter was used as a backbone. For the construction

of the plasmid pTgNCR1-myc, the 59 and 39 ends of the TgNCR1

sequence were PCR-modified using primers TgNCR1-P1 and

TgNCR1-P2. The resulting PCR fragment was digested with

EcoRI and HindIII before ligation into the same restriction sites in

the pcDNA3.1 vector. This construct allows the expression of

TgNCR1 in mammalian cells with a C-terminal myc tag. We also

expressed a hybrid construct in which the C-terminal 78 residues

of TgNCR1 were replaced with amino acids 1214 to1278 of

Figure 15. Characteristics of PV membranous extensions formed by the DNCR1 and parental strains. A. Double IFA on HFF infected with
either the DNCR1 or parental strain 24 h p.i. using anti-GRA3 and anti-GRA7 antibodies revealing more intense fluorescence on extensions from the
PV membrane of the TgNCR1-deficient parasites (insets). B. Quantitative analysis of PV membranous extensions for both strains. HFF cells were
infected with either strain for 36 h. The samples were fixed and stained using anti-GRA3 antibodies. Serial optical z-sections of about 50 PV randomly
selected were obtained from each strain using fluorescent microscopy. The diameter and length of the PV tubules were measured using Volocity
software. Values shown are means 6 SD of 3 independent infected monolayers for each condition (P values are 0.008 and 0.334 for the diameter and
the length, respectively).
doi:10.1371/journal.ppat.1002410.g015
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human NPC1 by fusion PCR to generate the plasmid pTgNCR1-

hNPC1. After RNA extraction from HFF, the coding sequence

corresponding to the amino acids 1214-1278 of human NPC1 was

amplified by RT-PCR (SuperScript One-Step RT-PCR with

Platinum Taq, Invitrogen) using primers F-hNPC11214-1278 and R-

hNPC11214-1278. The construct TgNCR1D1101-1178 was created by

PCR amplification using F-myc-TgNCR1 1-1101 and R-TgNCR11-

1101. The two fragments were fused by PCR and amplified using

the primers F-myc-TgNCR11-1101 and R-hNCR11214-1278. The

fusion product was then ligated into pcDNA3.1 vector through

EcoRI and HindIII to generate pTgNCR1-hNPC1. In this

plasmid, a myc tag is introduced at the N-terminus of the resulting

protein while the expression of the C-terminal myc tag originally

present in vector pcDNA3.1. was blocked by introducing a stop

codon in the primer R-hNPC1. Using the same cloning strategy, a

plasmid control combining residues 938-1100 of TgNCR1 with

residues 1214-1278 of human NPC1 named tr.(truncated)

TgNCR1-hNPC1, was constructed with a N-terminal myc tag.

Figure 16. Detection of membranous connections between the PV of TgNCR1-deficient parasites in different cells. A. IFA on HFF
infected with either the DNCR1 or parental strain 36 h p.i. using anti-GRA7 antibodies illustrating the connection of two PV in different cells mediated
by membranous extensions. B. IFA on HFF infected with the DNCR1 strain 24 h p.i. using anti-GRA7 antibodies showing different views of PV
connected to each other in the same cells (panels a–c) or neighboring cells (panels d–f). n, host nucleus.
doi:10.1371/journal.ppat.1002410.g016
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Primers used for the fusion PCR were F-myc-TgNCR1938-1100, R-

myc-TgNCR1938-1100, F-hNPC11214-1278 and R-hNPC11214-1278.

For expression analysis in mammalian cells, cells were transfected

with the different plasmids using lipofectamine method (Invitro-

gen).

Plasmid construction for expression in Toxoplasma
To generate a strain of T. gondii stably expressing TgNCR1

wild-type or mutants with a HA tag at the N-terminus, we used the

backbone of the parasite expression vector psagCATsag_Tu-

b2358YFP obtained from the Roos laboratory (University of

Pennsylvania) to construct pHA-TgNCR1. The TgNCR1 se-

quence was modified by PCR using the primers F-HA-TgNCR1

that contains the coding sequence of an HA tag for expression at

the N-terminus and R-YFP-TgNCR1 that includes a stop codon

to block the translation of the downstream YFP. Same approach

was used for the construction of four plasmids harboring punctual

mutations in the TgNCR1 sequence. The mutations of the

targeted residues were carried out by fusion PCR. Two flanking

primers were F- HA-TgNCR1 and R-YFP-TgNCR1, and the

internal primers used were: F-TgNCR1D571N and R-Tg

NCR1D571N to generate pHA-TgNCR1D571N; F-TgNCR1P913A

and R-TgNCR1P913A for pHA-TgNCR1P913A; F-TgNCR1I957T

and R-TgNCR1I957T for pHA-TgNCR1I957T; F-TgNCR1L1100V

and R-TgNCR1L1100V for pHA-TgNCR1L1100V. To create a

strain of T. gondii transiently expressing TgNCR1 with a HA tag

at the N-terminus under the NTPase promotor, we used the

backbone of the parasite expression vector pRab5-HA containing

the nucleoside triphosphatase III (NTPase III) promoter obtained

from the Joiner laboratory (Yale University). The coding sequence

of TgNCR1 was PCR-amplified using the primers F-haNTP and

R-haNTP. The resulting PCR fragment was digested with SpeI

and PacI, and directly ligated into the NheI and PacI sites of the

pRab5-HA vector. In this construct, TgNCR1 was cloned in

frame with the upstream HA tag coding sequence in the vector.

To generate a strain of T. gondii transiently expressing TgNCR1

with a HA tag at the C-terminus under the tubulin promotor, the

TgNCR1 sequence was modified by PCR using the primers F-

NCRHA and R-NCRHA. The resulting PCR was digested by

BamHI and AvrII and ligated into the BglII and AvrII sites of the

sagCATsag_Tub2358YFP vector. The reverse primer contained

the coding sequence of HA tag followed by a stop codon to block

the translation of the downstream YFP tag. For transient

transfection in T. gondii, expression plasmids containing

TgNCR1coding sequences, wild-type or mutants, were trans-

formed in E. coli DH-5a and isolated using Qiagen Plasmid

Purification Kits. Parasites were transfected by electroporation as

described [6].

Genetic disruption of TgNCR1 gene
To create the DNCR1 strain, a fusion PCR knockout construct

was generated, consisting of 39 and 59NCR1 genomic flanks fused

on either site of the hypoxanthine-xanthine-guanine phosphor-

ibosyltransferase (HXGPRT) selectable marker cassette (Figure

S9). Genomic flanking sequences of the TgNCR1 gene were

obtained from the Toxoplasma database (www.toxodb.org; version

4.3). Primers were designed to amplify ,550-bp of each of the two

flanking regions from the genomic DNA of the RH strain of

Toxoplasma. Two flanks were amplified to overlap on one end with

the HXGPRT selectable marker cassette, and similarly, the

Figure 17. Growth features of TgNCR1-deficient parasites in vivo. Virulence assays of TgNCR1-deficient parasites. 56104 parasites of the
DNCR1 or parental strains were intraperitoneally injected into four BALB/c mice per group. Data shown are means of 3 separate assays with ,5%
variation (S.D.).
doi:10.1371/journal.ppat.1002410.g017
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HXGPRT marker cassette was amplified from pminiHXGPRT

plasmid to incorporate the TgNCR1 sequence on the other end.

The three individual fragments corresponding to 59 flank, 39 flank

and HXGPRT were obtained by PCR reactions using primers

KOPCR-1 and KOPCR-4, KOPCR-5 and KOPCR-2, KOPCR-

3 and KOPCR-6, respectively. The three PCR fragments were

then used as template to generate the fusion construct using

primers KOPCR-1 and KOPCR-2 as shown in Figure 5. Deletion

of TgNCR1 from the parasite genome and HXGPRT arrangement

were verified by PCR and Southern blot analyses. For PCR

confirmation, genomic DNA was isolated from the colonies

obtained through selection and used as template for PCR.

Replacement of TgNCR1 by HXGPRT was monitored using a

primer outside the 59 genomic flanking region (P1) and a primer

within the selectable marker HXGPRT (P2). The primer pairs P3-

P4 and P5-P6 were used to assert the absence of TgNCR1/the

presence of a single copy of HXGPRT in the DNCR1 strain and

the presence of TgNCR1/the absence of HXGPRT in the

DKu80DHXGPRT (DK80) parental strain [71], respectively.

For Southern blotting, the primers F-NPC-sb-1 and R-NPC-sb-1

were used in the PCR to generate a ,0.9-kb probe specific for the

HXGPRT gene. Genomic DNA samples (80 mg) were digested with

AgeI and electrophoresed through 0.7% agarose gels. The DNA

was then transferred onto a Hybond N+ membrane (Biotech) and

hybridized randomly with the 32P-labeled DNA probe. Blots were

then washed at appropriate stringency and visualized by

autoradiography.

Selection of parasite stable lines
For the generation of the DNCR1 strain, fusion PCR products

(15–20 mg) containing 59 UTR of TgNCR1 gene, HXGPRT

cassette and 39 UTR of TgNCR1 gene were electroporated into the

parasite DKu80 strain [71] as described [6]. After overnight

growth, transformants were placed under 25 mg/ml of mycophe-

nolic acid and 50 mg/ml of xanthine. Transformant pools were

tested by PCR to validate the deletion of NCR1 in parasites, and

TgNCR1 knockout parasites were further selected by limiting

dilution under drug selection. Individual knockout clones were

then plated in 96-well plates and cultivate to ensure clonality.

Fusion PCR construct for complementation
To create the construct for the complementation of the DNCR1

strain, the same fusion PCR approach shown in Figure S9 was

used. Two fragments, 59 and 39 flanking sequences of the NCR1

gene, were amplified using the primers KOPCR-1 and Ncomp-4,

Ncomp-5 and KOPCR-2, respectively, to overlap on one end with

the TgNCR1 coding sequence. The third fragment, TgNCR1

coding sequence, was amplified using primers Ncomp-3 and

Ncomp-6. The three PCR fragments were then used as template

to generate the fusion construct using the primers KOPCR-1 and

KOPCR-2.

Negative selection of HXGPRT with 2-hydroxy-6-
mercaptopurine

For the complementation of the DNCR1 strain, 25 mg of the

fusion PCR product was electroporated into the DNCR1 strain.

Twenty four hours post-transfection, the culture media of

transformants was replaced with DMEM containing HEPES

and 1% dialyzed FBS, and the tranformants were placed under

the selection of 0.85 mg/ml of 2-hydroxy-6-mercaptopurine. Drug

resistant transformant pools were tested by PCR to validate the

replacement of HXGPRT with NCR1 in parasites, and NCR1-

complemented parasites were further selected by limiting dilution

in 96-well plates. Clones were then tested using drug selection to

ensure that they grow in 2-hydroxy-6-mercaptopurine but no

longer in mycophenolic acid and xanthine. After the selection, the

59 integration of TgNCR1 coding sequence was confirmed by

PCR using the pair of primers P1-P7, and the 39integration was

verified by PCR using the pair of primers P8-P9.

Recombinant peptide expression in E. coli and affinity
purification

To generate antibodies against TgNCR1, we engineered a

plasmid to produce a recombinant peptide corresponding to the

sequence of TgNCR1162-501. The coding sequence corresponding

to TgNCR1162-501 was PCR-amplified using the primers F-

TgNCR1162-501 and R-TgNCR1162-501 and directly cloned into

the BamHI and HindIII sites of the pQE-30 vector (Qiagen,

Hilden, Germany) to generate N-terminal 6-His tagged fusion

protein. The recombinant peptide expressed in E. coli M15 strain

were purified under denatured condition on Ni2+-NTA resin

according to the Qiagen protocol. After purification, the peptide

was refolded by diluting the sample 10 times in the refolding buffer

(50 mM Tris/HCl pH 7.5, 1 mM EDTA, 1 M L-arginine, 1 mM

reduced form of glutathione, 0.8 mM of oxidized form of

glutathione) at 4uC overnight before concentration and dialysis

against phosphate-buffered saline (PBS). Some batches of

antibodies against TgNCR1162-501 were further preadsorbed on

a fibroblast lysate (overnight, 4uC) to diminish unspecific cross-

reactions between the primary antibody and host cell epitopes.

Immunoblot analysis of parasites stably expressing
HA-TgNCR1

For immunodetection, transgenic parasites were lysed in the M-

PER mammalian protein extraction reagent (Pierce Biotechnology,

Rockford, IL). The cell extracts were suspended in SDS gel-loading

buffer (50 mM Tris–HCl (pH 6.8), 50 mM 2-mercaptoethanol, 2%

SDS, 0.1% bromophenol blue, 10% glycerol) and lysed by boiling in

a water bath. The samples were subjected to SDS-PAGE, and the

proteins were then electrophoretically transferred to a membrane

(Immobilon Transfer Membranes, Millipore, Bedford, MA). The

membrane was immersed in blocking buffer (PBS containing 3%

skim milk) for 60 min, and then incubated with anti-HA antibody

(1:5000) in the blocking buffer for 60 min. Unbound antibody was

removed by washing the membrane six times with blocking buffer.

Next, the membrane was incubated with horseradish peroxidase-

conjugated goat anti-mouse IgG antibody (Amersham Pharmacia

Biotech; dilution, 1:1000) in blocking buffer for an additional hour,

before detection by chemiluminescence.

Cell cycle analysis
Vero cells were infected with either the DNCR1 or parental

strain at the M.O.I of 10 and washed every 2 h p.i. to synchronize

the infection. Fifteen hours p.i., infected cells were exposed to the

calcium ionophore A23187 at 4 mM for 10 min to induce parasites

egress. Parasites in the supernatant were collected by aspiration,

washed by centrifugation and fixed in ice-cold ethanol (70%),

followed by incubation with propidium iodide (PI) solution

(0.01 mg/ml PI; 0.01 mg/ml DNAse-free RNAse A; 0.1% Triton

X-100; 1 mg/ml sodium citrate) at 4uC overnight. Uninfected

VERO cells as controls were treated similarly to infected cells.

Flow cytometry analysis was performed on a FACScan flow

cytometer (Becton Dickinson, Mountain View, CA). Cell cycle

distribution pattern was assessed using FlowJo software (Tree Star,

Inc.); G1, G2 and S peaks were defined using the Dean-Jet-Fox

model.
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Mice and in vivo virulence assays
5 week-old female BALB/C mice were purchased from The

Jackson Laboratory (Bar Harbor, ME). Groups of six mice were

infected intraperitoneally with 56104 tachyzoites of DNCR1 or

DKu80DHXGPRT parasites. The survival of mice after infection

was monitored daily. Results of three independent experiments are

presented.

Measurement of lipids
Thin layer chromatography (TLC). Total lipids from

mammalian cells were extracted in chloroform/methanol (v/v,

2:1), subsequently separated by TLC on silica plates using

hexane:diethyl ether:acetic acid (v/v/v, 90:10:1) for free

cholesterol and cholesteryl esters, or using chloroform:

methanol:0.2% CaCl2 (v/v/v/, 60:35:8) for gangliosides, and

visualized as described [31].

Mass spectrometry. Total lipids from the DNCR1 and

parental strains were extracted using a modified Bligh and Dyer

procedure as described [72]. Purified standards of lipids were

added directly to homogenates. Mass spectrometry analyses of

species of cholesterol, cholesteryl esters, triglycerides, sphingolipids

and phospholipids were performed using a Sciex API 3000 triple

stage quadruple tandem mass spectrometer (ESI/MS/MS) from

Sciex Inc. (Thornhill, Ontario, Canada), using methods similar to

those described in previous studies [72,73]. Peaks were evaluated

with non-parametric one-way ANOVA (Kruskal-Wallis test, with

a threshold of P-value ,0.05 considered as statistically significant.

Light and electron microscopy studies
Light and epifluorescence microscopy were performed on

infected cells seeded on sterile coverslips in 24-well culture dishes.

IFA on parasites or mammalian cells were performed as previously

described [56] using primary antibodies against GRA3 (1:100), anti-

GRA7 (1:100), myc (1:100), HA (1:1000), EEA1 (1:100), LAMP1

(1:100), and secondary antibodies (Invitrogen): anti-mouse and anti-

rabbit IgG antibodies conjugated to either Alexa 488 or Alexa 594

diluted at 1:2000. For detection of cholesterol or lipid bodies by

fluorescence microscopy, intravacuolar parasites were fixed in

paraformaldehyde, and treated as described [2,56]. Slides were

observed using a Nikon Eclipse E800 microscope equipped with a

Spot RT CCD Camera and processed using Image-Pro-Plus

software (Media Cybernetics, Silver Spring, MD) before assembly

using Adobe Photoshop (Adobe Systems, Mountain View, CA). For

analysis of PV membranous extensions, HFF were infected with

either the DNCR1 or DHXGPRT stain for 36-h. After fixation and

immunostaining for GRA7 and GRA3, parasites were imaged with

a fluorescent microscope (Nikon 90i) using a Plan-Apochromat

100x/1.4 NA. Serial optical z-sections were acquired with a

Hammatsu camera and Volocity software (Improvision, Waltham,

MA). Using the Volocity software, images were processed by

iterative restoration (deconvolution algorithm) and the length and

diameter of the PV membranous extensions, as detected by GRA3

staining, were measured. To quantify the levels of filipin

accumulation, images were collected using sequential scanning,

processed and merged using Volocity software. For ultrastructural

observation of the DNCR1 strain by thin-section transmission

electron microscopy (EM), infected cells were fixed in 2.5%

glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA) and

processed as described [56]. Ultrathin sections of infected cells were

stained before examination with a Philips CM120 EM (Eindhoven,

the Netherlands) under 80 kV. For immunoelectron microscopy,

Toxoplasma-infected cells were fixed in 4% paraformaldehyde

(Electron Microscopy Sciences) and processed as previously

described [38]. The sections were immunolabeled with anti-HA

antibodies (1:200 in PBS/1% fish skin gelatin), then with mouse

anti-mouse IgG antibodies, followed directly by 10 nm protein A-

gold particles (Department of Cell Biology, Medical School, Utrecht

University, the Netherlands) before microscopic examination.

Protein determination
Protein content was determined using the bicinchoninic acid

assay [74] with serum bovine albumin (BSA) as a standard.

Supporting Information

Figure S1 Predicted ORF of TgME49_090870 from T. gondii.

The sterol-sensing-like domain is underlined in red. Potential

transmembrane segments (according to the transmembrane folding

program: http://liao.cis.udel.edu/website/servers/TMMOD/scri

pts/frame.php?p = description) are shown in yellow while putative

N-glycosylation sites (according to the NetNGLyc 1.0 server) are in

blue.

(PDF)

Figure S2 Phylogeny of NPC1-related proteins in the indicated

organisms. The EuPath database version 2.10 was searched using

the blastp tool with the protein sequence of TGME49_090870

(full-length) to identify NPC1-related proteins among the eukary-

otic pathogens of the genera Cryptosporidium, Giardia, Leishmania,

Neospora, Plasmodium, Toxoplasma, Trichomonas and Trypanosoma.

Many Apicomplexa have one or two NPC1-like proteins. Among

other protozoa, Entamoeba species have a NPC1-related protein,

which shows close phylogeny to yeast, human and helminth NPC1

homologs. No NPC1-like gene was present in Flagellates (e.g.,

Trypanosoma, Leishmania and Giardia). The resulting full-length

sequences were aligned using ClustalW (scoring matrix = Blosum;

gap open penalty = 10; end gap penalty = 10; gap extension

penalty = 0.5; separation gap penalty = 0.05). We have calculated

an unrooted phylogenic tree according to the program Jalview

2.6.1 [22] by neighbor joining using percent identity.

(PDF)

Figure S3 Predicted transmembrane regions within the SSD of

the indicated proteins. Multiple sequence alignment of the

predicted SSD of TGME49_090870 with the human sequences

of NPC1 (GI:38649260), Patched (GI:1381236) and SCAP

(GI:66932902) using the CLUSTALW program. The five

successive transmembrane domains are indicated in color.

(PDF)

Figure S4 Characterization of the 2-2 mutant CHO cell line. A.

Fluorescence microscopy of the cells labeled with the filipin dye

showing bright punctate structures resulting from the accumula-

tion of cholesterol in endo-lysosomes. B. EM at high magnification

of these cells showing cholesterol deposits as electron-dense

materials in the overloaded lysosomes.

(PDF)

Figure S5 Cholesteryl ester (CE) levels in the mammalian

NPC1-mutant cells expressing TgNCR1-hNPC1. Quantitative

TLC analysis of neutral fraction of cellular lipid extracts from

CHO wild-type cells or mutants transfected with either the vector

only or TgNCR1-hNPC1. No significant differences in CE levels

were detected between the 3 conditions (n = 3 independent assays).

(PDF)

Figure S6 Coomassie blue-stained gel showing the 38-kDa

recombinant peptide from TgNCR1 after purification from E. coli

extracts. The peptide was used to produce antibodies against

TgNCR1.

(PDF)
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Figure S7 Immunolocalization of TgNCR1 in wild-type T.

gondii. IFA of intracellular parasites using anti-TgNCR1162-501

antibodies (dilution 1/5) showing a peripheral fluorescence signal

on the parasites forming small or large PV. Arrows in red pinpoint

stained structures that are suggestive for the inner membrane

complex, which is located beneath the plasma membrane.

(PDF)

Figure S8 Localization of TgNCR1 in parasites transiently

expressing either HA-TgNCR1or TgNCR1-HA. Immunofluores-

cence assays using anti-HA antibodies on parasites transiently

transfected with a plasmid containing HA-TgNCR1 under the

NTPase promoter (A) or HA-TgNCR1-HA under the tubulin

promoter (B) showing IMC labeling 16 h to 24 h p.i.

(PDF)

Figure S9 Schematic showing the NCR1 knockout strategy.

Double homologous recombination results in the replacement of

NCR1 with the selectable marker HXGPRT. NCR1 59 and 39

genomic flanking regions were amplified with sequences overlap-

ping the dhfr-HXGPRT-dhfr selectable marker while the

selectable marker was amplified to contain overlaps with the

NCR1 genomic flanking regions. Using fusion PCR, a DNCR1

product was created containing the genomic flanking regions of

NCR1 on either side of the selectable marker. Double homologous

recombination was used to replace NCR1 with HXGPRT.

(PDF)

Figure S10 Transmission EM of the DNCR1 strain infecting

HFF for 48 h. Knockout parasites formed large rosettes within

their PV similarly to the parental strain. Note the association of

host mitochondria (hm) with the PV membrane and the retention

of residual bodies (RB). Arrowheads show IMC profiles. Bar is

2 mm. The inset shows a phase-contrast image by light microscopy

of the DNCR1 strain.

(PDF)

Figure S11 Complementation of the DNPC1 strain with

NCR1from Toxoplasma. Top: schematic showing the two primer

sets used to verify the insertion of NCR1 into the DNCR1 strain.

The 59 integration of NCR1 coding sequence was confirmed by

PCR analysis using P1 and P7, and the 39 integration by PCR

using P8 and P9.

(PDF)

Figure S12 Ultrastructural observations of TgNCR1-deficient

parasites. Transmission EM of TgNCR1-deficient parasites

infecting HFF for 24 h. A. Replicating parasites were frequently

observed for the DNCR1 strain, indicative of synchronous

division. Images from panel a to g illustrate progressive views of

parasite endodyogeny, presenting similarities with wild-type

parasites. Arrows pinpoint IMC scaffolds. a, apicoplast; Go,

Golgi; m, mitochondrion; mi, micronemes; n, nucleus; r, rhoptries.

Bars are 1 mm.

(PDF)

Figure S13 Demonstration of tubular extensions from the PV of

wild-type parasites (RH strain). Immunofluorescence assays using

anti-GRA7 antibodies on Toxoplasma-infected cells after 24 h. Note

the presence of at least three PV membrane extensions into the

host cytosol.

(PDF)

Table S1 Analysis of phospholipid composition in the DNCR1

and parental strains by mass spectrometry. Quantitative analysis of

MRM spectra from the DNCR1 and parental strains showing

levels of various species of phospholipids. Statistically significant

differences in the amounts of few species of phosphatidylethanol-

amine and phosphatidylserine were detected in TgNCR1-deficient

parasites. Data are cps means 6 SD from 3 independent

populations from each strain.

(PDF)

Table S2 Primers used in this study.

(PDF)
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