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ABSTRACT

signatureSearch is an R/Bioconductor package that
integrates a suite of existing and novel algorithms
into an analysis environment for gene expression
signature (GES) searching combined with functional
enrichment analysis (FEA) and visualization meth-
ods to facilitate the interpretation of the search re-
sults. In a typical GES search (GESS), a query GES
is searched against a database of GESs obtained
from large numbers of measurements, such as dif-
ferent genetic backgrounds, disease states and drug
perturbations. Database matches sharing correlated
signatures with the query indicate related cellular re-
sponses frequently governed by connected mecha-
nisms, such as drugs mimicking the expression re-
sponses of a disease. To identify which processes
are predominantly modulated in the GESS results, we
developed specialized FEA methods combined with
drug-target network visualization tools. The provided
analysis tools are useful for studying the effects of
genetic, chemical and environmental perturbations
on biological systems, as well as searching single
cell GES databases to identify novel network con-
nections or cell types. The signatureSearch software
is unique in that it provides access to an integrated
environment for GESS/FEA routines that includes
several novel search and enrichment methods, ef-
ficient data structures, and access to pre-built GES
databases, and allowing users to work with custom
databases.

INTRODUCTION

Genome-wide profiling technologies for mRNAs and pro-
teins provide comprehensive recordings of biological pro-
cesses. Their high-resolution can be used to distinguish cell
and tissue types, and to classify dynamic cellular processes
into distinct biological states such as developmental stages,
defense responses to perturbagens, as well as to separate
healthy from diseased phenotypes (1,2). To take full advan-
tage of the fingerprint-level selectivity of the technology, so
called Gene Expression Signature (GES) Search (GESS) al-
gorithms are essential to accurately quantify the similar-
ities among mRNA or protein profiles available in refer-
ence databases. With these methods one can identify similar
GESs that are likely to be induced by the same or related bi-
ological mechanisms (3). This approach is analogous to the
similarity-function principle used in many areas of biology,
such as in genomics where genes with a high degree of se-
quence similarity are likely to share similar molecular func-
tions. With the availability of databases containing GESs of
thousands of treatments tested on many cell types, it is now
possible to systematically search for genetic backgrounds,
diseases, physiological conditions or small molecules induc-
ing gene expression responses that are similar to a query
GES. Both positively or negatively correlated search hits
can provide insights into previously unknown connections
among biological networks. For example, distinct diseases
may lead to overlapping mRNA expression patterns result-
ing from the same or related immune response processes.
Mutations inducing similar GESs may allow to functionally
associate them with biological processes even if the affected
genes do not share detectable sequence similarities. Simi-
larly, drugs used for different therapeutic applications may
have similar GESs due to related mode of actions (MOAs).
Among other leads, this information can be used for identi-
fying novel drug targets or for developing drug repurposing
approaches (4). Ultimately, the technology has the potential
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to lead to the discovery of novel pharmaceutical treatments
for diseases, such as for health conditions characterized by
specific GESs that are anti-correlated with those of candi-
date drugs. Beyond these utilities, the GESS technology has
a wide application spectrum for addressing fundamental re-
search problems in biology and human health.

An important requirement for the GESS technology is
the availability of reference databases containing GESs suit-
able for addressing specific research questions. GESs can be
composed of gene sets (GSs), such as the identifier sets of
differentially expressed genes (DEGs), or various types of
quantitative gene expression profiles (GEPs) for a subset or
all genes measured by a gene expression profiling technol-
ogy. Some publications refer with the term GES mainly to
GSs, or use as extended terminology ’qualitative and quan-
titative GESs’ (5). For clarity and consistency, this article
defines GES as a generic term that comprises both GSs and
GEPs (1). This generalization is important, because several
GESS algorithms are introduced here that depend on ref-
erence databases containing GSs in some and GEPs in the
majority of cases generated with various statistical methods.
To also distinguish the queries (Q) from the entries in the
reference databases (DB), they will be referred to as GES-Q
and GES-DB entries in general descriptions, and as GS-Q
or GEP-Q, and as GS-DB or GEP-DB in specific cases, re-
spectively.

Three major approaches are commonly used to assem-
ble community GES-DBs. First, they can be assembled
from the results of published genome-wide expression ex-
periments. Due to the heterogeneous nature of how re-
sult tables are organized in publications, the corresponding
publication-based collections are often composed of GSs
(e.g. DEGs in GS-DBs). Examples in this category include
GeneSigDB, MSigDB, DSigDB and GSKB. (6–10). Sec-
ond, both GS-DBs and GEP-DBs have been assembled by
systematically re-analyzing genome-wide expression data
from public repositories such as GEO (11,12). This reanal-
ysis approach allows to include the corresponding numeric
expression data, while also using consistent statistical meth-
ods for normalization, DEG detection and other analy-
sis routines across studies. Third, large-scale experimental
screening efforts have been used to assemble GEP-DBs,
such as for a wide range of genetic and drug perturbation
measurements across many cell types. These de novo screen-
ing efforts allow a high level of control over both experimen-
tal conditions as well as statistical analysis methods. Specific
examples of GEP-DBs belonging into this third category
are described in the next paragraph. Importantly, all three
categories of GES-DBs are supported by the GESS meth-
ods introduced in this article.

One of the first screening-based GEP-DBs (13) was de-
veloped by Hughes et al. It contained GEPs of 300 diverse
mutations and chemical treatments to functionally annotate
both small molecules and genes in yeast. The study demon-
strated that the cellular pathways perturbed by genetic mod-
ifications or small molecules can be determined by pattern
matching. In mammalian biology, Ganter et al. generated
a large-scale GEP-DB containing perturbations of several
rat tissues with 600 drugs (14). They also demonstrated the
utility of GEP-DBs for predicting pathological events in
rats. However, these in vivo studies did not easily scale to

larger quantities of small molecule assays mainly due to
the high cost and time of performing compound screens
on living animals. Lamb et al. generated the first large-
scale mammalian cell line-based GEP-DB, called ’Connec-
tivity Map’ or CMAP (1). Initially, it included GEPs for
164 drugs screened against four mammalian cell lines (15).
A few years later CMAP was extended to CMAP2, which
contains GEPs for 1309 drugs and eight cell lines. More
recently, a much larger GEP-DB was released by the Li-
brary of Network-Based Cellular Signatures (LINCS) Con-
sortium (16). In its initial release, the LINCS database con-
tained perturbation-based GEPs for 19 811 drugs tested on
up to 70 cancer and non-cancer cell lines along with genetic
perturbation experiments for several thousand genes. The
number of compound dosages and time points considered
in the assays has also been increased by 10-20 fold. The
CMAP/CMAP2 databases use Affymetrix Gene Chips as
the platform for expression analysis. To scale from a few
thousand to many hundred thousand GEPs, the LINCS
Consortium uses the more economic L1000 assay. This
bead-based technology is a low cost, high-throughput re-
duced representation expression profiling assay. It measures
the expression of 978 landmark genes and 80 control genes
by detecting fluorescent intensity of beads after capturing
the ligation-mediated amplification products of mRNAs
(15). The expression of 11 350 additional genes is imputed
from the landmark genes by using as training data a col-
lection of 12 063 Affymetrix gene chips (17). The substan-
tial scale-up of the LINCS project provides many new op-
portunities to explore MOAs for a large number of known
drugs and experimental drug-like small molecules. Comple-
mentary proteomics GES-DBs are also being developed by
several community projects (18). Additional large-scale ex-
pression data and databases, where GESS applications can
lead to interesting findings, consider cancer, tissue-specific,
and single cell assays, such as TCGA, GTex and Single Cell
Portal, respectively (19–21).

Because GESS results are usually composed of complex
lists of perturbagens (e.g. drugs) ranked by their GES sim-
ilarity to a GES-Q of interest, their functional interpreta-
tion is difficult with respect to the cellular networks and
pathways affected by the top ranking results. In the case
of drug-based GES-DBs, one can overcome this challenge
by utilizing the knowledge of the target proteins of the top
ranking drugs to perform functional enrichment analysis
(FEA) based on community annotation systems, such as
Gene Ontology (GO), pathways (e.g. KEGG, Reactome),
drug MOAs, or Pfam domains. To perform this analysis,
the ranked drug sets are converted into the corresponding
target gene/protein sets they modulate, and then Target Set
Enrichment Analysis (TSEA) based on a chosen functional
annotation system is pursued. Alternatively, the functional
annotation categories of the targets can be assigned to the
drugs directly to perform Drug Set Enrichment Analysis
(DSEA).

Currently, no one-stop software solution is available to
perform the analyses outlined above in an integrated man-
ner using a variety of GESS/FEA algorithms across several
pre-built or custom GES-DBs. Previous work in this field
includes web-based tools (1,16,22–24) and standalone soft-
ware (3,25). Both types are usually restricted to the usage of
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specific pre-configured GES-DBs of limited size with insuf-
ficient options to choose among GESS methods. To address
these limitations, we have developed the signatureSearch
software. This R/Bioconductor package provides several
important enhancements to the field including access to: (a)
an integrated and flexible analysis environment for GESS
applications; (b) a wide range of GESS methods; (c) novel
enrichment algorithms for interpreting GESS results; (d)
data containers, classes and accessor methods designed to
scale to very large GES data sets; (e) batch query support
for large-scale applications; (f) access to several large pre-
built GES-DBs; as well as (g) support for searching custom
GES-DBs.

The following provides a detailed description of signa-
tureSearch that is structured as follows. First, we provide
an outline of the most important data types and design
concepts of the environment. This is followed by a descrip-
tion of the general analysis workflow principles of signa-
tureSearch. Second, we introduce the underlying GESS and
FEA algorithms, and explain the design and technical func-
tionalities of the software. Fourth, we compare the perfor-
mance of the core methods on real data, and illustrate the
power of the software with a real-world use case example.
Finally, we discuss the functionalities, results and future di-
rections of this project.

A substantial amount of development effort has been in-
vested by this project to provide efficient access to some
of the largest GES-DBs that are currently available in the
public domain (e.g. CMAP2 and LINCS). Since those
databases are designed around chemical perturbation ex-
periments, the following text will mainly use applications
from the drug discovery field as examples. In this context
it is important to emphasize that the design of signature-
Search is highly generic, meaning it can be used for GES-Qs
and GES-DBs from many other research areas in biology or
human health.

MATERIALS AND METHODS

Implementation

signatureSearch has been implemented as an open-source
Bioconductor package using the R programming language
for statistical computing and graphics. The affiliated data
package signatureSearchData, provides direct access to
large data sets, such as pre-built GES-DBs and annotation
databases that are hosted on Bioconductor’s Experimen-
tHub. Both packages are freely available for all common op-
erating systems. To optimize reusability and performance,
their functions and data containers are designed based on
existing Bioconductor S4 core classes. Some of the time con-
suming computations have been implemented in C++ using
R’s C++ interface. Additional implementation details are
provided in the Software Design section below. Up-to-date
source locations and versions of data sets are provided in
the vignettes and help files of the two packages.

Data types of queries and databases

As outlined in the Introduction section, GESs of both
queries and those stored in databases can be composed of
GSs, or various types of quantitative GEPs for all genes

Table 1. Categories of GESS algorithms by data types

Category Method Query Database

Set-based CMAP GS Ranka

gCMAP Rank GS
LINCS GS Z-scoresb

Fisher exact GS GS
Correlation PCC/SCCd LFC or SIGc LFC or SIG

The table compares the different data types used as queries and databases
by the GESS methods implemented in signatureSearch. The specific GEP
types used by the methods are: arank transformed profiles, bZ-scores,
cnormalized intensities or read counts. dPearson or Spearman correlation
coefficient.

measured by a gene expression technology or only a sub-
set of them. Depending on the extent the expression data
have been pre-processed, the following distinguishes four
major levels, where the first three and fourth belong into the
GEP and GS categories, respectively. These four levels are:
(i) normalized intensity or count values from hybridization-
and sequencing-based technologies, respectively; (ii) log
fold changes (LFC) usually with base 2, Z-scores or P-
values obtained from analysis routines of DEGs; (iii) rank
transformed versions of the GEPs obtained from the results
of level i or ii and (iv) GSs extracted from the highest and
lowest ranks under level iii. Typically, the corresponding
GSs are the most up- or down-regulated DEGs observed
among two biological states, such as comparisons among
untreated versus drug treatment or disease state. The order
the DEG identifier labels are stored may reflect their ranks
or have no meaning. When unclear, the text specifies which
of the four pre-processing levels were used along with addi-
tional relevant details.

Reference databases

The GESS algorithms and data structures provided by sig-
natureSearch and signatureSearchData, respectively, are de-
signed to work with most genome-wide expression data in-
cluding hybridization- and sequencing-based methods, such
as Affymetrix or L1000, and RNA-Seq. Currently, the pre-
built GES-DBs in signatureSearchData include GEP data
from the CMap and LINCS projects that are largely based
on drug and genetic perturbation experiments performed
on variable numbers of human cell lines (1,16,26). The
CMap data were downloaded from the CMap project site
(Version build02), and the LINCS data have been down-
loaded from GEO. Additional details on the content and
design of these databases are provided in the Introduc-
tion of this article. In signatureSearchData these data sets
have been pre-processed to be compatible with the differ-
ent GESS algorithms implemented in signatureSearch (Ta-
ble 1). Additional details about pre-processing routines are
available in the Supplementary Section S1 as well as the
package documentation. In addition, the package provides
functions along with user instructions for generating cus-
tom databases that are compatible with the corresponding
GESS methods. Moreover, instructions are provided how
to work with other public domain GES-DBs including GS-
DBs, such as MSigDB and GSKB (6–10).
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Figure 1. Overview of GESS and FEA workflow. GES queries are used
to search a drug-based GES reference database for drugs inducing GESs
similar to the query. To interpret the results mechanistically, the GESS re-
sults are subjected to functional enrichment analysis (FEA) including drug
and target set enrichment analyses (DSEA, TSEA). Both identify enriched
functional categories (GO terms and/or KEGG pathways) in the GESS
results. Subsequently, drug-target networks (DTNs) are reconstructed for
visualization and interpretation.

Compatibility among data types

The types of query and database GESs that can be com-
bined in a search usually depends on the chosen GESS al-
gorithm. To avoid incorrect selections for users, the corre-
sponding GESS functions in signatureSearch enforce the us-
age of compatible query and database combinations. Which
GES types are compatible with each search method is sum-
marized in Table 1. The individual GESS methods are de-
scribed in more detail in the following subsections.

Overview of analysis workflow

A typical analysis workflow in signatureSearch consists of
three major steps (Figure 1). First, GESS methods are used
to identify biological states or perturbagens such as drugs
that induce GESs similar to a query GES of interest. The
queries can be GSs or GEPs from genetic, drug or disease
perturbations, as well as from many other experiment types.
When using a GES-DB based on drug perturbations such
as LINCS, then the MOAs of most drugs represented by
GESs in the corresponding reference databases are known.
With this information one can associate a query GES with
the corresponding molecular mechanisms including avail-
able drug-target interactions. The obtained connections are
useful to gain insights into pharmacological and/or disease
mechanisms, and to develop novel drug repurposing ap-
proaches. Second, specialized functional enrichment analy-
sis (FEA) methods using annotation systems, such as Gene
Ontology (GO), pathways or Disease Ontology (DO), have
been developed and implemented in this package to effi-
ciently interpret GESS results. The latter are usually com-
posed of lists of perturbagens (e.g. drugs or mutations)
ranked by the GES similarity scores returned by a cho-
sen GESS method. Interpreting these lists of perturbagens
without signatureSearch’s functional interpretation meth-
ods is extremely difficult. Third, network reconstruction
functionalities are integrated for visualizing the final results,
e.g. in form of drug-target networks (DTN). Figure 1 illus-
trates the major steps of a typical workflow in signature-
Search. For each GESS and FEA step, several alternative

methods have been implemented in signatureSearch to allow
users to choose the best possible workflow configuration
for their research application. Basic guidelines for choosing
software tools are provided below as well as in the documen-
tation of the package. The individual search and enrichment
methods are introduced in the sections below.

For users working in drug discovery or chemical ge-
nomics, a rich suite of chemoinformatics functionalities is
readily available to enhance the above workflow via the af-
filiated ChemmineR package (27,28). This way one can start
with structure similarity searches to first identify related
drugs represented as perturbagens in a GES database. Sub-
sequently, the corresponding GESs are used as queries in
the above GESS/FEA workflow. Moreover, one can clus-
ter GESS results by structural or physicochemical similari-
ties of the corresponding small molecules, e.g. to assess the
quality of GESS results. The approach is based on the as-
sumption that related compounds are more likely to induce
similar GESs resulting in similar GESS rankings.

Analysis methods

The following describes the methods used within each of
the three major steps of a signatureSearch analysis work-
flow. Additional technical details about the algorithms are
provided in the Supplementary Section S2 as well as in the
cited source publications.

I. GESS methods. At the time of writing signatureSearch
includes five GESS algorithms, with additional algorithms
to be added in the future. Alternatively, users can provide
their own GESS methods. Based on the data types repre-
sented in the query and database, they can be classified into
set- and correlation-based methods (see Table 1 and Figure
1). The first four methods described below are set-based,
whereas the last one is a correlation-based method. We re-
fer to a search method as set-based if at least one of the two
data components (query and/or database) is composed of
a GS (e.g. gene labels) that may be ranked or unranked. In
contrast to this, correlation-based methods require quan-
titative GEPs, usually of the same type for both the query
and the database entries, such as normalized fluorescence
intensities, read counts or Z-scores. An advantage of the
set-based methods is that their queries can be the highest
and lowest ranking gene sets in each direction derived from
a genome-wide profiling technology that may differ from
the one used to generate the reference database. However,
the precision of correlation methods often outperforms set-
based methods as will be shown in the Result section. This
is most likely a result of the larger information content used
by correlation-based methods compared to set-based meth-
ods. On the other hand, due to the nature of the expected
input, correlation-based methods are usually only an op-
tion when both the query and database entries are GEPs
generated by the same or at least comparable expression
assay technologies. In other words, set-based methods are
more technology agnostic than correlation-based methods,
but may not provide the best recall performance as shown
below. The following describes the most important features
of each of the five GESS methods. For clarity and simplicity,
the first method will be introduced in more detail, while the



PAGE 5 OF 14 Nucleic Acids Research, 2020, Vol. 48, No. 21 e124

descriptions of the remaining ones will focus mainly on their
common and unique features. Since the data types used for
the queries and reference databases are different among the
GESS methods, the corresponding input requirements will
be specified for all of them. This is important both to under-
stand the basic principles of the algorithms, and to choose
the appropriate GESS methods for specific data sets avail-
able to users.

The Connectivity Map (CMap) GESS method (1), here
termed as CMAP, uses as GS-Qs the most strongly up- and
down-regulated genes from an experiment, while the refer-
ence database is composed of rank transformed GEPs (e.g.
ranks of LFC or Z-scores) containing all genes or proteins
detected by the underlying expression technology. The ac-
tual GESS algorithm of the CMAP method is based on
identifying a maximum in a vectorized rank difference cal-
culation for each of the up and down GS-Qs separately (1).
After subtracting the down from the up maximum, or as-
signing zero to certain exceptions, the resulting raw scores
are scaled to values from 1 to –1. The final ’Connectivity
Scores’ expresses to what degree the up and down com-
ponents of the GS-Q are enriched on the top and bottom
of each database entry, respectively. The search results are
a tabulated representation of the identifiers and descrip-
tions of each GEP entry in the reference database that can
be ranked by the connectivity score obtained for the cor-
responding GS-Q. If the utilized GEP-DB was obtained
from drug perturbation experiments then the correspond-
ing GESS scores indicate which drugs induce similar or op-
posing GESs as the query. Although several variants of the
CMAP algorithm are available in other software packages
including Bioconductor, the CMAP implementation pro-
vided by signatureSearch is unique by following the original
description of the authors as closely as possible. This allows
the reproduction of the search results obtained from the cor-
responding CMAP2 web service of the Broad Institute. De-
termining whether the results generated by both tools will
consistently be the same for any GS-Q is not feasible at this
point, because CMAP2 is only available as a web service
that does not support large-scale queries required for sys-
tematic performance testing.

A more complex GESS algorithm was introduced by
Subramanian et al. (16), here referred to as LINCS method.
While related to the original CMAP method, there are sev-
eral important differences among the two approaches. First,
LINCS weights the genes in the GS-Q based on the cor-
responding differential expression values of the GESs in
the reference database (e.g. LFC or Z-scores). Thus, the
reference database used by LINCS needs to store the ac-
tual differential expression values rather than their ranks.
Another relevant difference is that the LINCS algorithm
uses a bi-directional weighted Kolmogorov-Smirnov en-
richment statistic to compute a ‘Weighted Connectivity
Score’ (WTCS) as similarity metric. If experimental de-
sign groups for the GEP entries in the database are avail-
able, such as shared cell types and treatment types, then the
WTCS can also be normalized and standardized to obtain
the ‘Normalized Connectivity Scores’ (NCS) and ‘Stan-
dardized Enrichment Scores’ (� ), respectively. To the best of
our knowledge, the LINCS search and scoring functionali-

ties in signatureSearch provides the first downloadable stan-
dalone software implementation of this algorithm.

The Bioconductor gCMAP (3) package provides access
to a related but not identical implementation of the original
CMAP algorithm described above. While the computation
of the connectivity score is similar, the main difference is
that gCMAP uses as a query a rank transformed GEP and
each entry in the reference database is a GS composed of
the labels of up- and down-regulated DEG sets. This is the
opposite situation of the CMAP method, where the query
is composed of the labels of up- and down-regulated DEGs
and the database contains rank transformed GEPs.

Fisher’s exact test (29) can also be used as a GESS
method by iteratively running the test to assess the degree of
similarity shared among a GS-Q with each entry in a refer-
ence GS-DB. This method performs an over-representation
analysis based on a two-by-two incidence matrix. The latter
comprises set comparison counts for each GS comparison
pair, including the number of genes in each GS, the num-
bers of their common and unique genes, the total number
of genes in the reference database (universe), as well as cer-
tain derivatives of these numbers. The resulting enrichment
probabilities are based on the hypergeometric distribution.
To account for the multiple hypothesis testing situation of
a search result, the obtained P-values are adjusted with the
Benjamini & Hochberg method (30). In this case the search
method is entirely set-based, because both the query and
the database entries are composed of GSs, such as DEG
sets. When the reference database is a quantitative GEP-DB
then it can be converted to a GS-DB in signatureSearch on
the fly using a user-definable cutoff (e.g. score or P-value).

If both the query and the database entries are available
as numeric GEPs then correlation-based similarity met-
rics (31), such as Spearman or Pearson correlation coef-
ficients, can be used as GESS methods. In short, correla-
tion methods express the strength and direction of a lin-
ear relationship between two sets of paired numeric val-
ues (e.g. two GEP vectors) with a correlation coefficient.
The latter is defined as the covariance of the numeric val-
ues divided by the product of their standard deviations.
As non-set-based methods, they require the same type of
quantitative gene expression values for both the query and
the database entries, such as normalized intensities or read
counts from microarrays or RNA-Seq experiments, respec-
tively. The correlation-based searches can either be per-
formed with the full set of genes represented in the database
or a subset of them. The latter can be useful to focus the
computation for the correlation values on certain genes of
interest such as a DEG set or the genes in a pathway of
interest. In this regard the correlation-based GESSs, per-
formed on subsets of genes, are unique in one important
aspect. That is, they allow generating meaningful GESS re-
sults for GEP-Qs, where the corresponding query genes can
be derived from a variety of sources or custom collections.
This means they are not necessarily expected to be the high-
est ranking gene or protein candidates, such as DEGs, dis-
covered in a genome-wide profiling experiment as it is often
expected for most set-based methods. The following refers
to a correlation-based GESS as SPall or SPsub when con-
sidering in a search with the Spearman method the data of
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all assayed genes or only a subset of them (e.g. DEG set),
respectively.

II. FEA methods. GESS results are lists of GEP-DB or
GS-DB entries ranked by the similarity metric of a cho-
sen GESS method. When searching drug-based GES-DBs,
then the corresponding drugs are ranked accordingly. In-
terpreting these search results with respect to the cellular
networks and pathways affected by the top ranking drugs
is difficult. To overcome this challenge, the knowledge of
the target proteins of the top ranking drugs can be used
to perform functional enrichment analysis (FEA) based on
community annotation systems, such as Gene Ontology
(GO), pathways (e.g. KEGG, Reactome), drug MOAs or
Pfam domains. For this, the ranked drug sets are converted
into target gene/protein sets to perform Target Set Enrich-
ment Analysis (TSEA) based on a chosen annotation sys-
tem. Alternatively, the functional annotation categories of
the targets can be assigned to the drugs directly to perform
Drug Set Enrichment Analysis (DSEA). Although TSEA
and DSEA are related, their enrichment results can be dis-
tinct. This is mainly due to duplicated targets present in the
test sets of the TSEA methods, whereas the drugs in the
test sets of DSEA are usually unique. Additional reasons
include differences in the universe sizes used for TSEA and
DSEA.

Importantly, duplications in the test sets of the TSEA
are commonly caused by several distinct drugs sharing the
same target proteins. Standard enrichment methods, such as
those used for gene set enrichment, would eliminate these
duplications since they assume uniqueness in the test sets.
Removing duplications in TSEA would be inappropriate
since it would erase one of the most important pieces of in-
formation of this approach. To solve this problem, we have
developed and implemented in the TSEA methods of signa-
tureSearch a weighting method for duplicated targets, where
the weighting is proportional to the frequency of the targets
in the test set.

To perform TSEA and DSEA, drug-target annotations
are essential. In signatureSearch, they have been assem-
bled from several sources, including DrugBank, ChEMBL,
STITCH, and the Touchstone dataset from the LINCS
project (16,32–34). Most drug-target annotations provide
UniProt identifiers for the target proteins. If necessary, pro-
tein identifier sets can be mapped via their encoding genes to
the chosen functional annotation categories, such as GO or
KEGG. To minimize bias in TSEA or DSEA, often caused
by promiscuous binders, it can be beneficial to remove drugs
or targets that bind to large numbers of distinct proteins
or drugs, respectively. To conduct TSEA and DSEA effi-
ciently, signatureSearch and its helper package signature-
SearchData, provide several convenience utilities along with
drug-target lookup resources for automating the mapping
from drug sets to target sets to functional categories (Ta-
ble 2). To avoid additional duplications caused by many-to-
one relationships among protein isoforms and their encod-
ing genes, most FEA tests involving proteins in their test sets
are performed on the gene level in signatureSearch. For this,
the corresponding functions in signatureSearch will usu-
ally convert target protein sets into their encoding gene sets

using identifier mapping resources from R/Bioconductor,
such as the org.Hs.eg.db annotation package. Because of
this as well as simplicity, the following text and the corre-
sponding documentation of the software will refer to the
targets of drugs almost interchangeably as proteins or genes,
even though the former are usually the direct, and the latter
only the indirect, targets of drugs, respectively.

The following introduces the functionalities in signature-
Search for performing TSEA on drug-based GESS results
using as functional annotation systems GO and KEGG
pathways. For this the enrichment tests can be performed
with three widely used algorithms that have been modified
in signatureSearch to take advantage of duplication infor-
mation present in the test sets used for TSEA. The rele-
vance of these target duplications is explained above. To ac-
count for multiple hypothesis testing situations, the FEA
functions support seven P-value adjustment methods. The
Benjamini & Hochberg (BH) method is usually set as the
default adjustment. The latter is used for the FEA tests
included in this article (30). First, we developed the Du-
plication Adjusted Hypergeometric Test (dup hyperG). This
test is based on the hypergeometric distribution, which de-
termines whether a discovered gene set shows an enrich-
ment in functional annotations that is more extreme than
what is expected from random sampling from the same
gene universe (35). To maintain the duplication informa-
tion in this test, the size of the test set and number of pro-
teins belonging to an annotation category (e.g. GO term)
are both adjusted by the frequency of the target proteins
in the test set. Effectively, the approach removes the du-
plications, but maintains their frequency information in
form of weighting values. Second, we developed the Mod-
ified Gene Set Enrichment Analysis (mGSEA). The origi-
nal GSEA method calculates the degree to which annota-
tion categories are enriched at the extremes of ranked gene
lists. For this an enrichment score is computed with a run-
ning sum Kolmogorov-Smirnov statistic and then evaluat-
ing significance by comparing the results to a null distribu-
tion derived from random queries (36). To perform GSEA
with duplication support, we are introducing in signature-
Search a modified GSEA (mGSEA) method, where the fre-
quency information of targets is preserved by a weighting
approach. More details on the mGSEA method are pro-
vided in Supplementary Section S2. Third, we have imple-
mented the MeanAbs (mabs) method in signatureSearch.
MeanAbs is a simple but effective method for performing
gene set-based enrichment analysis (37). It assesses the en-
richment of genes in an annotation category simply by av-
eraging their absolute values of a chosen statistics (e.g. log2
ratios or Z-scores). Subsequently, significance is evaluated
by comparing the result to a null distributions derived from
random permutations of queries.

Instead of translating ranked lists of drugs into target
sets, as for TSEA, the functional annotation categories of
the targets can be assigned to the drugs directly to perform
Drug Set Enrichment Analysis (DSEA) instead. Since the
drug lists from GESS results are usually unique, this strat-
egy overcomes the duplication problem of the TSEA ap-
proach. This way the above described enrichment methods,
such as GSEA or tests based on the hypergeometric distri-
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Table 2. List of important functionalities provided by signatureSearch and signatureSearchData

Function name Description Inputa Output and comments

(I) GES Databases
CMAP2 Affymetrix drug signatures Raw, normalized and rank-based

expression data
GES reference DB stored as
HDF5 that

LINCS L1000 drug & genetic signatures Normalized and weighted
averaged expression data

can be accessed via
signatureSearchData

Custom User provided signatures Many types of expression data from ExperimentHub or user
system

(II) GESS Methods
gess cmap CMAP method (1) GS-Q: DEG; GEP-DB:

Z-score/LFC ranks
gessResult object containing
search result

gess lincs LINCS method (16) GS-Q: DEG; GEP-DB: Z-scores table with similarity scores for
each

gess gcmap gCMAP method (3) GEP-Q: Z-score/LFC ranks;
GS-DB: DEG

perturbagen GES in the reference
database,

gess fisher Fisher’s exact test (29) GS-Q: DEG; GS-DB: DEG the query signature itself, as well
as details

gess cor Correlation methods (31) GEP-Q; GEP-DB: same genes
and GEP type

about the chosen search
parameters

(III) FEA Methods
tsea mGSEA Modified GSEA algorithm (36) Score ranked target list feaResult object containing

statistical
tsea dup hyperG Duplication adjusted hyperG test

(35)
Target set with duplication enrichment results, details about

chosen
tsea mabs meanAbs method (37) Score ranked target list functional annotation system,

labels of
dsea hyperG Hypergeometric test (35) Drug set drugs used for testing, as well as
dsea GSEA GSEA algorithm (36) Score ranked drug list their corresponding target

information
(IV) Visualization

gess res vis GESS result visualization gessResult object Dot plot of drug similarity scores
comp fea res FEA result comparison List of feaResult from FEA

methods
Dot plot comparing result
consistency

dtnetplot Drug-target networks Drug set; pathway ID Interactive network graph

The names of functions and libraries are italicized. aOnly the most common input types are listed. Acronyms are defined in the text.

bution, can be readily accommodated in the underlying sta-
tistical methods without major modifications. As explained
above, TSEA and DSEA performed with the same enrich-
ment statistics are not expected to generate identical results.
Rather, they often complement each other’s strengths and
weaknesses.

III. DTN visualization. After identifying in drug-based
GESS results enriched target classes via the above described
FEA methods, it is important to visualize the results in
graphical representations that are designed to simplify the
functional interpretation of the analysis outcomes. To ad-
dress this important need, signatureSearch provides func-
tions to render the final results in form of interactive drug-
target network representations.

In addition to network graphics, the signatureSearch
package provides several other visualization and plotting
functionalities. This includes visual summaries of GESS
ranking scores (Table 2) which can be applied to selected
perturbation types in GESS results across cell types along
with cell type classifications, such as normal and tumor
cells. In addition, various visualization functionalities for
FEA results are available, such as dotplots and gene-
concept networks. To maximize shareability and extend-
ability across open-source environments, visualization re-
sources from other packages are integrated such as cluster-
Profiler (38).

Software design

Integrating analysis software for GESS and FEA applica-
tions into an R/Bioconductor package has several advan-
tages. First, Bioconductor provides access to a large num-
ber of high-throughput genome analysis tools that are in-
teroperable by sharing the same data structures and S4
classes optimized for statistical analysis. Second, the ap-
proach simplifies the development of automated end-to-
end workflows for conducting GESSs for many applica-
tion areas. Third, it consolidates an expandable number of
GESS and FEA algorithms into a single environment that
allows users to choose the most appropriate methods and
parameter settings for a given research question. Fourth,
the usage of generic data objects and classes improves main-
tainability and reproducibility of the provided functionali-
ties, while the integration with the existing R/Bioconductor
ecosystem, such as the widely used summarizedExperi-
ment class infrastructure, maximizes their extensibility and
reusability for other data analysis applications. Fifth, it pro-
vides access to several community perturbation reference
databases along with options to build custom databases
with support for most common gene expression profiling
technologies (e.g. microarrays and RNA-Seq).

Figure 2 illustrates the design of the package with re-
spect to its data containers and methods used by the in-
dividual GES analysis workflow steps. Briefly, expression
profiles from genome-wide gene expression profiling tech-
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Figure 2. Design of signatureSearch package. GES reference databases
are constructed from expression profile collections (RNA-Seq, Affymetrix
chip or other technologies) and stored as HDF5 files. To perform GESSs,
all query parameters are defined in a qSig search object where users can
choose among over five search algorithms. The results are stored in a gess-
Result object that can be functionally annotated with different TSEA and
DSEA methods. The enrichment results are organized in an feaResult ob-
ject that can be used for drug-target network analysis and visualization.

nologies (e.g. RNA-Seq or microarrays) are used to build a
reference database stored in the Hierarchical Data Format
5 (HDF5). HDF5 is a technology that enables storage and
efficient retrieval of very large data sets. For convenience the
signatureSearchData package provides pre-built HDF5 ref-
erence databases for users. A search with a query signature
against a reference database is initialized by declaring all pa-
rameter settings in a qSig search object. Currently, users
can choose here among five different search algorithms im-
plemented in signatureSearch, while additional algorithms
will be added in the future. The five implemented algorithms
are listed in Table 2 and described in the previous section of
this article. To minimize memory requirements and improve
time performance, large reference databases are searched
by sequential or parallel processing of its GES entries in
batches of user-definable size. The search results are stored
in a gessResult object that contains all information re-
quired to be processed by the downstream functional en-
richment analysis (FEA) methods such as drug set and tar-
get set enrichment analysis (TSEA and DSEA) methods.
The resulting functional enrichment information is orga-
nized in an feaResult object that can be passed on to
various drug-target network construction and visualization
methods implemented in signatureSearch.

RESULTS

Performance comparisons of GESS methods

Test design. Compounds with similar functional or struc-
tural properties are expected to induce GESs that are more
similar among each other than those induced by com-
pounds with dissimilar properties (16). Based on this proof-
of-concept assumption, we aim to systematically compare
the performance of the six GESS methods, currently im-
plemented in signatureSearch, in recovering both functional
and structural categories using known MOA categories and
structure similarity clusters (SSC), respectively. That is, we

ask the question: do drugs with similar molecular effects or
structural features cluster in GESS results according to the
corresponding classifications?

The MOA annotations used for these tests were down-
loaded from the Touchstone database (16). These include
276 MOA categories and drug-target annotations for 1555
drugs. Since not all of the MOA categories are expected to
perform equally well in GESS performance tests, the MOAs
were ranked by their recall rates, and 25% of the top per-
formers (here 69 MOAs with 309 drugs) were used for test-
ing. To avoid bias in the final MOA selection, the recall
rates were calculated across all GESS methods. Additional
details on this filtering procedure are provided in Supple-
mentary Section S3. Examples of poor performing MOA
categories include those enriched in drugs that bind to sets
of unrelated target proteins, or drug targets positioned far
downstream of transcriptional regulation processes. In both
cases, the drugs of the corresponding MOA categories are
not expected to induce related expression changes. Thus, in-
cluding these problematic MOAs in recall performance tests
would unnecessarily degrade the overall performance of the
GESS methods.

The SSC categories were generated with the binning clus-
tering method of the ChemmineR package (27). This clus-
tering step used atom pairs for structure similarity compar-
isons and the Tanimoto coefficient as similarity metric. For
assigning compounds to clusters, a Tanimoto coefficient of
0.6 was used as similarity cutoff. The latter was chosen be-
cause it often generates, in combination with the atom pair
method, clusters of reasonable size with relatively low num-
bers of false negatives and positives (28,39). Since PC3 cells
had the best screening coverage in the LINCS database, the
5253 compounds participating in the corresponding assays
were used to generate the SSCs. Subsequently, the SSCs
were filtered the same way as the MOA categories above,
meaning only 25% of the top performers (here 139 SSCs
with 542 compounds) were used for testing.

The GESs induced by the drugs in each MOA and SSC
category were queried with each of the six GESS algo-
rithms against the LINCS database and their similarity
scores recorded for the corresponding database entries (Fig-
ure 3 A). The query GESs of each drug used for the four set-
based methods (CMAP, gCMAP, Fisher and LINCS) and
the two correlation-based methods (SPsub or SPall) were
the GSs corresponding to the 150 most strongly up- and
150 most down-regulated DEGs, and the GEPs subsetted
to the same GSs or those for all assayed genes, respectively.
The cell type, treatment time point and concentration cho-
sen for these experiments were PC3, 24 h and 10 �M, respec-
tively. Subsequently, the performance among GESS meth-
ods was compared in the form of receiver operating char-
acteristic (ROC) curves by evaluating the true positive rate
(TPR) against the false positive rate (FPR) across the full
range of similarity scores obtained for each GESS method
(40). ROCs were computed for each GESS method by calcu-
lating their cumulative TPRs and FPRs from a binary vec-
tor that was sorted by the similarity scores of the combined
query results (Figure 3B and C). In each binary result com-
ponent, drugs from the same and different categories as the
corresponding query were indicated with ones and zeros,
respectively. The same ROC calculations were performed
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Figure 3. Performance testing strategy of GESS methods. (A) The GESs
of the drugs in each MOA and SSC category were searched against the
LINCS database with each of the six GESS methods. The results were
sorted by the corresponding similarity scores, here indicated by boxes with
color gradient. GESs from the same and different MOA/SSC categories
(CAT) as the query were indicated in a binary vector with ones and ze-
ros (next to boxes), respectively. After joining the binary vectors for each
category group and re-sorting them by the corresponding scores, cumula-
tive TPRs and FPRs were plotted in form of ROCs. This was done on the
global level (B) and the CAT level (C) for the MOA and SSC classifications
separately. (D) The distributions of AUC/pAUC values from each CAT-
level are depicted by violin plots with mean values and standard deviation
(STDEV) bars given in the middle. In addition, the global AUC/pAUC
values are indicated by triangles. (E) The statistical significance of the ob-
served differences among the global AUC/pAUC values of the six GESS
methods was assessed by a bootstrap test described in the text.

on MOA and SSC categories separately. In both cases this
was done on both the category level and the global level
by generating ROCs for each category separately and all of
them combined, respectively. To quantitatively compare the
ROC performance results, we calculated the Area Under the
Curve (AUC) as well as partial AUCs (pAUCs). While the
full AUC evaluates the performance over the entire range
of GESS similarity scores, the pAUCs are used for testing
early enrichment at specific FPRs, where we chose FPRs
of 1%, 5% and 10%. To assess whether the observed per-
formance differences are statistically significant for all pair-
wise comparisons among AUCs and pAUCs (Figure 3 D-
E), the bootstrap method from Robin et al. (40,41) was used
combined with the Benjamini & Hochberg (BH) method for
multiple testing correction (30). The results of these tests are
provided in Supplementary Tables S2 and S3.

Test results. The distributions of the category level AUCs
and pAUCs for MOAs and SSCs are shown in Figure 4A–
B and C–D, respectively, in the form of violin plots that are
sorted by the corresponding global AUC and pAUC val-
ues. Figure 4 E summarizes the performance test results for
MOA and SSC categories in form of ranks of AUC and av-
eraged pAUC outcomes. The sums of the ranks (here height
of stacked bars) reflect the final performance ranking of
each GESS method.

According to the performance results in Figure 4, SPsub
consistently shows the best recall performance for MOA
and SSC categories with respect to both global and early
enrichment. LINCS performs second best for the same per-
formance metrics. The performance rankings of the other
four GESS methods are also relatively consistent across the

BA

DC

E

Figure 4. Recall performance of GESS methods on MOA and SSC cat-
egories. (A) The distributions of the ROC performance results of the 69
MOA categories are plotted in form of violin plots for each of the six
GESS methods. The corresponding mean values, standard deviation bars
and global AUCs are indicated within each violin by dots, vertical lines
and triangles, respectively. The GESS methods are ordered by increasing
global AUC values. (B) The corresponding distributions of pAUC values
are given for FPRs of 1%, 5% and 10%. In this composite plot, the GESS
methods are ordered by the mean of the ranks of their global pAUC val-
ues. (C–D) The GESS performance results of the 139 SSC categories are
plotted the same way as the corresponding MOA results. (E) The perfor-
mance results under (A)–(D) are summarized in form of stacked bar plots
where the sum of the ranks is used to order the GESS methods from left to
right by increasing performance. Each bar is composed of the ranking of
the global AUCs and the mean ranking of the corresponding pAUCs for
both MOA and SSC categories.

four AUC/pAUC metrics. Their final rankings in decreas-
ing order are: SPall, Fischer, CMAP and gCMAP (4 E). The
corresponding bootstrap test results in Supplementary Ta-
bles S2 and S3 indicate that the observed differences among
the AUC and pAUC values are statistically significant for
nearly all pair-wise comparisons.

Among the correlation-based methods, SPsub performs
better than SPall with respect to the AUC and pAUC per-
formance metrics. One reason for this trend may be a lower
noise level in the expression profiles used for computing
the correlation coefficients for SPsub than SPall. The GEPs
used for the SPsub method are usually enriched in genes
(here most up- and down-regulated DEGs) that are robustly
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expressed, whereas the full gene repertoire used by SPall
contains a larger proportion of genes with noisy expres-
sion signals. Among the set-based GESS methods, LINCS
performs best, while the classical Fisher’s exact test outper-
forms CMAP and gCMAP with respect to AUC and pAUC
metrics for both MOA and SSC categories. The stronger
performance of the LINCS method compared to the other
three set-based methods is most likely due to the additional
weighting information utilized by this method.

Importantly, the global AUC values of the GESS meth-
ods are not expected to be very close to the best possible
value of 1. However, they are in a high enough range to be
substantially distinct from random assignments of drugs to
MOA and SSC categories. In panel A and C of Figure 4, the
global AUC values for MOA and SSC categories range from
0.53 to 0.72 and 0.54 to 0.77 with mean values of 0.65 and
0.68, respectively. It also has to be noted that the AUCs of
the SSC categories are consistently higher than their MOA
counterparts. This trend is expected because the SSCs were
assembled with a single algorithm resulting in more ho-
mogeneous compound categories than the more complex
annotation-based MOA classification system.

While the ranges of the AUC values for both classifica-
tion types are reasonably high for real data, their absolute
values should not be confused with a metric suitable for
judging how well the majority of the GESS methods or the
underlying GES assay technologies perform overall. Lower
AUC values are expected for both category types mainly
due to the complex nature of the real data set used for testing
without degrading the reliability of the AUC-based rank-
ing of the GESS methods. Clearly, the statistically signifi-
cant ranking of the AUC values is the relevant information
obtained from these tests. The following gives additional
details why the maximum achievable AUC values are ex-
pected to be lower. First, the chosen MOA classifications
are based on complex drug annotation data, which often
do not have simple and unambiguous ground truth answers
as it is possible with synthetic data. The structural similar-
ity groupings of the SSC categories are also not expected to
join compounds into groups, where every member is guar-
anteed to interact with the same targets or molecular pro-
cesses. Second, the high noise level present in real large-scale
mRNA expression data make correct assignments challeng-
ing, which in turn causes an additional reduction of the
AUC values. Third, the presence of drugs binding to sev-
eral targets from different MOA and SSC categories in-
duces complex composite GESs. Finally, categories far up-
or downstream of transcriptional control processes are un-
likely to contain many drugs that recall each other to a
high degree, no matter how well a GESS method performs
overall. Despite these limitations, the MOA- and SSC-based
GESS performance testing methods, chosen for this study,
are appropriate choices in this use case, because they cap-
ture more biologically relevant information than alternative
classification approaches based on synthetic data.

Time and memory performance. The GESS methods in sig-
natureSearch process reference databases in batches with
user-definable numbers of GES entries in each iteration of
a full database scan. This allows searching of very large
databases, while capping the memory consumption within

Table 3. Time and memory performance

GESS method Time Memory

CMAP 1.2 min 3.5GB
LINCS 1.7 min 2.3GB
gCMAP 1 min 290MB
Fisher 9 s 238MB
SPall 1 min 838MB
SPsub 13 s 238MB

the resources available on a computer system without major
compromises on time performance. The time and memory
performance of the six GESS methods is given in Table 3 for
searching the LINCS database subsetted to ten thousand
entries with a batch size limit of five thousand. The differ-
ences among the methods with respect to memory footprint
and time performance for a fixed batch size is largely pro-
portional to the size differences of the data required for each
algorithm. For instance, the methods SPsub and Fisher only
require for each GES entry the GSs of the most up- and
down-regulated genes, whereas CMAP, LINCS and SPall
require quantitative or rank-transformed GEPs for all as-
sayed genes. Similarly, the processing times are shorter for
the methods with more compact database entries, due to
shorter load times when reading batches of GES entries into
memory. The above time performance results are given for
a single CPU core. If additional performance is needed (e.g.
with very large databases), then it is easy to accelerate the
search times by using the parallelization routines available
in R/Bioconductor, such as BiocParallel or batchtools (42).

Comparisons with competing software. This project imple-
ments commonly used GESS methods in a single environ-
ment including those that were previously only available as
web services. Their performance has been compared above
(Figures 3 and 4). Direct comparisons with web services are
not an option for these tests, because they require large scale
queries in the range of thousands of database searches with
control over the GES database composition. Those require-
ments are usually not supportable by web services.

Use case

The following demonstrates how the functionalities of sig-
natureSearch can be applied to discovery-oriented research
related to basic questions in biology, drug discovery and
biomedical sciences. We selected as a query the GEP of
SKB cells (skeletal muscle forming myoblasts) treated with
vorinostat to search the LINCS expression database with
the SPsub method. The latter GESS method was selected
because it produced the strongest results in the above per-
formance tests (Figures 3 and 4). Both the query (GEP-
Q) and the entries in the reference database (GEP-DB)
were based on pre-processed gene expression intensity val-
ues sub-setted to the 150 most up- and down-regulated
genes from the vorinostat treatment of SKB cells. The
drug vorinostat is a small molecule inhibitor of histone
deacetylases (HDACs). Pharmacologically, it is used as an-
tineoplastic agent and to treat cutaneous T-cell lymphomas
(CTCL). It was chosen for this proof-of-concept test be-
cause several related HDAC inhibitor drugs with well an-
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Table 4. Top ranking drugs of vorinostat query

Ranka Drug nameb
Cell

typec SCCd Targetse

1 Vorinostat SKB 1.00 HDAC1; HDAC10; HDAC11...
2 Trichostatin-a SKB 0.99 HDAC1; HDAC10; HDAC2...
3 KM-00927 SKB 0.98
4 Scriptaid SKB 0.97 HDAC1; HDAC2; HDAC3...
5 HC-toxin SKB 0.97 HDAC1
6 Belinostat SKB 0.97 HDAC1; HDAC10; HDAC11...
7 Panobinostat SKB 0.96 HDAC1; HDAC10; HDAC11...
8 PCI-24781 ASC 0.95
9 HC-toxin ASC 0.95 HDAC1
10 Vorinostat ASC 0.94 HDAC1; HDAC10; HDAC11...

The GES of SKB cells treated with vorinostat was used as query to search
the LINCS database with the SPsub method. The rows are sorted decreas-
ingly by absolute Spearman Correlation Coefficientsd. The other columns
include ranksa, drug namesb, cell types c and the gene symbols of the cor-
responding target sitese.

notated target annotations are represented in the LINCS
database. Moreover, it has been used for similar reasons by
other benchmark studies (1) to determine whether GESs of
structurally and mechanistically related drugs are able to
enrich each other at the top of GESS results.

Table 4 shows the top ten drugs of the vorinostat GESS
result identified by SPsub and ranked by absolute correla-
tion coefficients. Impressively, nearly all of the top ranking
drugs are annotated to target the same or similar HDACs as
the vorinostat query. Most importantly, the remaining two
drugs in the table, KM-00927 and PCI-24781 (Abexinos-
tat), are not yet annotated as HDAC inhibitors in the corre-
sponding drug-target databases. However, two recent stud-
ies have identified them as novel HDAC inhibitors (43,44).
PCI-24781 is an experimental drug candidate for cancer
treatment, that has been approved for Phase II clinical trials
for the treatment of B-cell lymphoma. It has also been iden-
tified as a novel hydroxamic acid-based HDAC inhibitor
(45). This result is an excellent example for demonstrating
the power of the GESS technology in identifying targets
for experimental drugs, as well as novel targets for drug re-
purposing approaches. Figure 5 compares the correspond-
ing chemical structures of the compounds listed in Table
4. They are plotted in the order of a hierarchical cluster-
ing dendrogram generated with the structure-based clus-
tering utilities of the affiliated ChemmineR package (27).
While it is not expected that GESS-based rankings will per-
fectly agree with structure-based rankings, at least in this
case the compound groupings of the two methods are in
reasonable agreement, as several compounds in Table 4 are
indeed structurally related, such as PCI-24781, panobinos-
tat, scriptaid and vorinostat.

Next, the top 100 drugs of the vorinostat GESS result
were functionally annotated with the FEA methods imple-
mented in signatureSearch. Since the results of the differ-
ent FEA methods were similar, the following considers only
the results of the dup hyperG method. Table 5 shows the five
highest ranking GO terms of the Molecular Function (MF)
and Biological Process (BP) ontology. The most highly en-
riched terms of the MF ontology are all related to histone
deacetylase activity. This is expected since the target sites
of the top ranking drugs are predominantly HDACs. The

corresponding enrichment result for the BP ontology agrees
well with the MF result since it is also dominated by his-
tone deacetylation processes. Given vorinostat’s HDAC in-
hibitor activity, the obtained FEA results demonstrate the
efficiency of signatureSearch’s FEA methods in identifying
the correct pathways targeted by a query drug. Besides pro-
cesses related to histone deacetylase activities, several bio-
logically connected processes are enriched as well (Table 5),
such as hair follicle placode formation. This is interesting
because a recent study has shown that the suppression of
epidermal HDAC activity leads to disrupted hair follicle re-
generation and homeostasis (46). This finding demonstrates
the utility of the GESS/FEA workflow in identifying alter-
native target pathways that may enable novel drug repur-
posing approaches for query drugs of interest in the future.
To highlight the importance of the FEA step in the overall
workflow, Supplementary Table S1 provides the enrichment
results when using the genes of the initial GEP-Q instead of
the downstream drug-target gene set from the GESS result
for the same GO term enrichment analysis. When compar-
ing the top ranking GO terms in both Table 5 and S1 then
there are no top ranking GO terms shared among the re-
sults. This is not surprising since the GES-Q contains the
genes exhibiting the most pronounced expression changes
after treating SKB cells with vorinostat, while the genes
used for the FEA analysis are the genes encoding the tar-
get proteins of the top ranking drugs in the initial GESS
search result. Typically, there are no or only minor overlaps
expected among the genes in these two sets (here 1.6% of
GEP-Q). Most importantly, only the FEA approach iden-
tifies the correct target pathway for the vorinostat query,
whereas the GO term enrichment analysis with the genes
from the initial GES-Q contains terms that are fundamen-
tally different and unrelated to the vorinostat target path-
way. This comparison demonstrates the critical role of the
FEA method for the overall analysis workflow in predicting
target pathways in drug-based GESS results with signature-
Search.

Subsequently, drug-target networks (DTNs) were con-
structed to visually interpret the FEA results, and to priori-
tize interesting candidate drugs. A sample DTN is shown in
Figure 6 where the term ’histone deacetylase activity’ (H3-
K14 specific; GO:0031078) was chosen since it is one of the
highest scoring GO MF terms in the result of the previous
workflow step. The drugs and target proteins are depicted in
Figure 6 as yellow boxes and circles, respectively, including
vorinostat and its histone deacetylase targets. In the signa-
tureSearch package these DTN graphs are fully interactive,
where users can zoom into network modules, as well as se-
lect drugs and/or proteins in the drop-down menu located
in the upper left corner of the plot.

DISCUSSION

We have developed signatureSearch as an integrated and ex-
tendable environment for performing GESSs with a variety
of algorithms combined with FEA and DTN visualization
methods. The latter two are useful for guiding the down-
stream biological interpretation of GESS results. As out-
lined in the introduction and method sections, the software
provides many useful and unique features, such as access to
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Figure 5. Structure-based hierarchical clustering dendrogram for drugs listed in Table 4. Experimental drugs lacking structure information are not included.

Table 5. Top ranking MF and BP terms obtained with dup hyperG

Ontologya GO termb N GOc N testd N matche P-valuef P-adjustg

MF HDAC activity (H3-K14) (GO:0031078) 11 323 97 0.00e+00 0.00e+00
MF NAD-dependent HDAC activity (H3-K14, GO:0032041) 11 323 97 0.00e+00 0.00e+00
MF NAD-dependent HDAC activity (GO:0017136) 16 323 98 0.00e+00 0.00e+00
MF NAD-dependent PDAC activity (GO:0034979) 17 323 99 0.00e+00 0.00e+00
MF HDAC activity (GO:0004407) 44 323 98 0.00e+00 0.00e+00
BP Histone H3 deacetylation (GO:0070932) 21 323 98 0.00e+00 0.00e+00
BP Histone H4 deacetylation (GO:0070933) 11 323 59 0.00e+00 0.00e+00
BP Histone deacetylation (GO:0016575) 86 323 101 0.00e+00 0.00e+00
BP Hair follicle placode formation (GO:0060789) 5 323 23 0.00e+00 0.00e+00
BP Fungiform papilla morphogenesis (GO:0061197) 5 323 23 0.00e+00 0.00e+00

The columns contain: GO ontologya; GO term description/IDb; number of proteins in GO termc, test setd and intersecte, raw P-valuef, and adjusted
P-valueg using the BH method for multiple testing correction. To save space, longer GO term descriptions have been shortened.

Figure 6. Drug-target network module of Histone Deacetylase Activity
(H3-K14 specific; GO MF ID: GO:0031078). Drugs and targets are de-
picted as boxes and circles, respectively. The color of the circles indicates
the number of connections.

an end-to-end workflow toolkit covering most functional-
ities required for a wide range of GESS applications rele-
vant to discovery-oriented research. It also provides access
to an unmatched number of algorithms for both GESS and
FEA routines, where we introduce several novel enrichment
algorithms for interpreting GESS results. Importantly, the
GESS methods in signatureSearch scale from single GES
queries to large scale applications with thousands of GES
queries using public or custom reference databases. This en-

ables permutation tests with large numbers of randomized
queries required to evaluate the robustness of GESS/FEA
results. Typically, these types of large scale queries are not
practical to support in other GESS tools that are predomi-
nantly based on web services.

This study is also unique by testing the performance of
the GESS algorithms in recalling MOA and SSC categories
with drug-induced query GESs. To the best of our knowl-
edge, the performance of GESS methods has not been sys-
tematically compared as it has been done here. In these per-
formance tests we find that the correlation-based methods,
SPall and SPsub, outperform most set-based methods with
respect to the chosen ROC performance criteria. Among the
set-based methods LINCS performs the best, most likely
because of the additional weighting information utilized by
its algorithm.

Although correlation-based GESS methods show the
best performance in our tests, the query types required for
them are more complex than the simple gene identifier sets
required for the set-based methods. Moreover, for compat-
ibility reasons the quantitative queries of correlation meth-
ods should preferentially be derived from the same gene
expression technology and organism used for generating
the reference database. In this regard, the set-based meth-
ods are less restrictive and more versatile than correlation-
based methods. Especially, for complex expression experi-
ments, it is often easier to obtain a GES query composed
of an identifier set of induced and repressed genes than the
quantitative counterpart required for correlation-based ap-
proaches. Query gene sets from related species can also be
used by translating them via ortholog mappings to the cor-
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responding genes represented in the GES database. More-
over, set-based methods are more likely to exhibit reason-
able performance in cross-omics queries, such as query-
ing transcriptomic GES databases with up- and down-
regulated gene sets from GWAS, proteomics or possibly
even metabolomics studies. In summary, an advantage of
set-based methods is that they are more technology agnos-
tic but may not reach the recall performance of correlation-
based methods.

Integrating important GESS and FEA methods into an
R/Bioconductor package also offers several unique advan-
tages not present in related software applications. Here,
the signatureSearch packages simplifies the development of
automated end-to-end workflows for conducting signature
searches in many application areas. It consolidates an ex-
tendable number of GESS and FEA algorithms into a sin-
gle environment that allows users to compare results among
methods as well as define and incorporate custom meth-
ods. Moreover, the usage of generic data objects and classes
improves maintainability and reproducibility of the pro-
vided functionalities, while the integration with the existing
R/Bioconductor ecosystem maximizes their extensibility
and reusability for other data analysis applications. Finally,
signatureSearch provides access to several community per-
turbation reference databases along with options to build
custom databases with support for most common mRNA
expression profiling technologies. This design will also sup-
port expression profiling databases from other omics do-
mains such as proteomics.

CONCLUSION

signatureSearch provides a general purpose environment
for identifying similar GESs in reference databases, while
also guiding the downstream functional interpretation of
the discovered connections. The functionalities of the pack-
age pave the way for discovering biologically relevant con-
nections in gene networks. Those are useful to gain in-
sights into stress-response pathways, to improve treatments
for diseases, or to identify novel target site candidates for
experimental drug-like small molecules or alternative tar-
gets of approved drugs for drug-repurposing approaches.
In the future we will continue to enhance the package by
adding several new features. First, we will include additional
GESS/FEA methods optimized and tested for sparse GES
data, such as single cell experiments. Second, support will be
added for managing large numbers of heterogeneous query
GESs in a single container that can be populated from flat
files or a custom query database. Third, a batch run func-
tion will be added to execute the GESS/FEA workflow
on any number of these heterogeneous queries automat-
ically. Fourth, support for community workflow environ-
ments, such as CWL and systemPipeR (47), will be added to
operate signatureSearch from start to finish from R or other
popular programming languages such as Python or Bash.

AVAILABILITY OF SOFTWARE AND DATA

signatureSearch and signatureSearchData are open
source packages that have been reviewed, tested
and accepted by the Bioconductor project. Both

are freely available for all common operating
systems from Bioconductor and GitHub here:
https://bioconductor.org/packages/signatureSearch and
https://bioconductor.org/packages/signatureSearchData.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We acknowledge the Bioconductor core team and commu-
nity for providing valuable input for developing signature-
Search and signatureSearchData. The method performance
tests of this study were performed in the High-Performance
Computing Center (HPCC) at UC Riverside.

FUNDING

Research reported in this publication was supported by
the National Institute On Aging of the National Insti-
tutes of Health under Award Numbers [U19AG023122,
U24AG051129, S10OD016290-01A1, UH2AG064706,
U24AG051129-04S1]; and by the National Science Foun-
dation [ABI-1661152, PGRP-1810468, MRI-1429826,
DBI-2031819]. The content is solely the responsibility of
the authors and does not necessarily represent the official
views of the funding agencies. Funding for open access
charge: National Institutes of Health.
Conflict of interest statement. None declared.

REFERENCES
1. Lamb,J., Crawford,E.D., Peck,D., Modell,J.W., Blat,I.C.,

Wrobel,M.J., Lerner,J., Brunet,J.P., Subramanian,A., Ross,K.N. et al.
(2006) The connectivity map: using gene-expression signatures to
connect small molecules, genes, and disease. Science, 313, 1929–1935.

2. Siavelis,J.C., Bourdakou,M.M., Athanasiadis,E.I., Spyrou,G.M. and
Nikita,K.S. (2016) Bioinformatics methods in drug repurposing for
Alzheimer’s disease. Brief. Bioinform., 17, 322–335.

3. Sandmann,T., Kummerfeld,S.K., Gentleman,R. and Bourgon,R.
(2014) gCMAP: user-friendly connectivity mapping with R.
Bioinformatics, 30, 127–128.

4. Corsello,S.M., Bittker,J.A., Liu,Z., Gould,J., McCarren,P.,
Hirschman,J.E., Johnston,S.E., Vrcic,A., Wong,B., Khan,M. et al.
(2017) The Drug Repurposing Hub: a next-generation drug library
and information resource. Nat. Med., 23, 405–408.

5. Chang,J.T., Gatza,M.L., Lucas,J.E., Barry,W.T., Vaughn,P. and
Nevins,J.R. (2011) SIGNATURE: a workbench for gene expression
signature analysis. BMC Bioinformatics, 12, 443–451.

6. Cantini,L., Calzone,L., Martignetti,L., Rydenfelt,M., Blüthgen,N.,
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and Tamayo,P. (2015) The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst, 1, 417–425.
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