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A B S T R A C T   

Tumor microenvironment (TME) is closely associated with the progression and prognosis of head 
and neck squamous cell carcinoma (HNSCC). To investigate potential biomarkers for predicting 
therapeutic outcomes in HNSCC, we analyzed the immune and stromal status of HNSCC based on 
the genes associated with TME using the ESTIMATE algorithm. Immune and stromal genes were 
identified with differential gene expression and weighted gene co-expression network analysis 
(WGCNA). From these genes, 118 were initially selected through Cox univariate regression and 
then further input into least absolute shrinkage and selection operator (LASSO) regression 
analysis. As a result, 11 genes were screened out for the TME-related risk (TMErisk) score model 
which presented promising overall survival predictive potential. The TMErisk score was nega-
tively associated with immune and stromal scores but positively associated with tumor purity. 
Individuals with high TMErisk scores exhibited decreased expression of most immune checkpoints 
and all human leukocyte antigen family genes, and reduced abundance of infiltrating immune 
cells. Divergent genes were mutated in HNSCC. In both high and low TMErisk score groups, the 
tumor protein P53 exhibited the highest mutation frequency. A higher TMErisk score was found 
to be associated with reduced overall survival probability and worse outcomes of 
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immunotherapy. Therefore, the TMErisk score could serve as a valuable model for the outcome 
prediction of HNSCC in clinic.   

1. Introduction 

HNSCC is the predominant cancer type, originating from the squamous epithelium of the oropharynx [1]. Annually, HNSCC affects 
more than 500,000 people worldwide, leading to about 380,000 deaths [2]. HNSCC can be categorized into four subtypes based on 
clinical, histological and molecular characteristics: atypical, basal, classical and mesenchymal [3]. One of the risk factors associated 
with HNSCC is HPV infection. On the basis of the tumor–node–metastasis (TNM) staging system, conventional treatments for HNSCC 
typically involve surgery, radiotherapy, and chemotherapy. In spite of advancements in multimodal intervention approaches, the 
5-year overall survival (OS) rate for HNSCC patients remains limited to approximately 50 % [4]. Although recent genetic analyses have 
provided insights into novel gene markers [5–7], the identification of predictive or prognostic biomarkers in HNSCC is still an ongoing 
challenge. 

The TME refers to the complex multicellular condition outside the developing tumor. This intricate environment is composed of 
immune cells, which play roles in both tumor suppression and promotion, stromal cells that provide structural support, and an 
extracellular matrix that contributes to tissue architecture. Additionally, the TME includes a range of secreted molecules that facilitate 
cell-to-cell communication and influence tumor progression [8]. Increasing evidence indicates that the TME is pivotal in regulating 
cancer progression and influencing prognosis [9]. Furthermore, molecules residing within the TME have been recognized as essential 
biomarkers for forecasting responses to treatments like radiotherapy and chemotherapy [10,11]. Therefore, assessing the TME con-
dition of individuals is crucial for forecasting the prognosis of the illness and the effectiveness of treatments. 

However, the quantitatively assessing the TME status in HNSCC is a challenging task. Fortunately, Yoshihara et al. have introduced 
a new algorithm called ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data). This 
algorithm enables the evaluation of the stromal and immune signatures, as well as the estimation of tumor purity [12]. In this study, 
leveraging large-scale HNSCC phenotype, survival, and gene mutation data from public databases, we utilized the ESTIMATE tool to 
construct a TMErisk score model for predicting prognosis in individuals with HNSCC. 

2. Materials and methods 

2.1. Data source 

TCGA (The Cancer Genome Atlas) HNSCC data were downloaded from Genomic Data Commons Data Portal (https://portal.gdc. 
cancer.gov/projects/TCGA-HNSC). The subtype and HPV data of TCGA-HNSCC were available in the supplementary files of the 
associated study [3]. Gene expression data of melanoma (GSE91061) [13] were obtained from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). Gene expression data of IMvigor210 bladder cancer were extracted using “IMvi-
gor210CoreBiologies” (version 1.0.0). Infiltrating immune cells were analyzed using the TIMER (https://cistrome.shinyapps.io/timer/ 
) and xCell (https://xcell.ucsf.edu). All analyses were run in the R environment. 

2.2. Estimate of immune and stromal scores 

Using “estimate” (version 1.0.13) [12], the stromal and immune scores, as well as the tumor purity of the cancer samples in the 
training set were determined. Afterward, the samples were categorized into higher and lower score groups using the “surv_cutpoint” 
function from the “survminer” (version 0.4.8). The survival analysis was carried out utilizing the “survival” (version 3.2–7). The 
pan-cancer data for consensus measurement of purity estimations (CPE) were obtained from the supplementary data of Aran D et al.’s 
study [14]. 

2.3. Model construction with the intersections of DEGs and key modules 

With the “limma” (version 3.42.2) [15], we screened differentially expressed genes (DEGs) based on the Benjamin–Hochberg 
adjusted P-value <0.05 and |Log2 (Fold Change)| > 1 as the threshold. The “WGCNA” (version 1.69) [16] was employed to identify 
key gene modules related to immune and stromal functions. In calculating its soft thresholding, R2 > 0.85 was used as the screening 
threshold, and power = 7 was obtained. Furthermore, a one-step method was used to construct the network with power = 7, and 
modules with a height difference of less than 0.25 were combined. A total of 13 modules were finally selected. Gene modules with an 
absolute correlation coefficient greater than 0.3 were deemed to be significant association. 

The intersection of DEGs and key module genes combined with OS data was analyzed using Cox regression to find genes signifi-
cantly related to OS (P < 0.05). Furthermore, selected genes were served as input for the LASSO regression analysis to build the 
TMErisk score model, which was dependent on the “glmnet” (version 4.0–2) [17]. 
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2.4. Function enrichment and immune signatures 

The gene set enrichment analysis (GSEA) was carried out using “gseKEGG” and “gseGO” functions provided in the “cluster Profiler” 
(version 3.14.3). Gene lists of the immune checkpoint and HLA gene family were obtained from the supplementary data of Huang X 
et al.’s study [18] and Chen D et al.’s study [19], respectively. Furthermore, the enrichment scores were calculated using Gene Set 
Variation Analysis (GSVA) (version 1.34.0), and the proportion was acquired by using CIBERSORT (version 1.03). 

2.5. Analysis of the tumor mutation status 

Analysis of somatic mutations was performed with the “maftools” (version 1.0.2). Genes mutated in at least 20 samples were 
selected. Then, survival analysis was conducted to screen genes (P < 0.05) significantly associated with prognosis, and co-occurring 
mutations. 

2.6. Evaluation of the response to therapy 

The IC50 values of 138 drugs for the samples were inferred using the “pRRophetic” (version 0.5) [20]. The Wilcoxon test with the 
Bonferroni correction was employed to identify variations in IC50 levels between low- and high-TMErisk score categories. The 

Table 1 
The clinical characteristics of the dataset.   

TCGA_Train (382) TCGA_Test (163) 

Tumor (351) Normal (31) Tumor (150) Normal(13) 

Age (years) 
>60 181 19 75 8 
≤60 170 12 75 5 

Sex 
Male 259 19 108 11 
Female 92 12 42 2 

Pathologic_T 
T0 1 0 0 0 
T1 34 2 11 1 
T2 99 15 33 5 
T3 64 7 32 2 
T4 120 7 52 5 
TX 22 0 11 0 
NA 11 0 11 0 

Stage 
stage i 18 1 7 1 
stage ii 52 12 17 4 
stage iii 53 7 25 1 
stage iv 183 11 78 6 
not reported 45 0 23 1 

Grade 
G1 43 3 19 4 
G2 127 16 82 7 
G3 81 9 38 1 
G4 1 0 1 1 
GX 8 3 8 0 
NA 1 0 2 0 

Radiation_therapy 
YES 166 8 89 4 
NO 106 5 32 6 
NA 79 18 29 3 

Smoking_history 
YES 264 22 116 10 
NO 81 8 30 3 
NA 6 1 4 0 

Subtype 
Atypical 40 \ \ \ 
Basal 59 \ \ \ 
Classical 38 \ \ \ 
Mesenchymal 55 \ \ \ 
NA 159 \ \ \ 

HPV_Status 
Positive 23 \ \ \ 
Negative 169 \ \ \ 
NA 159 \ \ \  
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response to immunotherapy was deduced based on their tumor immune dysfunction and exclusion (TIDE) score (http://tide.dfci. 
harvard.edu) and immunophenoscore (IPS) (https://tcia.at/home). In general, superior responsiveness to immunotherapy is indi-
cated by lower TIDE scores and elevated IPS values. 

3. Results 

3.1. Immune and stromal scores 

To calculate immune and stromal scores using the ESTIMATE algorithm, our research included a total of 501 HNSCC patients 
alongside 44 normal individuals from the TCGA database. The samples were split in a 7:3 ratio for training and testing (Table 1). 
Analysis revealed that tumor samples exhibited higher immune and stromal scores compared to normal samples (Fig. 1A). Significant 
differences in both scores were also found across different tumor subtypes (Fig. 1B), and the immune score significantly increased in 
HPV-positive individuals compared with HPV-negative individuals (Fig. 1C). However, no difference could be detected when 
considering age, sex, tumor grade, radiation therapy, smoking history, pathologic_T, and tumor stage (Figure S1A–G). Kaplan-Meier 
curves showed that higher scores corresponded to better OS probabilities compared to those with lower scores (log-rank test) (Fig. 1D 
and E). Moreover, a strong inverse correlation was identified between both scores and tumor purity as inferred by ESTIMATE and CPE, 
respectively (Fig. 1F and G). 

Fig. 1. Association of the immune and stromal scores and clinical characteristics in HNSCC. (A) Comparison of immune and stromal scores in 
tumor (n = 351) and normal (n = 31) samples. (Wilcoxon rank-sum test) (B) Immune and stromal scores in atypical (n = 40), basal (n = 59), 
classical (n = 38) and mesenchymal (n = 55) subtypes. (Wilcoxon rank-sum test) (C) Immune and stromal scores in HPV positive (n = 23) and 
negative (n = 169) individuals. (Wilcoxon rank-sum test) (D–E) Overall survival probability of patients with the high- and low-immune and stromal 
scores. (Log-rank test) (F–G) The Pearson’s correlation coefficient between immune and stromal scores and tumor purity calculated by ESTIMATE 
and CPE. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns not significant. 
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3.2. Gene intersection of DEGs and key modules for model construction 

A total of 316 DEGs related to immune scores and 355 DEGs related to stromal scores were identified (Benjamin–Hochberg adjusted 
P-value <0.05, |Log2 (Fold Change)| > 1; Figure S2A, B, Table S1). In the WGCNA analysis, 13 modules were finally selected 
(Figure S3A–C, Table S2) from a pool of 19,035 protein-coding genes. The yellow, brown, pink, and blue modules were strongly 
correlated with the stromal score, while the tan and brown modules were strongly correlated with the immune score (|correlation 
coefficient| > 0.3; Figure S3D). Then, we intersected the DEGs and the module genes (Fig. 2A, Table S3). Using the univariate Cox 
regression, 118 genes that showed a strong correlation with OS were screened out (P < 0.05; Fig. 2B, Table S4). Subsequently, these 
genes underwent LASSO regression for dimensionality reduction. The lambda with the minimal standard error was selected with 10- 
fold cross validation, which was then used to estimate the coefficient of the genes (Figure S4). After excluding genes with a coefficient 
of zero, a final set of 11 genes (CCR7, WIPF1, CLEC4A, S1PR4, TENT5C, SFRP2, CALML5, CXCL9, DES, JCHAIN, and CKM) were finally 

Fig. 2. TMErisk score model construction and validation. (A) The Venn diagram showing the overlap of DEGs associated with immune and 
stromal scores, along with TME-related module genes. (B) The top 20 genes exhibiting strong correlation with OS after the univariate Cox 
regression. (C) Regression coefficients of the 11 selected genes used for modeling. (D–E) OS prediction performance of the TMErisk score model in 
the training (left) and testing set (right). (Log-rank test) (F) Time dependent ROC curve of TMErisk score (left) and TNM stage (right) showing 5-year 
AUC values on the basis of OS data. (G) The C-index indicating the prediction accuracy of the TMErisk score, age, sex, and TNM stage. 
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screened out for modeling (Fig. 2C): TMErisk score = − 0.2647 × CCR7 − 0.1654 × WIPF1 − 0.1184 × S1PR4 − 0.0503 × CALML5 −
0.0276 × CXCL9 − 0.0049 × JCHAIN + 0.0032 × CKM + 0.0134 × DES + 0.0675 × SFRP2 + 0.0726 × TENT5C + 0.1462 × CLEC4A. 

3.3. Prognostic performance of the TMErisk score model 

The TMErisk score was significantly higher in HPV-negative patients. Differences were also observed among tumor subtypes, 
pathologic_T stages, and TNM stages (Figure S5). Moreover, both univariate and multivariate cox regression analyses in the training 
and testing sets showed that the TMErisk score was an independent prognostic factor for OS (Figure S6A and S6B). To assess the 
model’s effectiveness, participants were categorized according to the high or low-TMErisk score by the median. In the training set, 
individuals within the high-TMErisk score group exhibited notably worse OS, a result that was consistent in the testing set (Fig. 2D and 
E). Time-dependent ROC (receiver operating characteristic) curves can use additional information on onset time for each person to 
generate ROC curves at various time intervals. This allows us to compare the model’s predictive ability and determine its validity over 
time. Thus, the predictive efficiency of the TMErisk scores model and TNM stage was further assessed based on the 5-year AUC (area 
under the ROC curve) values from OS data (Fig. 2F). The concordance index (C-index) is widely used for the global evaluation of 
discrimination power in prediction models. The accuracy of the TMErisk score model surpassed that of the TNM stage, which was 
inferred by the C-index. Moreover, the amalgamation of TMErisk score, age, sex, and TNM stage exhibited improved predictive 
performance (Fig. 2G). A stratified analysis of the TMErisk score was then conducted in subgroups of patients with different clinical 
indicators, such as sex, smoking history, radiation therapy choice, tumor subtype, HPV status, and TNM stage. We found that in most 
subgroups except for classical and mesenchymal subtypes, as well as HPV positive individuals, the TMErisk score made a substantial 
contribution to prognostic prediction (Figure S6C). 

3.4. Association of the TMErisk score and the immune response in HNSCC 

To investigate the underlying mechanisms accounting for the different TMErisk scores between groups, our study conducted GSEA 
analysis (Table S5). The high-TME risk score group exhibited enrichment of genes associated with collagen trimer complexes, in-
teractions between extracellular matrix (ECM) and receptor interaction, laminin complexes, and basal cell carcinoma. Conversely, the 
low-TMErisk score group showed enrichment of genes involved in regulating leukocyte activation, granulocyte activation, and the 
chemokine signaling pathway (Fig. 3A). 

Furthermore, the immune and stromal scores showed an inverse relationship with the TMErisk score, while tumor purity and the 
CPE exhibited a positive association with the TMErisk score (Fig. 3B). Immune checkpoints are vital for triggering immune responses 
against tumors, which are often modulated in the TME of various malignancies. The expression level of a total of 45 immune 
checkpoints in HNSCC was investigated, and significant expression difference of 39 genes were found between the TMErisk score 
groups. For example, CD276 and TNFSF9 were elevated in the high-TMErisk score category, whereas CD274, CTLA4, PDCD1, and 
LAG3 had significantly increased levels in the low-TMErisk score category (Fig. 3C). Moreover, our evaluation of 19 genes from the 
human leukocyte antigen (HLA) family indicated differential expression between these two groups, with most HLA family genes 
showing decreased expression in the group with high risk (Fig. 3D). Furthermore, the TMErisk score was negatively correlated with all 
HLA family genes as well as a most immune checkpoints. A majority of HLA family genes were positively correlated with immune 
checkpoints, except for HHLA2, TNFSF18, and VTCN1, which were negatively correlated with a subset of HLA family genes 
(Figure S7A). 

Next, the proportion of infiltrating immune cells was estimated using tools, including GSVA, CIBERSORT, TIMER, and xCell. The 
analysis revealed that most immune cells were dramatically reduced when TMErisk scores were high (Fig. 3E). Then, the samples were 
divided based on the proportion of these cells estimated by CIBERSORT. In combination with OS data, analysis revealed that in-
dividuals with a higher proportion of CD8+ T cells, activated memory CD4+ T cells, and T follicular helper cells experienced improved 
outcomes. On the other hand, a higher proportion of eosinophils and activated mast cells was associated with worse OS probability 
(Figure S7B). Moreover, the distribution of these immune cell proportions in in groups with low and high TMErisk scores was 
consistent with the prognosis of individuals in these groups (Figure S7C). 

3.5. Somatic mutation in groups with low and high TMErisk scores 

To explore the genetic mechanisms driving the progression of HNSCC, we analyzed somatic mutations in samples from the low- and 
high-TMErisk score groups. Tumor mutation burden (TMB) represents total number of substitution, insertion or deletion mutations per 
megabase in the coding regions of tumor cell genomes. Higher TMB may lead to more neo-antigens for T-cell recognition, and as-
sociates with better outcomes in immunotherapy. Our findings revealed that the frequency of variations was marginally higher in the 

Fig. 3. The association between the TMErisk score and the immune response. (A) GO and KEGG enrichment analysis including biological 
process (BP), cellular component (CC), molecular function (MF) and KEGG. Dashed lines represent FDR 0.05. The dot sizes correspond to the ratio of 
enriched genes. (B) The correlation of the TMErisk score with the immune and stromal score, tumor purity, as well as CPE, respectively. (C) The 
expression level of 45 immune checkpoints in the group with low and high TMErisk scores. (D) The expression level of HLA family genes in the 
group with low and high TMErisk scores. (E) The landscape of infiltrating immune cells in the low- and high-TMErisk score groups estimated by 
GSVA, CIBERSORT, TIMER, and xCell. (Wilcoxon rank-sum test, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 
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category with low TMErisk score compared to that with high score (Fig. 4A). Not surprisingly, the gene with highest mutation fre-
quency in HNSCC was the tumor protein P53 (TP53). Its mutation rates were 81 % and 56 % in the group with high and low TMErisk 
score, respectively. It is also noteworthy that Titin (TTN) gene ranked second in terms of mutation frequency, with a mutation rate 
around 36 %–37 % in both score groups. However, significant correlation was not found between the number of somatic mutations and 
TMErisk score (Figure S8A). Nonetheless, we identified 10 genes with mutations that were expected to have a significant negative 
impact on prognoses (Fig. 4B). Moreover, we found a higher co-mutation frequency between DMD and PAPPA2 (Fig. 4C). Next, we 
analyzed the most significant risk genes, namely PNCT, DMD, and PAPPA2. No mutation of these top 3 genes could be detected in more 
than half of the HNSCC samples, and the co-mutation frequency among them was low (< 5 %). The occurrence of single gene mutations 
and co-mutations did not differ significantly between groups with diverse TMErisk scores (Figure S8B). Additionally, PNCT exhibited a 
higher mutation frequency within the high-TMErisk score group. Although DMD had slightly more mutation sites in group with low 
TMErisk score, the number of mutation sites for PAPPA2 remained nearly identical in both groups (Figure S8C). 

3.6. Association of the TMErisk score and therapeutics 

To evaluate the effectiveness of drug therapy in HNSCC patients across varying TMErisk scores, the IC50 for 138 drugs in TCGA- 
HNSCC patients were inferred, and the top 20 drugs with notable differences were identified. Among them, ABT-888, AICAR, ATRA, 

Fig. 4. The somatic mutation in the group with low and high TMErisk scores. (A) The TMB in the group with low and high TMErisk scores. (B) 
Cox regression analysis showing significant correlation of 10 mutant genes with prognosis. (C) Co-mutation situation of the 10 mutant genes. 
(Fisher’s exact test). 
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AZD6244, BIRB-0796, Gefitinib, JNK inhibitor VIII, lenalidomide, metformin, methotrexate, MK-2206, nilotinib, PLX4720, SL-0101-1, 
vorinostat, and VX-702 showed better efficacy for individuals with high-TMErisk scores, while the remaining drugs performed better in 
the group with low-TMErisk scores (Fig. 5A, Table S6). Moreover, the TIDE score was found to be positively correlated with the 
TMErisk score in both training and testing sets (Fig. 5B). Conversely, no substantial correlation existed between the IPS and the 
TMErisk score (Figure S9A). 

To ensure the specificity of the TMErisk score model to HNSCC patients, we applied it to the bladder cancer and melanoma data. 
There were no remarkable variations in the immunotherapy response associated with groups with high and low TMErisk scores in 
bladder cancer (Figure S9B, C). In melanoma, the TMErisk scores were notably elevated in samples with progressive disease, as 
opposed to samples with stable disease and partial response/complete response, despite the absence of a significant alternation in 
immunotherapy response between two risk groups (Figure S9D, E). 

4. Discussion 

HNSCC is an extraordinarily heterogeneous malignancy caused by various etiologies including classical risk factors of smoking and 
excessive alcohol uptake, as well as the more recently identified risk of HPV infection [21]. As a result, early identification and 
comprehensive forecasting of outcomes are critical due to the elevated death rates associated with HNSCC. Additionally, researchers 
have noticed that intense therapies may cause a higher incidence of severe adverse reactions [22]. Thus, a personalized therapeutic 
response is needed to be considered to minimize toxicity without compromising treatment outcomes. Our findings revealed that the 
TMErisk score model serves as an effective predictor for both OS and therapeutic response in HNSCC patients. 

The genes in the TMErisk score model are reported to involve in positive or negative regulation of the TME. For example, the 

Fig. 5. Predicting therapeutic response with the TMErisk score. (A) The therapy efficacy of the top 20 medications showing notable variances 
between the low and highTMErisk score categories. (Wilcoxon rank-sum test) (B) Correlation between the TMErisk score and the TIDE score in the 
training (left) and testing set (right). 
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upregulation of CCR7, a chemokine receptor, in various cancers promotes the migration of cancer cell towards lymphatic nodes. 
However, it can also reactivate the immune response against tumors and is associated with survival in cervical cancer [23], making its 
role in therapeutic approaches a topic of ongoing discussion [24]. S1PR4 is associated with modulating myeloid cell activation, 
potentially impacting lymphocyte reactions [25]. A recent study exhibited that S1PR4 signaling might impede the response to 
chemotherapy through CD8+ T cells [26]. Another included gene is WIPF1, which crucially influences the organization and poly-
merization of the actin cytoskeleton, linked to the transition from epithelia to mesenchymal states [27]. Yu Pan et al. pinpointed that 
the inhibition of WIPF1 halts tumor progression and spread, suggesting its oncogenic properties [28]. CALML5, containing a 
calcium-binding motif, is expressed in the epidermis. Methylation of CALML5 is associated with the recurrence of HPV-associated 
oropharyngeal cancer [29]. The chemokine CXCL9 is involved in immune infiltration, whose predictive potential in the outcome 
and PD-1 therapy has been indicated in colorectal cancer [30], breast cancer [31] and uterine corpus endometrioid carcinoma [32]. 
Similarly, CLEC4A is also critical in tumorigenesis. In lung cancer and hepatocellular carcinoma, CLEC4 regulates the infiltration of 
various immune cells, making it a potential target for novel immunotherapy [33,34]. Recent reports have indicated that TENT5C, an 
unconventional poly(A) RNA polymerase known for boosting mRNA stability and gene expression, interferes with Plk4 function [35]. 
Although there is evidence suggesting that TENT5C could inhibit tumor growth and invasion, the precise mechanisms are not yet fully 
elucidated. Moreover, SFRP2, a secreted protein, was implicated in the advancement and unfavorable prognosis in breast cancer [36]. 
Nevertheless, roles of the other three genes (JCHAIN, CKM, and DES) in tumorigenesis have been limitedly investigated so far, 
indicating the need for further elucidation in future studies. 

The TP53 gene is known to have a high mutation frequency in human cancers. Nearly all cancer types, including HNSCC, exhibit 
somatic TP53 mutations. In HNSCC, it reaches a rate of approximately 40.6 % [37]. In our study, the TP53 mutation rate is elevated in 
the high-TMErisk score group, suggesting its potential role in the prognosis of HNSCC. Interestingly, TTN ranked second among the 
genes with a high mutation frequency in our study. TTN is closely involved in all striated muscle cells and its mutations is primarily 
associated with cardiac phenotypes or skeletal muscle diseases [38]. Thus, further investigation is necessary to elucidate the associ-
ation between TTN and HNSCC. Additionally, we found that the mutation of poor outcome–related genes was only detected in a small 
proportion of HNSCC samples and co-mutation was very rare. It may reflect the diversity of HNSCC pathogenesis, in which the role of 
divergent gene is inconspicuous. 

Oropharyngeal cancers, in contrast to oral cavity and laryngeal cancers that are often linked to tobacco and alcohol use, are now 
increasingly linked to HPV infection [1]. In our study, a noticeable difference in the immune score was identified between the 
HPV-negative and HPV-positive categories. Moreover, our scoring model only showed the significant potential of prognostic prediction 
in HPV-negative patients, suggesting that HNSCC induced by HPV infection may occur in a specific way. The E6 and E7 genes are two 
essential oncogenes in HPV. They have a critical function in interacting with and controlling p53 and pRb, two major intracellular 
tumor suppressor proteins, thereby significantly affecting the cell proliferation and the repair of DNA [39]. In contrast, in 
HPV-negative HNSCC, TP53 is frequently deleted or mutated [3,40]. Currently, with global vaccination campaigns, especially the 
nine-valent vaccine, morbidity caused by HPV-positive HNSCC is expected to decline in the near future. Moreover, long-term exposure 
to Epstein-Barr virus (EBV) has been recognized to increase the risk of HNSCC originating from the nasopharynx [41]. However, 
because of the lack of information on EBV infection in our data, further stratified studies are needed to analyze the EBV-infected 
population using our model. 

Using survival data, we computed the AUC values of the model for varying time periods ranging from 1 to 5 years. All the time- 
dependent AUC values were found to be greater than 0.6, demonstrating the reliable efficiency of the model. Moreover, the strati-
fied analysis indicated that the scoring model exhibited predictive potential for survival outcomes across diverse subgroups, suggesting 
its broad utility. The C-index also demonstrated that the TMErisk score, either independently or in conjunction with age, sex, and TNM 
stage enhanced the prediction efficacy for overall prognosis when compared with the TNM stage. In general, these results indicate that 
TMErisk score is advantageous in clinical applications for evaluating the prognosis and OS of patients. 

Immune status is believed to be critical in tumorigenesis. Consistent with this, the immune and stromal scores showed strong 
negative correlation with tumor purity, CPE, and the TMErisk score. Genes classified under the low-TMErisk score category were 
functionally enriched in pathways related to immune activation, which was not observed in the group with high risk score. 
Furthermore, the expression of immune checkpoints and HLA family genes dramatically changed, alongside a decrease of infiltrating 
immune cells in the group with high TMErisk score. These findings suggest a strong interplay between immune response and tumor 
cells in HNSCC, highlighting the potential of the TMErisk score for guiding precision medicine. Reports have shown that different 
responses to therapies are linked to diverse TME characteristics. Our study revealed specific reactions to medications in individuals 
with varying TMErisk levels. Furthermore, the TMErisk score indicated a significant correlation with TIDE, highlighting its potential 
for predicting the outcomes of immunotherapy. However, it should be noted that the predictive capacity of the TMErisk score, 
compared to TIDE, may be restricted to specific tumor types of HNSCC. 

Nonetheless, our study has several limitations that need to be acknowledged. Due to the lack of published HNSCC datasets or the 
missing clinical data on the expression dataset, we had to divide our data into the testing set for model validation and the training set 
for model training and functional analysis. We attempted to use external data sources including E-MTAB-5793, GSE26549, GSE42743, 
GSE75538, and ICGC_ORCA-IN for validation. However, the analysis based on these data is not robust because of their small sample 
size. Furthermore, although the genes included in our model have been examined in various cancers, additional experimental research 
may reveal their significance in HNSCC. Nevertheless, in addition to exploring the functions and mechanisms of specific genes, a single 
gene did not show the outstanding ability to predict the prognosis as the combination of genes did. Hence, future validations of the 
TMErisk score model as a predictive tool on larger cohorts with comprehensive clinical data are expected to provide more contri-
butions to HNSCC treatment and interventions. 
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5. Conclusions 

The study presented here developed a scoring model named TMErisk using TME gene expression data sourced from HNSCC in-
dividuals within the TCGA dataset. This scoring model, consisting of 11 genes, demonstrated strong predictive potential for overall 
survival. Additionally, we observed that individuals classified in the high-TMErisk score category demonstrated decreased levels of 
immune and stromal cell infiltration, altered genes expression patterns of HLA family and immune checkpoints, elevated tumor purity 
and somatic mutation burden when compared to counterparts classified in the group with low TMErisk scores (Fig. 6). The TMErisk 
score model we developed holds promise for predicting disease prognosis and guiding therapy for HNSCC patients. 
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