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Abstract

Individual differences in drug metabolism contribute to interindividual varia-

tion that characterizes responses to drugs and risk in exposure to foreign chem-

icals. Large individual differences are found in expression levels of CYP1A2, a

major drug-metabolizing enzyme. Underlying causes for this variation are not

well understood. Several factors, including tobacco smoking, consumption of

cruciferous vegetables, and sex, have been associated with modulating CYP1A2

expression. To understand factors regulating expression of CYP1A2 in establish-

ing a causal relationship, this study examined effects of cigarette smoke conden-

sate (CSC), indole-3-carbinol (I3C), and 17b-estradiol (estradiol) on CYP1A2

expression in in vitro systems using human liver and lung cells. Treatment with

CSC (2–25 lg/mL) significantly increased levels of CYP1A2 in six cell lines

examined, in a concentration- and time-dependent manner. Fold changes in

expression levels relative to controls varied among cell lines. CYP1A2 enzymatic

activity also increased with CSC exposure. Treatment of H1299 and HepB3 cells

with dietary agent I3C (50 and 100 lmol/L) increased CYP1A2 expression. In

human cell lines H1299 and H1395, treatment with estradiol (10 and

100 nmol/L) significantly reduced expression of CYP1A2. Using ChIP assays,

effects of CSC on histone modifications were analyzed. Increases in H3K4me3

and H4K16ac were observed at several segments in the CYP1A2 gene, whereas

H3K27me3 decreased, following CSC treatment. These results suggest that

CYP1A2 expression is affected epigenetically by CSC. Additional studies will be

needed to further establish regulatory mechanisms underlying effects of various

environmental, dietary, and endogenous factors on CYP1A2 expression in better

predicting individual variation.

Abbreviations

AhR, aryl hydrocarbon receptor; AzadC, 5-aza-20-deoxycytidine; CSC, cigarette

smoke condensate; DMF, 30,40-dimethoxyflavone; Estradiol, 17b-estradiol; HDAC,

histone deacetylase; I3C, indole-3-carbinol; TCDD, 2,3,7,8-tetrachlorodibenzo-

p-dioxin; TSA, trichostatin.

Introduction

The human cytochrome P450 1A2 (CYP1A2) enzyme is a

major drug-metabolizing enzyme, metabolizing about

15% of clinical drugs such as clozapine, theophylline, and

tacrine (Zhou et al. 2009). CYP1A2 also plays an impor-

tant role in bioactivation of various procarcinogens,

including heterocyclic amines, found in foods and other

products, and tobacco-specific nitrosamines (Hecht 2006).

CYP1A2 is well represented in human liver, accounting

for about 15% of total P450 content (Shimada et al.

1994), and is also in human lung tissue (Wei et al. 2002;

Ding and Kaminsky 2003; Choudhary et al. 2005; Iba

et al. 2010). Large individual differences are found in

expression levels of CYP1A2 (Hammons et al. 1985;

Kalow and Tang 1991; Schweiki et al. 1993). Underlying
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causes for this variation are not well understood. CYP1A2

is genetically polymorphic (http://www.cypalleles:ki.se/

cyp1a2.htm). However, the low frequency of functionally

different variant alleles in populations and results of sev-

eral genotype-phenotype association and other studies

indicate limited function of CYP1A2 genetic polymor-

phism as a cause of interindividual variation in CYP1A2

expression (Jiang et al. 2006; Ghotbi et al. 2007; Klein

et al. 2010; Spina and de Leon 2015; Vukovic et al. 2016).

Other factors must play a critical role.

Several factors in human exposures have been associ-

ated with the modulation of CYP1A2 activity, including

smoking and various dietary agents. Cigarette smoking

induces CYP1A2 activity, as shown by lower plasma con-

centrations of phenacetin or accelerated metabolism of

caffeine in smokers compared to nonsmokers (Pantuck

et al. 1972; Kotake et al. 1982). In tissue samples from

patients of known smoking status, CYP1A2 content was

3.5-fold higher in smokers than in nonsmokers (Sesardic

et al. 1988). Other studies have also found this relation-

ship. A 1.66-fold increase in CYP1A2 activity was

observed for smokers consuming 11–20 cigarettes daily

(n = 863) (Tantcheva-Poor et al. 1999). Smokers had sig-

nificantly higher paraxanthine:caffeine ratio (CYP1A2

activity) than nonsmokers in both Koreans (n = 150) and

Swedes (n = 194) (Ghotbi et al. 2007). Additionally,

induction of CYP1A2 has been demonstrated to dissipate

after quitting smoking (Faber and Fuhr 2004). Clinical

studies have shown that smoking can reduce plasma con-

centrations of many CYP1A2 substrate drugs, which has

significant implications for drug efficacy and safety

(Kroon 2007).

Increased CYP1A2 activity is associated with intake of

cruciferous vegetables. Diets containing 500 g/day of

broccoli were ingested, which led to a 25% increase in the

elimination of CYP1A2-derived metabolites of caffeine in

patients (Kall et al. 1996). Using a randomized, cross-over

feeding trial in humans, dose effects of cruciferous vegeta-

bles were investigated (Peterson et al. 2009). Compared

with basal diet, basal plus single dose of cruciferous diet

increased CYP1A2 activity and basal plus double dose of

cruciferous diet resulted in further increases, with men

experiencing greater dose-response than women. In a

recent phase I study of indole-3-carbinol (I3C), a major

indole found in cruciferous vegetables, conducted in

women, CYP1A2 levels were found to be elevated after a

4-week dose period of 800 mg daily (Reed et al. 2005).

As another source of variation, sex differences in

CYP1A2 activity have been demonstrated. Lower CYP1A2

activity was reported in female human liver microsomes

compared with male human liver microsomes (Parkinson

et al. 2004). Additionally, using both urinary and plasma

caffeine metabolic rates, significantly lower CYP1A2

activity has been reported in women compared to men in

Caucasian (Relling et al. 1992; Bock et al. 1994; Carrillo

and Benitez 1996) and Chinese populations (Ou-Yang

et al. 2000). Other substrates have been utilized to inves-

tigate the activity of CYP1A2 in humans. In results from

a study analyzing plasma levels of thiothixene in 42

patients after oral administration, men were found to dis-

play significantly higher rate of clearance than women

(Ereshefsky et al. 1991). In a study with Chinese schizo-

phrenic nonsmoking patients, women had a significantly

higher clozapine plasma concentration than men after

normalizing for dose and weight (Tang et al. 2007).

Demonstration of a direct causal relationship in the

effect of these factors on CYP1A2 expression has, how-

ever, been limited. In this study, the effect of cigarette

smoke condensate (CSC) on the expression of CYP1A2

was determined in several in vitro model systems, includ-

ing both human liver and lung cell lines. The lung is an

important portal of entry, and environmental risk factors

are important in the etiology of lung disease (Rom et al.

2000). Local levels of carcinogen-metabolizing enzymes

should influence an individual’s lung cancer risk by mod-

ifying cellular response to carcinogens. The effects of 17b-
estradiol (estradiol) and dietary agent I3C were also

examined. In this comprehensive study, each factor was

shown to modulate CYP1A2 expression in the cellular sys-

tems, demonstrating a causal effect. In a mechanistic

assessment, findings from the study support the involve-

ment of epigenetics in the induction by CSC. These

results are consistent with the increasing evidence of the

involvement of epigenetics in the regulation of CYP1A2

expression being reported (Tang and Chen 2015).

Materials and Methods

Cell lines and treatment conditions

The human liver and lung cell lines, SNU-387 (hepatocel-

lular carcinoma), HepB3 (hepatocellular carcinoma),

A549 (lung carcinoma), H1395 (lung adenocarcinoma),

H1792 (lung adenocarcinoma), and H1299 (non-small

cell lung carcinoma), were obtained from the American

Type Culture Collection (Manassa, VA). The cells were

cultured in growth medium as recommended by the sup-

plier and routinely maintained at 37°C in a humidified

5% CO2 atmosphere. Cigarette smoke condensate (CSC)

was purchased from Murty Pharmaceuticals (Lexington,

KY) and was prepared using a smoking machine designed

for Federal Trade Commission testing. The particulate

matter from Kentucky standard cigarettes (1R3F; Univer-

sity of Kentucky, Lexington, KY) was collected on Cam-

bridge glass fiber filters and the amount of CSC obtained

was determined by weight increase on the filter. CSC was
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prepared by dissolving the collected smoke particulates in

dimethyl sulfoxide (DMSO) to yield a 4% solution (w/v).

The CSC was diluted into DMSO and aliquots were

stored at �80°C. In treatment experiments, cells (400,000

cells per plate) were cultured in 100 mm dishes in appro-

priate media with DMSO alone or with treatment agent.

30,40-Dimethoxyflavone (DMF), 2,3,7,8-tetrachlorodi-

benzo-p-dioxin (TCDD), estradiol, I3C, 5-aza-20-deoxycy-
tidine (AzadC), and trichostatin (TSA) were purchased

from Sigma-Aldrich (St. Louis, MO). At appropriate

times, cells were harvested, and processed for further

analysis. Cell proliferation was assessed by MTT

techniques using the Cell Titer 96 Non-Radioactive Cell

Proliferation Assay (Promega; Madison,WI).

RNA isolation and Quantitative Real-time
PCR (QRT-PCR) analysis

Total cellular RNA was isolated from the cells using the

Qiagen RNeasy isolation kit (Qiagen; Valencia, CA)

according to the manufacturer’s instructions. The concen-

tration of RNA was determined by NanoDrop� Spec-

trophotometer (ThermoScientific; Wilmington, DE). The

OD260/OD280 nm ratios of all RNA samples were deter-

mined to be between 1.7 and 2.0 to ensure that all RNA

samples are highly pure. RNA integrity was verified by

ExperionTM (Bio-Rad; Hercules, CA). Real-time PCR reac-

tions were then performed using a SyberGreen PCR mas-

ter mix on iQTM5 Multicolor Real-time PCR Detection

System (Bio-Rad; Hercules, CA). The primers for CYP1A2

and GADPH (b-actin) were synthesized by Sigma-Aldrich

Oligo Division (Woodlands, TX). Primers were as follows:

CYP1A2 – forward 50-CCACACCAGCCATTACAA
CCCTGCC-30 and reverse 50-TGCGCTGGGTCATCCTTG
ACAGTGC-30; GADPH – forward 50-GAAGGTGAAGG
TCGGAGTC-30 and reverse 50-GAAGATGGTGATGGGA
TTTC-30. Reactions were carried out in triplicates in a

96-well plate in a total volume of 15 lL. Each reaction

mixture contained 7.5 lL of SyberGreen PCR master

mix, 3.8 lL of sterile nuclease-free water, 0.6 lL of for-

ward primer (20 lmol/L), 0.6 lL of reverse primer

(20 lmol/L). PCR conditions were as follows: 50°C for

2 min, 95°C for 10 min, 95°C for 15 sec, 60°C for 1 min

(40 cycles). Quantification of relative mRNA levels was

carried out by determining the threshold cycle (CT),

which is defined as the cycle at which the reporter fluo-

rescence exceeds by 10 times the standard deviation of

the mean baseline emission for cycles 3–10. GADPH was

used as an internal control. The mRNA levels of CYP1A2

were normalized to those of GADPH according to the

following formula: CT (target) – CT (GADPH) = DCT.

Thereafter, the relative mRNA levels of CYP1A2 after

treatment were calculated using the DDCT method: DCT

(treatment) – DCT (vehicle) = DDCT (treatment). The

fold changes of mRNA levels were expressed as 2�DDCT.

All PCR reactions were performed in triplicate in three

independent experiments.

Cytochrome (CYP) 1A2 activity assay

The P450-GloTM CYP1A2 (Luciferin-1A2) assay (Promega;

Madison, WI) was used to determine CYP1A2 enzymatic

activity in H1395, H1299, SNU-397, and HepB3 cells

treated with CSC. This assay provides a luminescent

method to measure CYP1A2 activity via the conversion of

the inactive luciferin-1A2 into the active form by CYP1A2

enzyme to produce luminescence. The amount of lumi-

nescence produced is directly proportional to CYP1A2

activity. Cells were treated with 2–25 lg/mL CSC for

16 h. Control cells were treated with vehicle (DMSO)

only. Assaying was conducted according to manufac-

turer’s instructions. The luminescences were measured in

a Chameleon plate reader (Hidex; Turku, Finland) at

700 nm.

Chromatin immunoprecipitation assay

SNU-387 cells were treated with CSC (25 lg/mL) or vehi-

cle (DMSO) only for 24 h. ChIP assays were performed

using a Millipore Magna ChIPTM A assay kit (Millipore;

Temecula, CA) following the manufacturer’s protocol.

Antibodies used in the immunoprecipitations were pur-

chased from Millipore and recognized trimethylated his-

tone H3 lysine 4 (H3K4me3), acetyl histone H4 lysine 16

(H4K16ac), trimethylated histone H3 lysine 27

(H3K27me3). The immunoprecipitated DNA was eluted

in a total volume of 30 lL. DNA (3 lL) was analyzed by

real-time PCR using the following conditions: 95°C for

10 min, 95°C for 20 sec, 60°C for 1 min (40 cycles).

Eight subregions were analyzed in the 50-flanking region

of the CYP1A2 gene (GenBank, NCBI Reference

Sequence: NG_008431.1): Reg-1, 8456-8549; Reg-2,

28319-28405; Reg-3, 28521-28560; Reg-4, 28791-28814;

Reg-5, 29081-29154; Reg-6, 30378-30402; Reg-7, 31261-

31271; Reg-8, 31431-31510. The sequence of primer sets

used in the analysis were as followed: Reg-1, forward

GCTACAGCCTACCAGGACTC and reverse CGCCATCC

ATTCCGATCCTT; Reg-2, forward ATCTTGGCTCACC

GCAACCT and reverse AAATTAGCTGGGCGTGATGG;

Reg-3, forward CTCGGCCTCCCAAAGTGCTAGAA and

reverse TGCACAGCCCACACCGAAGGAGT; Reg-4, for-

ward GGAAAGGTGGGAAAGGAGTAAC and reverse AG

GTGCC ATTCTCGTCACAT; Reg-5, forward ACTGTC

ACAGCCAAGAGGAATC and reverse GGTTTGAGGTT

AGGCTCGGTTT; Reg-6, forward CACCTCCCAAGTTC

AAGCCATT and reverse AGCACTTTGAGAGGCCGAG
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AT; Reg-7, forward CAAGGCCAAG AGTTGATCCTTC

and reverse AGCTTCTGGCTCTAGGTGAGT; Reg-8, for-

ward CTCCACACCAGCCATTACAA and reverse

ATCGGGAAACAGAAGT CAAGAG. Results are expressed

as fold changes relative to control for percent of input.

Statistical analysis

Prism IV software (GraphPAD Software; San Diego, CA)

was used for graphical analyses. Data were analyzed for

statistical significance using one-way ANOVA followed by

Dunnett’s test. Differences with P < 0.05 were considered

statistically significant.

Results

Increased levels of CYP1A2 have been found to be associ-

ated with cigarette smoking in population studies (Pan-

tuck et al. 1972; Kotake et al. 1982; Sesardic et al. 1988;

Tantcheva-Poor et al. 1999; Faber and Fuhr 2004; Ghotbi

et al. 2007; Kroon 2007). Using an in vitro approach, this

study investigated the effect of CSC on CYP1A2 expres-

sion in human liver and lung cell lines. Two liver cell

lines and four lung cell lines were included. Under the

conditions of the CSC concentrations employed in these

experiments and the duration of exposure, inhibition of

cell growth did not exceed 15%. Figure 1 shows a repre-

sentation of these results.

Treatment with CSC significantly increased the level of

CYP1A2 in each of the six cell lines examined (Fig. 2).

Fold changes in the expression levels relative to controls

varied among the cell lines. Changes in CYP1A2 expres-

sion levels varied with time of exposure (4–36 h), as

shown in Figure 3. Increases in levels of CYP1A2 expres-

sion were also concentration-dependent in the range 2–
25 lg/mL CSC (Fig. 4). Using the P450-GloTM CYP1A2

assay system, CYP1A2 enzymatic activity was examined.

In each of the cell lines, CYP1A2 activity increased with

CSC exposure (Fig. 5). These increases in CYP1A2 activ-

ity were concentration-dependent.

The effects of estradiol and the dietary agent, I3C, on

CYP1A2 expression were also examined. In the human

cell lines H1299 and H1395, treatment with estradiol (10

and 100 nmol/L) significantly reduced the expression

levels of CYP1A2 (Fig. 6). Interestingly, CYP1A2 expres-

sion was not significantly changed with either concentra-

tion of estradiol in A549 cells. Treatment of H1299 and

HepB3 cells with I3C (50 and 100 lmol/L) increased the

level of CYP1A2 expression, as shown in Figure 7. At

100 lmol/L I3C, the increase was significant in both cell

lines.

To explore the potential underlying pathway involved

in the induction of CYP1A2 expression by CSC, the effect

of DMF on CSC-inducible expression of CYP1A2 was

determined. DMF is a competitive antagonist of the aryl

hydrocarbon receptor (AhR) that inhibits AhR-mediated

induction of cytochrome P450 expression (Lee and Safe

2000). Treating cells with CSC and DMF resulted in only

a slight reduction in the CYP1A2 expression level result-

ing from treatment with CSC alone (Fig. 8). In contrast,
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Figure 1. Effect of CSC on human liver and lung cells proliferation. HepB3 (A) and H1299 (B) cells were treated with 2 or 25 lg/mL CSC for 12,

24, or 36 h and assayed by MTT techniques. Data are presented as mean � SD of at least three determinations.
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DMF strongly inhibited TCDD-induced CYP1A2 expres-

sion.

There is increasing evidence of the involvement of epi-

genetics in the regulation of CYP1A2 expression (Tang

and Chen 2015), suggesting another pathway that may be

involved in CSC induction of CYP1A2. Figure 9 shows

the effect of AzadC, a DNA methylation inhibitor (Hack-

anson and Daskalakis 2014), and TSA, a histone deacety-

lase (HDAC) inhibitor (Monneret 2005), on CYP1A2

expression levels in SNU-387 and H1299 cell lines. Both

agents increased CYP1A2 expression in a concentration-

dependent manner. Although either agent increased CSC-

inducible CYP1A2 expression slightly, the effect was not

significant (Fig. 10). Given these results indicating the

potential of epigenetics in the regulation of CYP1A2

expression, the effect of CSC on histone modifications in

CYP1A2 was explored in cells treated with CSC. Three

histone modifications, H3K4me3, H4K16ac, and

H3K27me3, were analyzed by ChIP assay. Eight specific

segments in the 50-flanking region in the CYP1A2 gene

were included. Increases in H3K4me3 and H4K16ac were

detected in several segments of the gene (Reg-3, Reg-5,

and Reg-6 for H3K4me3; Reg-2, Reg-5, and Reg-8 for

H4K16ac); a decrease in H3K27me3 was detected in Reg-

4 (Fig. 11). Comparison of several these histone modifica-

tions (H3K4me3 at Reg-3 and H4K16ac at Reg-5) in two

other cell lines demonstrated similar results (Fig. 12).

Discussion

Individual variation in the expression of major drug-

metabolizing enzymes is associated with substantial indi-

vidual differences in bioavailabilities and clearance of

drugs and other xenobiotics and presents a major chal-

lenge in evaluating drug safety and efficacy and in
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assessing individual risk in exposure to foreign chemicals.

Large individual differences in expression levels of

CYP1A2 have been established (Hammons et al. 1985;

Kalow and Tang 1991; Schweiki et al. 1993). Although

smoking has been recognized as a critical factor associated

with levels of CYP1A2 expression (Pantuck et al. 1972;
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Kotake et al. 1982; Sesardic et al. 1988; Tantcheva-Poor

et al. 1999; Faber and Fuhr 2004; Ghotbi et al. 2007;

Kroon 2007), only limited evidence of a causal relation-

ship has been reported. Using CSC exposure in an

in vitro approach, results from the study provide the first

comprehensive determination of the causal effect of CSC

on CYP1A2 expression, showing that CYP1A2 expression

levels were increased in cells treated with CSC. This was

demonstrated in human liver and lung cells. The effect

was in a concentration- and time-dependent manner.

These results support observations of CYP1A2 expression

levels being higher in smokers (Pantuck et al. 1972;

Kotake et al. 1982; Sesardic et al. 1988; Tantcheva-Poor

et al. 1999; Faber and Fuhr 2004; Kroon 2007) in
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demonstrating directly a causal relationship. Only two

earlier in vitro studies were found. CSC was shown to

upregulate the expression of CYP1A2 in HepG2 cells,

although CYP1A2 expression was not the focus of the

study (Washio et al. 2011). Using cDNA array analysis,

exposure of human vascular endothelial cells to CSC

(30 lg/ml; 24 hrs) increased CYP1A2 expression (Nord-

skog et al. 2003). In an animal model study, CYP1A2

expression was induced in Sprague–Dawley rats exposed

to passive smoking (He et al. 2015).

Experiments were conducted to explore possible mech-

anisms involved in induction of CYP1A2 expression by

CSC. There is evidence that induced expression can be

mediated by AhR as demonstrated by studies using AhR

null mice (Fernandez-Salguerro et al. 1995; Schmidt et al.

1996), suggesting the presence of polycyclic aromatic

hydrocarbons in cigarette smoke may contribute to the

inductive effect of cigarette smoke (Hoffmann et al.

1997). In our study, treating cells with CSC and DMF

resulted in only a partial reduction in CYP1A2 expression

levels induced by treatment with CSC alone. DMF is a

competitive antagonist of AhR that inhibits AhR-

mediated induction of cytochrome P450 expression (Lee

and Safe 2000). These results indicated that alternative

pathways are involved.

Expression of CYP1A2 has been shown to be affected

epigenetically. Results from our laboratory showed that

human hepatic CYP1A2 expression is linked to the

methylation status of the CCGG site adjacent to the AP-1

site in human CYP1A2 gene’s promoter region

(Hammons et al. 2001). Other studies examining CYP1A2

expression and epigenetic changes have been reported.

CpG sites of the Cyp1a2 promoter were undermethylated

in the mouse liver when compared to sites in the lung

and kidney, suggesting that DNA methylation regulates

the tissue-specific expression of the Cyp1a2 gene (Jin

et al. 2004). Treatment with a combination of TSA and

AzadC enhanced expression of CYP1A2 in HeLa cells,

suggesting that cooperation between DNA methylation

and histone acetylation is important in CYP1A2 expres-

sion (Nakajima et al. 2003). The methylation of two sepa-

rate core CpG sites was found to be strongly associated

with the CYP1A2 mRNA levels in human liver samples

(Ghotbi et al. 2009). Additionally, CYP1A2 expression in

human hepatoma B16A2 cells was strongly induced by

treatment with AzadC (Ghotbi et al. 2009). Regulation of

CYP1A2 by DNA methylation and histone modification

was demonstrated in the differential expression of

CYP1A2 in human primary hepatocytes compared to

human embryonic stem cell-derived hepatocytes (Park

et al. 2015). Inhibition of DNA methyltransferases

(DNMT) increased expression levels of CYP1A2. Enrich-

ment of active histone modification H3K4me3 modulated

expression of CYP1A2; the presence of repressive histone

modification H3K27me3 found in the cells was associated

with down-regulation of CYP1A2 transcription.

In this study, CYP1A2 expression was demonstrated to

be inducible by TSA and AzadC in the cellular systems.

The effect of CSC treatment on three histone modifica-

tions, H3K4me3, H4K16ac, and H3K27me3, in specific
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Figure 12. Comparison of the effect of CSC on histone modifications in the CYP1A2 gene in SNU-387, H1299, and A549 cells. Cells were

treated with vehicle (DMSO) or 25 lg/mL CSC for 24 h and subjected to ChIP analysis with antibodies targeted to H3K4me3 (A) or H4K16ac (B).

The DNA was amplified by real-time PCR using primers specific for Reg-3 (H3K4me3) or Reg-5 (H4K16ac) in the CYP1A2 gene. Data are
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segments in the 50-flanking region of CYP1A2 was deter-

mined. DNA-binding sequences of several putative regula-

tory factors have been characterized in the CYP1A2 gene,

including xenobiotic response element (Quattrochi et al.

1994), AP-1 element (Quattrochi et al. 1988), E-box

motifs (Pickwell et al. 2003), and Ets element (Aklillu

et al. 2003). Additional putative binding sites for HNF-1

and HNF-3 have also been identified farther upstream

(Corchero et al. 2000). A GC box proximal to the TATA

box is also a critical element for the CYP1A2 promoter

(Miyajima et al. 2009). Segments were selected for these

initial experiments to include the binding sequences.

Specific histone modifications were explored given their

reported involvement in the expression of CYP1A2 and

several other CYPs (Okino et al. 2006; Li et al. 2009; Ove-

sen et al. 2011; Park et al. 2015). Increases in H3K4me3

and H4K16ac were observed at several segments, whereas

H3K27me3 was shown to decrease, following CSC treat-

ment. H3K4me3 and H4K16ac are associated with active

transcription; H3K27me3 is repressive (Handy et al.

2011). This is the first report identifying specific histone

modifications involved in CSC-induced expression of

CYP1A2. These results indicate involvement of epigenetics

in induction of CYP1A2 by CSC, potentially at

DNA-binding sites. Cigarette smoking has been shown in

previous studies to be associated with epigenetic changes

(Anttila et al. 2003; Divine et al. 2005; Szulakowski et al.

2006; Hammons and Lyn-Cook 2011; Tekpli et al. 2012).

Cigarette smoke-induced chromatin remodeling by acety-

lating lysine residues on histone proteins to facilitate gene

expression was found (Marwick et al. 2004). In addition,

the activity of HDACs, which remove acetyl groups to

repress transcription, was reduced in bronchial biopsies

from smokers compared to nonsmokers (Ito et al. 2001).

Given the sex differences associated with CYP1A2

expression, a hormonal effect on expression levels was

investigated using estradiol. Treatment with estradiol was

found to reduce CYP1A2 expression in two of the cell sys-

tems examined. Estradiol has been shown to modulate

expression of several other CYPs. Real-time RT-PCR anal-

ysis has revealed that treatment with estradiol induced

CYP1B1 mRNA expression in ER-positive MCF-7 cells

(Tsuchiya et al. 2004). Luciferase reporter assays using

MCF-7 cells showed a significant transactivation by estra-

diol with a reporter plasmid containing a region from -

151 to +25 of the human CYP1B1 gene. Specific binding

of the estrogen receptor (ER) to the putative estrogen

responsive element (ERE) was demonstrated by chro-

matin immunoprecipitation assays and gel shift analyses.

Estradiol has also been shown to be involved in regula-

tion of CYP1A1 and CYP1B1 in human lung cells (Kuo

et al. 2013). The possible role of estrogen in regulating

expression of the human CYP3A subfamily was examined

(Williams et al. 2004), since CYP3A4 mRNA expression

in liver was lower in women than in men (Wolbold et al.

2003). It was shown that CYP3A4 and CYP3A43 are

downregulated by estrogen, whereas CYP3A5 is expressed

at higher levels during the secretory phase in endome-

trium. Estradiol derivatives also downregulated CYP2C19

expression in Huh-7 cells via estrogen receptor ERa,
which interacts with the newly identified ER-binding half

site at position -151/-147 in CYP2C19 promoter (Mwinyi

et al. 2010). The mechanism of action of estradiol on

expression of CYP1A2 and whether the involvement of

estradiol in regulation of CYP1A2 expression underlies

the higher expression of CYP1A2 in men compared to

women remain, however, to be established. Computer-

assisted homology search of CYP1A2 does identify the

presence of the putative half ERE at several sites in the

gene.

Increased CYP1A2 activity is also associated with intake

of cruciferous vegetables (Kall et al. 1996; Peterson et al.

2005). Results from this study show that I3C, an impor-

tant indole in cruciferous vegetables, induces expression

of CYP1A2 in several cellular systems, suggesting that this

dietary component contributes to the higher CYP1A2

activity associated with the consumption of cruciferous

vegetables. In the only other report found, treatment with

I3C (10 – 50 lM) was shown to increase CYP1A2 expres-

sion in three human breast cell lines, MCF-7, MDA-MB-

231, and MCF10A (Szaefer et al. 2012). Although the

mechanism underlying the modulation of CYP1A2 expres-

sion by I3C is not yet known, dietary agents can effect

epigenetic changes. I3C is a hypomethylating agent, as

demonstrated in several studies including results from

our laboratory (Lyn-Cook et al. 2008, 2009). I3C has also

been reported to decrease histone deacetylase-I (HDAC-I)

expression in SEB-activated T cells (Busbee et al. 2014).

In conclusion, several factors known to be associated

with CYP1A2 expression in population studies were

shown to directly modulate the expression of CYP1A2 in

this comprehensive in vitro study. Given the crucial role

of drug-metabolizing enzymes in regulating the pharma-

cological and biological activity of drugs as well as being

a critical determinant in risk to foreign chemicals, it is

important to understand the regulatory features that lead

to individual differences in the expression of drug-meta-

bolizing enzymes. Results from this study clearly establish

a causal relationship between tobacco smoke and CYP1A2

expression. The effect was demonstrated in both human

liver and lung cells. Further evidence is provided support-

ing the involvement of epigenetic mechanisms. In exam-

ining other factors, evidence is presented that estradiol

may be a contributing factor in the sex difference in the

expression of CYP1A2 and that the dietary component

I3C may have an important role as well in CYP1A2
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expression. Studies to further clarify the regulatory mech-

anisms involved in CYP1A2 expression in response to

environmental, dietary, and endogenous factors will be

needed.
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