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ABSTRACT: Recent work showed that active site rather than full-protein-sequence information improves predictive performance
in kinase-ligand binding affinity prediction. To refine the notion of an “active site”, we here propose and compare multiple
definitions. We report significant evidence that our novel definition is superior to previous definitions and better models of ATP-
noncompetitive inhibitors. Moreover, we leverage the discontiguity of the active site sequence to motivate novel protein-sequence
augmentation strategies and find that combining them further improves performance.

1. INTRODUCTION
The human kinome is indispensable for the regulation of cell
function and comprises many widely studied drug targets due to
its key role in a multitude of diseases such as cancer. Therefore,
proteochemometric models that can predict protein−ligand
interaction, kinetic energies, or binding affinities have received
growing interest.1 Most efforts either rely on structure-based2,3

or sequence-based4,5 deep learning models. While structure-
based approaches can, in principle, model binding dynamics
more realistically, their practical superiority is questionable:
recent work evidenced that incorporating noncovalent inter-
actions does not give benefits compared to simple protein/
ligand descriptors.6

Sequence-based models for affinity prediction are usually
trained on prohibitively long protein sequences that consist
predominantly of residues irrelevant for binding. Recently,
however, we demonstrated that using only residues of the ATP-
binding site rather than the full protein increases the signal-to-
noise-ratio in the protein representation and improves
significantly the performance in protein−ligand affinity
prediction for human kinases.7 All experiments in that work
were based on an active site definition from Sheridan et al. (ref
8) which comprises 29 residues surrounding the ATP-binding
site that were identified using MSA.

The superiority of the active site representation manifested
consistently across all ligand types, with the sole exception of

one drug class: MEK/MAPK inhibitors.7 Notably, this class
contains many allosteric binders, in particular ATP-non-
competitive MAPK inhibitors that bind to a unique site near
the ATP-binding pocket.9 One goal of the presented work is to
address this systematic limitation in modeling allosteric binders
and refine the definition of an “active site” for binding affinity
prediction. Therefore, we leverage an alternative active site
definition comprising 16 residues from ref 10 that includes 6
residues farther away from the immediate binding site (see
Figure 1A). These two representations are compared to a
broader Combined definition (cf. Figure 1B). Last, we explore
additional mechanisms to leverage the knowledge about the
active site, in particular how it can inspire data augmentation.
We propose two new protein sequence augmentation
techniques and find that they have complementary positive
effects.
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2. KINASE SEQUENCE REPRESENTATION
2.1. Active Site Definitions. In our previous work,7 the

active site representation relied on 29 residues defined originally
in Sheridan et al. [ref 8, Table 1]. These residues are short
contiguous subsequences that lie discontiguously in the original
sequence (cf. Figure 1B top). Here, the predictive power of this
Sheridan definition is compared to 16 residues that were found
most relevant for kinase kernel models by Martin et al.10 These
Martin residues were identified from a starting set of 46 residues
based on how frequently they were picked with a variable
selection algorithm for a large set of kinase-kernel models. Since
only 10 of these 16 residues are overlapping with the Sheridan
definition, we also examine aCombined active site definition with
35 residues. For a table with the PKA numbering of all residues,
see subsection S1.3.
2.2. Kinase Sequence Augmentation. While the MSA

guarantees a meaningful and consistent ordering of the residues
(and their physical roles), the sequences do not provide explicit
3D information on protein conformation. Especially, proximity
in the sequence likely but not necessarily corresponds to
proximity in 3D space. We therefore hypothesized that sequence
augmentation strategies could assist to learn general binding

patterns for two reasons: 1) There may be 1D representations
that align better with the 3D relation of residues than the original
sequence. Representing a kinase as a distribution of sequences
reflects this lack of knowledge, might regularize the model, and
thus improves generalization, especially to unseen target
families. 2) Static roles of specific residue positions may induce
overfitting in practice as the model might memorize too specific
patterns.

A natural augmentation technique for protein sequences is
flipping (F) the entire reduced residue set (p = 0.5). Moreover,
we leveraged the knowledge about the location of the active site
residues and exploited their discontiguity in the full sequence to
motivate two additional augmentation strategies (cf. Figure 1B
bottom). First, flipping contiguous subsequences (FS): Since
subsequences of the active site that are contiguous in the full
sequence are close together in space, reading such sequences
from either direction should not affect model predictions (p =
0.5). Second, swapping neighboring contiguous subsequences
(SS): This strategy relies on the assumption that neighboring
contiguous sequences have a higher probability to be closer in
space than distant active site subsequences (p = 0.2). Last, we

Figure 1. Overview of active site site definitions and representations. A) Visualization of cAMP-dependent protein kinase catalytic subunit alpha
(P17612). Residues unique to the active site definitions of refs 8 and 10 are colored in orange and green, respectively. Residues contained in both
definitions are shown in red. B) Partial amino acid sequence (residues 48−62) of the same kinase. The upper gray panel displays the four kinase
sequence representations examined in this work. The lower gray panel visualizes three kinase augmentation strategies, exemplified on the “combined”
active site definition: flipping (i.e., reversing) the entire sequence, flipping contiguous subsequences, and swapping neighboring subsequences.
Residues affected by the augmentation are encircled in black.

Table 1. Results on Validation and Test Data (Ligand Split)a

RMSE (↓) Pearson (↑)

data config BiMCA BiMCA-pre BiMCA BiMCA-pre

val. full sequence 0.908±0.01 0.848±0.01 0.748±0.00 0.782±0.01

AS (Sheridan) 0.829±0.01 0.821±0.01 0.794±0.00 0.797±0.01

AS (Martin) 0.839±0.01 0.813±0.01 0.791±0.00 0.804±0.01

AS (combined) 0.828±0.01 0.811±0.01 0.797±0.01 0.804±0.01

test full sequence 0.912±0.01 0.863±0.01 0.744±0.00 0.774±0.01

AS (Sheridan) 0.832±0.01 0.826±0.01 0.792±0.01 0.795±0.01

AS (Martin) 0.842±0.01 0.818±0.01 0.789±0.01 0.801±0.01

AS (combined) 0.832±0.01 0.816±0.01 0.795±0.01 0.802±0.01
a10-fold cross-validation results on kinase data from BindingDB. For each model and data partition, we show mean and standard deviation across
10 folds and mark the best representation in bold.
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also explore combinations of these augmentation strategies. For
details, see Supporting Information S1.2.

3. EXPERIMENTAL SETUP
The experimental setup is largely identical to the binding affinity
prediction task described in ref 7. We take data from
BindingDB11 and examine two types of models, a k-nearest-
neighbor (KNN) model that builds a joint similarity space of
protein and ligand distances and a deep neural network called
BiMCA (Bimodal Multiscale Convolutional Attention en-
coder12) that ingests protein and ligand sequences (SMILES
strings) and consists of convolutional and attention layers. The
remaining methods (data source and preprocessing, model
definitions) can be found in Supporting Information S1.

4. RESULTS
4.1. Ligand Split. This split corresponds to the classical

discovery setting: Kinases are shared across train and validation
data, and thus, we measure generalization in the ligand space.
The results on the ligand split confirm the superiority of using
active sites compared to full sequences, irrespective of the exact
definition of the active site (cf. Table 1). The table clearly
indicates that the Combined representation yields consistently
the best results for both models, both metrics and validation and
test data (cf. Table 1). These improvements are statistically
significant (Wilcoxon signed-rank test,W+) compared to at least
one active site definition for all settings (see Figure S1 and
Figure S2).

There are several kinase inhibitor classes with notable
performance differences: First, the conspicuous inferiority of
the Sheridan definition to the full protein sequence for MEK
inhibitors [ref 7, Figure 7], caused by allosteric MAPK inhibitors
that cannot be modeled using an ATP-based active site
definition, was a limitation of our previous work. Importantly,
this can be resolved using the Martin or the Combined active site
definition with 6 more distant residues (cf. Figure S1 panel C).
These definitions include residues distant from the ATP-binding
site and around the “hydrophobic spine”, hypothesized to affect
the stability of binding site features or the active and inactive
forms.13 Second, the Martin definition also includes T51, a
residue that builds an important salt bridge with residues in the
same loop in many CDK kinases, another class where Martin/
Combined is better than Sheridan.
4.2. Kinase Split. This split tests the ability of the model to

predict the binding affinity for an unseen protein kinase. Since it

induces high heterogeneity across each fold/chunk of data, care
has to be taken in drawing conclusions, especially from the test
data results. The results for the KNN and the BiMCA on the
validation and test data are shown in Figures 2A and B,
respectively.

On the validation data, no clear trend is visible when
comparing the three active site configurations across models,
data splits, and metrics. Notably, however, all active site
definitions significantly outperform the full sequence represen-
tations across all models, splits, and metrics. While the Sheridan
representation is significantly superior to the Martin representa-
tion for the KNN (p < 0.05, W+) and to the Combined
representation for the BiMCA, this trend does not persist in the
test data. During testing, the Martin representation consistently
obtained the highest Pearson correlation, irrespective of the
model (cf. Table S1). However, this finding does not
corroborate when using the RMSE as a response metric (cf.
Figure 2B). Notably, our best model (the pretrained BiMCA)
obtained the best performance with the Combined representa-
tion in all but one case.

In Supporting Information S2.3, we report additional results
on a subset of samples where both kinases and ligands are
unseen. The results on this strict split evidence the higher
generalization capabilities of the BiMCA compared to the KNN
and underline the superiority of the active site sequence
representations.

Kinase Sequence Augmentation. To further improve
performance, we systematically investigated different kinase
sequence augmentation strategies. The results demonstrate that
all augmentation techniques improved model performance (cf.
Table 2). Interestingly, the structure-motivated techniques of
swapping (SS) and flipping subsequences (FS) exhibited a
similar performance boost to simple flipping (F). However, the
benefit of flipping is statistically insignificant, whereas FS and SS
yield significant benefits (p < 0.01, W+) in several config-
urations. Moreover, their performance boost is roughly additive
as combining all three strategies yields the best results in seven
out of eight cases (p < 0.01, W+, RMSE on validation data). We
hypothesize that the pretrained model is harder to improve
because it partially learned invariance to the applied trans-
formations.

5. DISCUSSION
In this work, we corroborate the finding that “less is more” in
sequence-based kinase-ligand affinity prediction models.

Figure 2. RMSE in affinity prediction for kinase split on validation and test data. 10-fold cross-validation results on kinase data from BindingDB.
Performance of validation (A) and test data (B) is shown. Statistically significant differences between the three different active site configurations are
marked with a star.
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Our experiments show that the 16 residues identified by ref 10
yield similar results to the Sheridan residues.

We report evidence that a novel, Combined kinase
representation is superior to the Sheridan and the Martin
representation for predicting binding affinity in unseen ligands.
To predict unseen kinases, we not only corroborate our previous
results on the superiority of active sites to full kinase sequences
but also find that no residue composition is strictly advanta-
geous. While we have previously found that incorporating fewer
residues yields better results, we find here that bringing back
specific residues that are more distant from the the ATP pocket
significantly increases performance, especially for allosteric
binders. Although these residues (cf. subsection S1.3) were
identified algorithmically, Martin et al.10 discuss in a post hoc
analysis dynamical roles of residues in the “hydrophobic spine”14

as well as other residues important in loop dynamics and
activation−deactivation mechanisms of kinases that do not
interact directly with the ligand (T51, L103, V119, G126, I163).
Other residues might be involved in both direct and indirect
interactions (F54, L95, L106, F187, L162).

Even though the ideal set of residues for sequence-based
kinase affinity prediction models remains unclear, our results are
a step forward in compactly modeling kinase-ligand binding. As
shown in our previous work,7 improved affinity predictors can be
leveraged to drive molecular generative models toward
generating molecules with higher binding affinity to specific
kinases. Lastly, the knowledge about the location of the active
site motivates multiple novel sequence augmentation techniques
that demonstrated further, complementary performance im-
provement.

6. DATA AND SOFTWARE AVAILABILITY
The data processing and augmentation pipelines are imple-
mented in the pytoda package.12 The source code has been
released on https://github.com/PaccMann/paccmann_
kinase_binding_residues#choosing-active-site-sequences, and
the preprocessed BindingDB data is available via https://ibm.
biz/active_site_data.7

Moreover, in the Generative Toolkit for Scientific Discovery
(GT4SD), we provide an example on leveraging the affinity
predictor as a reward function in a protein-driven molecular
generative model:15 https://github.com/GT4SD/gt4sd-core/
tree/main/examples/protein_driven_molecule_generation.
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