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Long noncoding RNAs (lncRNAs) play important roles in tumorigenesis and progression of
different cancers and they have been potential biomarkers for cancer diagnosis and
prognosis. As the most common endocrine malignancy, precise diagnosis and prognosis
of papillary thyroid cancer (PTC) is of great clinical significance. Here, we aim to identify new
hub lncRNAs for marking PTC and constructed prognostics signatures based on lncRNA-
miRNA-mRNA competing endogenous RNAs (ceRNA) network to predict overall survival
(OS) and disease-free survival (DFS) respectively. Five reliable hub lncRNAs were identified
by integrating differential genes of four Gene Expression Omnibus (GEO) gene chips using
the RobustRankAggreg (RRA) method. Based on differential analyses and interaction
prediction, a lncRNA-mRNA co-expression network and a lncRNA-miRNA-mRNA ceRNA
network were established. Then a comprehensive function characterization of the five hub
lncRNAs was performed, including validation dataset testing, receiver operating
characteristic (ROC) curve analysis, and functional analysis on two networks. All results
suggest that these five hub lncRNAs could be potential biomarkers for marking PTC. The
ceRNA network was used to identify RNAs which were associated with PTC prognosis.
Two prognostic signatures were developed using univariate and step-wise multivariate
Cox regression analyses and both of them were independent prognostic indicators for
PTC OS and DFS. Tumor microenvironment difference analysis between high and low-risk
patients showed that dendritic cells activated and macrophages M0 may be a possible
target for immunotherapy of PTC. In addition, disclosing the potential drugs that may
reverse the expression of hub genes may improve the prognosis of patients with PTC.
Here, connectivity map (CMap) analysis indicates that three bioactive chemicals
(pioglitazone, benserazide, and SB-203580) are promising therapeutic agents for PTC.
So, the paper presents a comprehensive study on diagnosis, prognosis, and potential
drug screening for PTC based on the five hub lncRNAs identified by us.
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INTRODUCTION

Thyroid cancer is the most common endocrine malignancy and
the incidence has been rapidly increasing in the past 4 decades
(Murugan et al., 2018). As the most common histological type of
thyroid cancer, papillary thyroid cancer (PTC) accounts for
approximately 85% of all cases (Fagin and Wells, 2016;
Kitahara and Sosa, 2016). The incidence of PTC has also been
increasing rapidly in most countries (La Vecchia et al., 2015).
Generally it has an excellent prognosis but the recurrence to
distant organs always threaten the patient’s life (Ito et al., 2010).
In the last few years, research has been performed to promote our
understanding of molecular mechanisms of PTC (Nikiforov and
Nikiforova, 2011; Fagin and Wells, 2016). Studies have suggested
the crucial roles of lncRNAs, circRNAs, miRNAs, and mRNAs in
PTC’s diagnosis and prognosis (Chen et al., 2019; Huang et al.,
2020; Xu and Jing, 2021). Discovering more biomarker genes and
developing reliable prognostic signatures could remarkably
promote the development of clinical treatment.

As we all know, human cancers are frequently correlated with
the change of transcription pattern and the transcriptome is not
only restricted to protein-coding RNAs but also refers to the
multiple noncoding members (Liz and Esteller, 2016). The
biological roles of RNAs in tumorigenesis and progression has
become an interesting research hotpot. As the fundamental
transcription regulators, lncRNAs could affect cellular
functions including apoptosis, cycle regulation, proliferation,
migration, and invasion by regulating expressions of many
salient genes (Fang and Fullwood, 2016). Nowadays,
competing endogenous RNAs (ceRNAs) have been proven to
play a prominent role in cancer initiation and progression and
might be explored as diagnostic markers or therapeutic targets
(Qi et al., 2015).

Meanwhile, cancer biomarkers need to have a strong
specificity for a particular disease condition and lncRNAs have
been emerging as crucial players in the control of gene expression
(Iaccarino and Klapper, 2021). Previous studies have shown the
marked heterogeneity in lncRNA expression between individual
cancer cells so that lncRNA have a much higher cell/tissue
specificity of expression in comparison to other ncRNAs and
mRNAs (Silva et al., 2015; Wu et al., 2021). Besides, lncRNAs are
often stable in clinical samples and can easily be detected by
common techniques, such as quantitative real-time PCR,
sequencing, and microarray hybridization (Silva et al., 2015).
The patterns of lncRNAs deregulation in primary tumor tissues
have been found in bodily fluids, including plasma and urine
(Silva et al., 2015), which presents an opportunity to develop
lncRNA-based biomarker tools that are convenient, minimally
invasive, and may be easily accepted by patients.

Studies have indicated that lncRNAs could play important
roles as ceRNAs in certain cancers, such as breast cancer,
colorectal cancer, pancreatic cancer, and so on (Liu et al.,
2021; Rong et al., 2021; Zeng et al., 2021). They also could
exert carcinogenic effects as ceRNAs in PTC. For example, Sui
et al. have revealed that, as a ceRNA of miR-214-3p, small
nucleolar RNA host gene 3 (SNHG3) is an oncogenic lncRNA
in PTC by binding with miR-214-3p to regulate the expression of

proteasome 26S subunit non-ATPase 10 (PSMD10) (Sui et al.,
2020). Further, Zhang et al. have proven that the lncRNA of
FOXD2-AS1 is highly up-regulated in PTC and acts as a ceRNA
to promote the expression of KLK7 by sponging miR-485-5p,
resulting in cell proliferation and migration (Zhang et al., 2019).
Moreover, the expression levels of lncRNAs and miRNAs may be
directly associated with the good/bad prognosis and could be
involved in carcinogenic or tumor-suppressive pathways, which
mark them as potential prognostic biomarkers (Murugan et al.,
2018; Hanna et al., 2019). For example, Chen et al. identified
lncRNA TTTY10 as prognostic markers for predicting tumor
recurrence in PTC (Chen et al., 2019). Zhao et al. screened out
three lncRNAs of LINC00284, RBMS3-AS1, and ZFX-AS1 by
constructing lncRNA-miRNA-mRNA network, which were
found to be associated with PTC progression and prognosis
(Zhao et al., 2018). Recently, Sun et al. found five lncRNAs
which were associated with PTC patient survival time but only
based on one individual GEO data set (Sun et al., 2020). However,
potential lncRNA biomarkers which are more reliable and
convincing are yet to be found, because the existing studies
always give different crucial lncRNAs based on different
individual databases. Until now, the field still lacks integration
of different databases for a comprehensive validation on PTC hub
lncRNA genes and the regulation characteristics of them are not
well revealed.

In this study, we integrated the data from four GEO databases
with the most PTC samples and the Cancer Genome Atlas
(TCGA) so as to screen crucial lncRNAs. Five hub lncRNAs
were achieved by robust rank aggregation (RRA) method for data
integration of different databases. To comprehensively validate
five hub genes, their expression difference analysis and the
receiver operating characteristic (ROC) diagnostic analysis
were performed based on four GEO datasets, TCGA and Gene
Expression Profiling Interactive Analysis (GEPIA) database,
respectively. Meanwhile, lncRNA-mRNA co-expression
network and lncRNA-miRNA-mRNA ceRNA network were
also constructed. Functional analysis on mRNAs involved in
the two networks along with the deep-literature exploring five
hub lncRNAs and these mRNAs all indicate that they are all
involved in cancer-related functions. So, the five hub lncRNAs
give promising potentiality for diagnosing PTC.

We also established two prognostic risk models for PTC OS
and DFS, namely PTC-mi1m4 and PTC-m3, respectively, by
screening all genes in ceRNA network. To elucidate the potential
pathogenesis of PTC, Gene Oncology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG), and Disease Ontology (DO)
enrichment analyses were performed. The proportions of 22
immune cells of PTC were analyzed to estimate the tumor
microenvironment in patients with PTC. Among them, two
immune cells were demonstrated to be associated with the
prognosis of PTC and they may be the potential target of
immunotherapy.

Finally, connectivity map (CMap) analysis was performed
based on five prognosis-related mRNAs to screen potential
bioactive chemicals. Three promising drugs were predicted as
compounds that play vital roles in PTC-related biological
processes and may provide potential treatment of PTC.
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MATERIALS AND METHODS

Data Collection and Pre-Processing
In this study, based on the same sequencing platform of
Affymetrix Human Genome U133 Plus 2.0 Array from GEO
database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cdi),
four gene chips with the most sample pairs were selected,
including GSE29265 with 20 pairs of normal and PTC
samples, GSE3678 with seven pairs, GSE3467 with nine
pairs, and GSE33630 with 49 PTC samples and 45 normal
samples. Furthermore, the RNA-Seq counts data of 501 PTC
and 58 normal tissues were downloaded from TCGA data
center (http://portal.gdc.cancer.gov/). Meanwhile, we
obtained the clinical information of 496 PTC patients from
cBioPortal for Cancer Genomics (http://www.cbioportal.org).
After deleting PTC samples without either expression data or
clinical information, 490 eligible PTC, and 58 normal tissues
remained for the construction of PTC OS prediction model.
Since 14 of 490 PTC samples lack clinical information about
PTC DFS, the remaining 476 samples were used for DFS
prediction.

In order to obtain lncRNA expression data, based on four
GEO datasets, we only extracted genes annotated as
“3prime_overlapping_ncRNA,” “antisense,” “sense_intronic,”
“sense_overlapping,” “macro_lncRNA,” “lincRNA,”
“non_coding,” “bidirectional_promoter_lncRNA,” and
“misc_RNA.” After deleting genes with no expression in more
than four samples, in total 1038 lncRNAs remained from four
gene chips. In addition, 743 miRNAs and 16160 mRNAs were
achieved from TCGA. Finally, all the raw data from GEO were
normalized by the Normalize Between Arrays method in R
package “limma” and those from TCGA were normalized by
Trimmed Mean of M values (TMM) in R package “edgeR.”

Differential Expression Analysis and
RobustRankAggreg Method
Firstly, each GEO dataset was normalized using the normalize
Between Arrays function in R package “limma.” Then,
differential expression analysis was conducted on lncRNA
expression data of four GEO individual datasets respectively
also by R package “limma.” Here, considering the limited
number of lncRNAs in GEO datasets, those with |logFC|>1
and adjusted p < 0.05 were selected as differentially expressed
ones. However, different differential lncRNAs were extracted
from different gene chips respectively. Here, in order to achieve
more valid and representative differential lncRNAs as well as to
remove the bath effect, RRA method in R package was
employed to integrate the differentially expressed gene lists
resulting from differential expression analysis of four
individual datasets. The RRA method can detect genes that
are ranked consistently better than expected and then assign a
significance score for each gene. The significance scores
provide a rigorous way to keep only the statistically relevant
genes in the final list so that genes identified by this method will
be robust, convincing, and significant (Kolde et al., 2012).
Then, the significant differentially expressed lncRNAs

selected by RRA method were considered as hub lncRNAs
for further analysis.

Differential expression analysis with miRNA and mRNA
expression data of TCGA database was performed using R
software package “egdeR” with |logFC|>1 and adjusted p <
0.05. Finally, the “ggplot2” package was used to make the
volcano plot visualized, revealing the distributions of all
differential genes.

Construction of lncRNA-mRNA
Co-Expression Network
To establish the lncRNA-mRNA co-expression network, the
Pearson correlation analysis was performed between
expression levels of hub lncRNAs and differential mRNAs in
TCGA so as to select co-expressed mRNAs that are correlated
with hub lncRNAs with the coefficient value of |Cor|>0.5 and p <
0.05. The network graph of lncRNA-mRNA co-expression
network was built and visualized by Cytoscape (Version:3.7.1,
https://cytoscape.org/).

Establishment of a lncRNA-miRNA-mRNA
Network
For the purpose of constructing lncRNA-miRNA-mRNA ceRNA
network, starBase v2.0 (http://starbase.sysu.edu.cn) was used to
predict lncRNA-miRNA interactions. Those predicted miRNAs
only proved to be differentially expressed by TCGA data are
regarded as those which were used to construct the ceRNA
network. mRNAs targeted by those miRNAs interacting with
hub lncRNAs were predicted using miRTarbase (http://
mirtarbase.cuhk.edu.cn/), miRDB (http://www.mirdb.org/), and
TargetScan 7.2 (http://www.targetscan.org/vert_72/). Similarly,
only those predicted target mRNAs that also differentially
expressed TCGA can be involved in the ceRNA network.
Finally, the lncRNA-miRNA-mRNA ceRNA network was
established and visualized using Cytoscape (Version:3.7.1,
https://cytoscape.org/).

Functional Analysis
To characterize the function of mRNAs in lncRNA-mRNA co-
expression network and those in lncRNA-miRNA-mRNA
ceRNA network respectively, GO, KEGG, and DO enrichment
analyses were all performed with “clusterProfiler” package for
investigating biological process, molecular function, pathways,
and related diseases.

Development of Survival Signatures and
Survival Analysis
Univariate Cox proportional hazards regression analysis was
performed on all genes in lncRNA-miRNA-mRNA ceRNA
network with p < 0.05 as the threshold to respectively identify
OS-associated or DFS-associated lncRNAs, miRNAs, or mRNAs.
Then, these genes were entered into the step-wise multivariate
Cox regression analysis using R package “survminer” to screen
out the key RNAs with great prognostic values. Finally, those
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RNAs selected in the multivariate Cox regression were used to
construct PTC OS-associated signature and DFS-associated
signature. The prognostic signatures were constructed as follows:

Risk score � ∑
n

i�1
βipExpressioni (1)

where n is the number of candidate genes, βi is the coefficient of
gene i in multivariate regression analysis, and Expressioni is the
expression level of gene i that has been normalized by TMM.

Based on the risk score, the PTC patients were divided into
high and low-risk groups by cut-off median. Time-dependent
receiver operating characteristic (ROC) and Kaplan-Meier
survival curve analyses were performed by R package of
“survivalROC,” “survival,” and “survminer.” Area under curve
(AUC) value from the ROC curve and concordance index (C
index) were calculated to determine the prognosis accuracy of the
two signatures.

Using the other clinicopathological factors associated with
PTC patients’ OS or DFS time as confounding variables, clinical
characteristics including age, gender (male/female), and stage (I,
II, III, IV) were also analyzed using univariate and multivariate
Cox regression. This stratified analysis was conducted to
determine whether the prognostic signature is independent of
these clinical factors.

Estimation of Tumor Microenvironment
In order to evaluate the proportions of all 22 immune cells in PTC
tissues, CIBERSORT methods were used based on the gene
expression profile by running CIBERSORT script from the
website (http://rdrr.io/github/singha53/amritr/src/R/
supportFunc_cibersort.R). The sums of immune cells of each
PTC patient were equal to 1. The Wilcoxon test was used to test
the prominent difference of immune cells’ proportions between
high and low-risk groups that was divided according to OS-
associated signature and DFS-associated signature respectively.
The Pearson correlation coefficient was calculated to study the
correlations between 22 immune cells and key genes involved in
two risk models with the cutoff values of |Cor|>0.2 and p < 0.05.
So, the distinctive immune cells were identified that not only
show significant differences between high and low-risk groups
but are correlated with the expression levels of genes. Finally,
univariate and multivariate Cox regression analyses were used to
further identify those which may be associated with OS or DFS of
patients.

CMap Analysis
The CMap online tool (http://broadinstitute.org/cmap) was used
to predict the effect of drugs on the particular gene expression
patterns in tumors. In order to study functional connections
between the key genes associated with OS and DFS of PTC
patients and bioactive chemicals, the up-regulated and down-
regulated tags from the key genes were uploaded into the CMap
online tool. How closely a compound is connected to the
uploaded signature depends on the connectivity score with a
range from −1 to 1. A positive connectivity score indicates that
the compound promotes the query gene expression, whereas a

negative connectivity score indicates that the compound
represses the query gene expression.

RESULTS

Identification and Validation of Hub
lncRNAs for Marking PTC
Four lncRNA gene chips (GSE29265, GSE3678, GSE33630, and
GSE3467) based on the same sequencing platform were selected
in this study. In total, eight differentially expressed lncRNAs were
recognized in GSE29265 gene chip, including three lncRNAs with
higher expression and five lncRNAs with lower expression
(Figure 1A). A total of six differentially expressed lncRNAs
were identified from GSE3678 gene chip, of which three are
up-regulated and thre are down-regulated lncRNAs (Figure 1B).
Moreover, there are nine differential lncRNAs in GSE33630 gene
chip, containing five up-regulated and four down-regulated ones
(Figure 1C). Only one down-regulated lncRNA was recognized
in GSE3467 (Figure 1D). So, we can see that different gene chips
give different differential lncRNAs. Then we used RRA method
for integration and further screening so as to achieve more
distinctive hub lncRNAs. Through rank analysis by RRA
method among the four expression matrices, five hub
lncRNAs were identified.

The five hub lncRNAs are SLC26A4-AS1, RNF157-AS1,
NR2F1-AS1, ST7-AS1, and MIR31HG. Among them, RNA
expressions of NR2F1-AS1 and MIR31HG in PTC tissues were
significantly up-regulated compared with normal tissues, while
expressions of the other three genes were significantly down-
regulated in all four GEO datasets (Figure 2). In order to verify
this observation, expression levels of these five hub genes were
also analyzed based on two other validation datasets of GEPIA
database and TCGA (Supplementary Figures S1, S2). Since
RNF157-AS1 is not included in the GEPIA database,
Supplementary Figure S1 only gives differential analysis
results of four other genes. We can see that all five hub
lncRNAs are differentially expressed in all datasets. NR2F1-
AS1 and MIR31HG are always up-regulated and the other
three genes are down-regulated in all six or five datasets.

In order to further verify the potentiality of five hub lncRNAs
for marking PTC, the diagnostic performance of these five hub
lncRNAs were demonstrated by ROC curve analysis based on
four GEO datasets and TCGA, as shown in Figures 3A–E. For
each of them, the AUC value is higher than 0.90 in at least two
datasets. SLC26A4-AS1 is the exception as it gives an AUC value
of 0.753 in GSE29265, while all other 24 AUC values are higher
than 0.80. ST7-AS1 yields the best diagnostic performance in all
five databases with all five AUC values higher than 0.90
(Figure 3B) and those of SLC26A4-AS1, ST7-AS1, and
RNF157-AS1 in GSE3678 are equal to 1. The results illustrate
that the five hub genes screened out by us also yield excellent
diagnostic efficiency between PTC and normal tissues. These
validation tests suggest that the five hub lncRNAs are all reliable
and potential biomarkers for marking PTC.

Finally, a deep literature-exploring was implemented and all
five hub genes have been confirmed as having important roles in
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PTC and other cancers. The overexpression of SLC26A4-AS1
could decrease cell migration, invasion, and proliferation, and
thus had anti-oncogenic effects in PTC (Wang DP. et al., 2020).
But NR2F1-AS1 was reported to promote invasion and invasion
of PTC (Yang et al., 2020). Besides, MIR31HG was observed to
promote cell proliferation and cell cycle progression and inhibit
cell apoptosis, and it could be a potential therapeutic target for
head and neck squamous cell carcinoma in the study by Wang
et al. (2018). As mentioned in previous research, up-regulated
ST7-AS1 could expedite migration and invasion in gastric cancer
and it promoted the oncogenicity of cervical cancer cells by ST7-
AS1/miR-543/TPRM7 (Cai et al., 2020; Qi et al., 2020). Xu and Xu
(2020) observed that the higher expression of RNF157-AS1
motivated the proliferation of ovarian cancer cells, while the
overexpression of RNF157-AS1 decreased the chemoresistance;
thus, ovarian cancer patients with overexpressed RNF157-AS1
have better prognosis.

lncRNA-mRNA Co-Expression Network
Further, functions of the co-expressedmRNAs with hub lncRNAs
were investigated. By Pearson correlation analysis with the cutoff
values of |Cor| > 0.5 and p < 0.05, the interactions between five
lncRNAs and 2716 differential mRNAs in TCGA were
researched. A total of 647 mRNAs were significantly related to
the five hub lncRNAs, so the lncRNA-mRNA co-expression
network was constructed. The network graph is shown in
Figure 4. We can see that SLC26A4-AS1, RNF157-AS1, and
ST7-AS1 share more interacting mRNAs, which may indicate
that there are coordinated interactions among three lncRNAs by
sharing common mRNAs. But NR2F1-AS1 individually has the
most interacting mRNAs and MIR31HG has the least. So, we
presented a further functional analysis on these co-expressed
mRNAs using GO, KEGG pathway, and DO analysis.

Firstly, mRNAs involved in lncRNA-mRNA co-expression
network were divided in to common or specific ones. If

FIGURE 1 | Identification of differentially expressed lncRNAs in each dataset. (A)GSE29265, (B)GSE3678, (C)GSE33630, (D)GSE3467. The red pots represent
the up-regulated lncRNAs and the blue pots represent the down-regulated ones with the cutoff criteria of |logFC| > 1 and adjusted p < 0.05. The grey pots represent
lncRNAs with no prominent expression difference.
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mRNAs are related with two or more lncRNAs, they are defined
as common and those that only connect with one lncRNA are
specific mRNAs. As displayed in Figure 5, the common mRNAs
are involved in the thyroid hormone generation (Figure 5A) and
dynein intermediate chain binding function (Figure 5B). They
are commonly associated with thyroid hormone synthesis
(Figure 5C) and thyroid gland disease (Figure 5D). But
specific mRNAs are most involved in axonogenesis
(Figure 5E) and transmembrane receptor protein tyrosine
kinase activity (Figure 5F). They may be related with p53
signaling pathway (Figure 5G) and papillary carcinoma
(Figure 5H). So, the function analysis indicates that the co-
expressed mRNAs that are common between five hub lncRNAs

may have important roles in the development and progression
of PTC.

lncRNA-miRNA-mRNA ceRNA Network
To construct lncRNA-miRNA-mRNA ceRNA network, the
starBase v2.0 was used to predict the target miRNAs of five
hub lncRNAs and 713 were identified. Then, 17 target miRNAs
were determined by intersecting 167 differentially expressed
miRNAs in TCGA and 713 predicted miRNAs. Consequently,
miRDB, miRTarBase, and TargetScan 7.2 were used to predict
probable target mRNAs of the above 17 miRNAs and extracted
the intersections from the three online analysis tools. By
overlapping the predicted mRNAs to 2716 differential derived

FIGURE 2 | Expressions of five hub lncRNAs in PTC compared with normal tissues in (A) GSE3467, (B) GSE3678, (C) GSE29265 and (D) GSE33630 dataset. (*:
p < 0.05, **: p < 0.01, ***: p < 0.001).
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from TCGA, 68 target mRNAs that may exert critical functions in
PTC were discovered.

Based on the achieved lncRNA-miRNA pairs and miRNA-
mRNA pairs, the lncRNA-miRNA-mRNA ceRNA network was

constructed (Figure 6A). The potential functional
characteristics of mRNAs in this ceRNA network were also
interpreted by GO, KEGG pathway, and DO analysis
respectively. The 68 differential target mRNAs are enriched
in BP of skin morphogenesis and respond to corticosteroid
(Figure 6B) as well as MF of platelet-derived growth factor
binding and extracellular matrix (Figure 6C). Previous reports
have been indicated that corticosteroid could alleviate cancer-
related symptoms and play an indispensable role in cancer care
(Drakaki et al., 2020). In addition, lymph node metastasis is
important for the treatment and prognosis of PTC patients and
some platelet-derived growth factors can promote lymph node
metastasis by participating in lymphangiogenesis of rectal
cancer (Liu et al., 2011). The extracellular matrix can also
influence cancer progression and then significantly affect the
matrix composition and structure (Malandrino et al., 2018).
Among the enriched pathways (Figure 6D), PI3K-Akt signaling
pathway plays an extensive role in thyroid tumorigenesis and
focal adhesion is also a tumor-related pathway (Hou et al., 2007;
Antoniades et al., 2021). In addition, mRNAs were observably
associated with hyperparathyroidism and parathyroid gland
disease (Figure 6E). The above analysis could indicate to
some extent that these mRNAs may play important roles
in PTC.

Construction of Prognostic Signatures and
Survival Analysis
Initially, the five hub lncRNAs were used to establish the
prognosis model. However, the univariate Cox analysis results

of five hub lncRNAs prove that the p-values of five hub lncRNAs
are all much higher than 0.05, as shown in Supplementary Figure
S3. So, these lncRNAs were not associated with PTC patients’ OS
and DFS, although they yield promising diagnostic performance.

FIGURE 3 | ROC curve analysis of five hub lncRNAs diagnosis in
GSE3467, GSE3678, GSE29265, GSE33630, and TCGA cohort. (A)
SLC26A4-AS1 (B) ST7-AS1 (C)RNF157-AS1 (D)NR2FA-AS1 (E)MIR31HG.

FIGURE 4 | lncRNA-mRNA co-expression network. The network includes the five hub lncRNAs (pink pots) and 650 mRNAs (blue pots).
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FIGURE 5 | Functional analysis on common and specific mRNAs in lncRNA-mRNA co-expression network. (A) The biological process items of common mRNAs
by GO analysis. (B) The molecular function items of common mRNAs by GO analysis. (C) Functional enrichment analysis by KEGG for common mRNAs. (D) Functional
enrichment analysis by DO for commonmRNAs. (E) The biological process items of specific mRNAs by GO analysis. (F) The molecular function items of specific mRNAs
by GO analysis. (G) Functional enrichment analysis of KEGG for specific mRNAs. (H) Functional enrichment analysis of DO of specific mRNAs.
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To identify the potential RNAs with prognostic characteristics,
univariate Cox proportional hazards regression analysis was
performed for five lncRNAs, 17 miRNAs, and 68 mRNA
expression data and those related to patient OS or DFS were
selected by using p < 0.05 as the criteria. As a result, nine mRNAs
including TMEM184A, SRCIN1, PI4K2A, FADS6, ITGA3,
KRT80, ADM, TOB1, and DCBLD2 were found to be
correlated with PTC DFS. On the other hand, four miRNAs
and nine mRNAs, namely hsa-miR-1305, hsa-miR-4501, hsa-
miR-3652, hsa-miR-665, PASS2, SCD, THBS2, ID4, FHL2,
MEX3A, DSEL, DCBLD2, and TMEM184A, were significantly
associated with PTC OS. Then, in order to further screen out an
optimal combination from these genes, stepwise multivariate Cox
regression analysis was conducted and subsequently two
predictive signatures named PTC-mi1m4 (hsa-miR-1305,
PAPSS2, SCD, ID4, and DCBLD2) and PTC-m3
(TMEM184A, TOB1, and FADS6) were obtained for PTC OS
and DFS respectively.

For the feature genes in the prognostic risk models, their
cancer-related function roles were also investigated here. A
previous study by Ng et al. (2015) has shown that hsa-miR-1305
may target the genes involved in cell cycle, cell junction, and
cytoskeleton. In our study the target genes are PAPSS2, SCD,
and ID4 which play significant roles in various cancers. PAPSS2
is downregulated in radiation-induced PTC and has been used
as a potential biomarker for radiation-induced PTC (Stein et al.,
2010). ID4 is a promising target in cancer therapy and it could
be involved in thyroid tumorigenesis and prevent thyroid
cancer invasion and metastasis (Amaral et al., 2019).
Inhibiting SCD could result in tumor cell death including
anaplastic thyroid carcinoma, colorectal adenocarcinoma,
renal cell carcinoma, and non-small cell lung carcinoma (von
Roemeling and Copland, 2016). DCBLD2 has been reported to
play a positive role in lung cancer and glioblastomas but shows a
negative role in gastric and neuroendocrine cancers (He et al.,
2020). For the additional three mRNAs of TMEM184A, TOB1,

FIGURE 6 | | lncRNA-miRNA-mRNA ceRNA network and functional prediction of mRNAs in network. (A) The network consists of three lncRNAs (rectangles),
17miRNAs (triangles), and 68mRNAs (circles). The red pots represent up-regulated RNAs and the blue pots represent down-regulated RNAs. (B) The biological process
items by GO analysis. (C) The molecular function items by GO analysis. (D, E) Functional enrichment analysis of DO.
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and FADS6 in PTC DFS model, heparin binds specifically to
TMEM184A and could induce anti-proliferative signaling
in vitro (Farwell et al., 2017). As a Tob/BTG anti-
proliferation protein family member, TOB1 acts as a tumor
suppressor in many cancers. Tob phosphorylation also
contributes to the progression of PTC (Ito et al., 2005) and
NR2F1-AS1identified as a hub gene by us could suppress
proliferation of colorectal cancer cells by regulating TOB1
(Wang J. et al., 2020). FADS6 was found to be mutated in
Chinese Epstein-Barr virus-positive diffuse large B-cell
lymphoma (Liu et al., 2018). Overall, these genes
constructing two prognostic signatures are all involved in
cancer-related functions.

The risk score of each patient was calculated and all patients
were divided into high and low-risk groups using the median as
the cutoff. For PTC-mi1m4, it can be seen from Figure 7A that
the Kaplan-Meier analysis shows that patients with low-risk score
have a higher survival rate compared to those in the high-risk

group (p � 0.015). The time-dependent ROC analysis shows that
the AUC values for predicting 5-years and 10-years OS rates are
0.781 and 0.823respectively with C index of 0.775 (Figures 7B,C),
suggesting that this model yields a strong prognostic ability for
predicting PTC OS. Then the stratification analysis was
implemented based on risk score, age, gender, and tumor
stage. As shown in Figure 7D, univariate Cox regression
analysis reveals that risk score, age, and stage are associated
with PTC patients’ OS, but multivariate Cox regression
analysis show that risk score and age are the independent
prognostic indicators for PTC patients’ OS (Figure 7E).
Similarly, another prognostic signature (PTC-m3) for DFS
prediction could also adequately classify PTC patients into low
and high-risk groups. The survival analysis demonstrates that
high-risk patients have shorter survival times than low-risk
patients (Figure 8A). The AUC-ROC are 0.665 and 0.726 at
five and 10 years respectively with C index of 0.676 (Figures
8B,C). After performing univariate and multivariate Cox

FIGURE 7 | The prognostic significance of PTC-mi1m4 signature to predict OS of PTC patients. (A) Kaplan-Meier curve analysis for OS. (B) ROC validation of
prognostic value of PTC-mi1m4 signature for predicting 5-years survival of PTC patients. (C) ROC validation of prognostic value of PTC-mi1m4 signature for predicting
10-years survival of PTC patients. (D) Forest plot summary of univariable analysis of sex, age, stage, and risk score. (E) Forest plot summary of multivariable analysis of
age, stage, and risk score.
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regression analysis, the result also shows that this risk score could
be an independent applicable prognostic indicator for predicting
PTC patients’ DFS (Figures 8D,E).

Immune Landscape in Patients With PTC
Understanding the tumor microenvironment (TME) is of
practical significance for cancer diagnosis and treatments. The
22 immune cells form the major non-tumor constituents of
tumor tissues, and can perturb the tumor signal and have an
important role in cancer biology (Yoshihara et al., 2013). We
know that differences in the proportion and level of tumor
infiltrating immune cells may represent intrinsic characteristics
of different individuals (Nie et al., 2020). In order to investigate
the specific immune characteristics of PTC, the gene expression
matrix of PTC dataset was used to estimate the portion of 22
immune cells by running CIBERSORT script. The proportion of
immune cells in 490 PTC samples was shown in Figure 9A. We
can see that the proportion of T cells CD4 memory resting is the
highest, but the fraction of neutrophils is very low. It indicates

that the two immune cells may play important roles in the
development of PTC tumors.

Then the differences of immune cells’ proportions between
high and low-risk groups divided according to OS-associated
signature and DFS-associated signature were further estimated by
using Wilcoxon test and displayed in Figures 9B,C, respectively.
As seen in Figure 9B, compared with low-risk patients, high-risk
patients have significantly higher proportions of T cells CD4
memory resting, macrophages M0, and dendritic cells activated.
Lower proportions of T cells CD8, T cells follicular helper, and
T cells regulatory (Tregs) are observed in high-risk patients.
Pearson correlation analysis indicates that macrophages M1,
macrophages M0, eosinophils, NK cells activated, dendritic
cells resting, Tregs, and dendritic cells activated are associated
with mRNAs that are used to construct OS-associated signature.
In summary, dendritic cells activated, macrophages M0, and
Tregs not only have significant differences between high and
low-risk groups but are closely related with the expression levels
of four feature mRNAs in OS risk model. So univariate and

FIGURE 8 | The prognostic significance of PTC-m3 signature to predict DFS of PTC patients. (A) Kaplan-Meier curve analysis for DFS. (B) ROC validation of
prognostic value of PTC-m3 signature for predicting 5-years survival of PTC patients. (C)ROC validation of prognostic value of PTC-m3 signature for predicting 10-years
survival of PTC patients. (D) Forest plot summary of univariable analysis of sex, age, stage, and risk score. (E) Forest plot summary of multivariable analysis of stage and
risk score.
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multivariate Cox regression analyses were also performed on
three immune cells. The results in Table 1 shows that dendritic
cells activated was associated with PTC OS. Moreover, it has a
higher proportion in high-risk patients.

Figure 9C shows that the proportions of dendritic cells resting,
macrophages M0, mast cells resting, and Tregs are higher and
those of eosinophils, macrophages M1, mast cells activated,
monocytes, and T cells CD4 memory resting are lower in
high-risk patients compared to low-risk patients. Moreover,
Pearson correlation analysis demonstrates that macrophages
M0, eosinophils, dendritic cells activated, neutrophages, T cells
CD4 naive, T cells CD8, T cells CD4 memory resting, and T cells
regulatory (Tregs) are closely correlated with the three feature
mRNAs in DFS-associated signature. So, macrophages M0,
eosinophils, T cells CD4 memory resting, and Tregs not only
have differences between high and low-risk groups but are related
with the expression levels of mRNAs. Similarly, univariate and
multivariate Cox regression analyses were also implemented, and
Table 2 indicates that macrophages M0 is related with PTC
patients’ DFS.

In general, the proportion of macrophages M0 is higher in
high-risk patients either based on OS-associated signature or
DFS-associated signature, which may indicate that macrophages
M0 would be unfavorable to the prognosis of PTC, since it has
been demonstrated by the study of Xie et al. that macrophagesM0
as well as dendritic cells activated and Tregs were observed to play
a tumor-promoting role in PTC (Xie et al., 2020).

Determination of Therapeutic Drugs by
CMap Analysis
Discovering novel effective drugs may improve the prognosis of
patients with PTC. In our two signatures, seven feature mRNAs
related to the prognosis of PTC were achieved. It is expected that
drugs targeted to them may be of great potential in the therapy of
PTC. Except two without GPL96 probe ID, the remaining five
mRNAs including PAPSS2, TOB1, ID4, SCD, and DCBLD2 were
uploaded into the CMap web tool as down-regulated tags and up-
regulated tags respectively to screen the compounds that can
reverse the expression of these five hub genes. A negative
connectivity score indicates that the compound represses the
query gene expression. So, the top three bioactive compounds
with connectivity scores close to -1 were determined as the
potential therapeutic agents for PTC. The chemical structures
of three compounds are shown in Figure 10 and the detailed

FIGURE 9 | Immune landscape in low and high-risk patients with PTC.
(A) Proportions of 22 immune cells in PTC patients. (B) Comparisons on the
proportions of immune infiltrating cells between low and high-risk patients
based onOS-associated signature. (C)Comparisons on the proportions
of immune infiltrating cells between low and high-risk patients based on DFS-
associated signature.

TABLE 1 | | Univariate and multivariate Cox regression analyses of three immune cells and overall survival of PTC patients.

Univariate cox regression Multivariate cox regression

HR 95% CI p value HR 95% CI p value

T cells regulatory (Tregs) 8.69E-05 1.52E-12-4970 0.305 0.00 0-6597.90 0.29
Mocrophages M0 30.1 0.619-1460 0.0858 121.89 1.86-7981.86 0.024
Dendritic cells activated 1.41E+07 439-4.55E+11 0.0019 3.31E+07 914.70-1.20E+12 0.0012
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information about them derived by CMap analysis are listed in
Table 3.

Among the three compounds, it has been reported that
pioglitazone may be the potential drug in patients with PAX8-
PPARγfusion protein (PPFP) thyroid cancer and thyroid cancer.
It can also promote apoptosis in human glioblastoma LN-18 cells
(Giordano et al., 2018; Ozdemir Kutbay et al., 2020; Szoka and
Palka, 2020). Benserazide has been used as a drug with low
toxicity for the treatment of Parkinson’s disease. It has been
proven that it can suppress tumor growth by inhibiting HK2 so
that it may be an antitumor agent (Li et al., 2017). SB-203580 is a
p38 MAPK-specific inhibitor that could suppress IL-6-stimulated
non-small cell lung cancer cells proliferation by inhibiting IL-6-
induced p38MAPK phosphorylating activity (Chang et al., 2005).
Besides, p38 MAPK pathway has been reported to be activated in
proliferation of PTC cells promoted by CXCL5 (Cui et al., 2019).
Overall, the three compounds probably play vital roles in PTC-
related biological processes and pathways, although their effects
on PTC treatment remain to be explored.

DISCUSSION

Although the survival rate of PTC is relatively high, its recurrence
rate is also high. Accurate diagnosis, prognosis for PTC patients,

and discovering more potential drugs are of great significance in
PTC clinical practice. lncRNAs have been indicated as an
important biomarker for different cancers, such as colorectal
cancer, gastric cancer, ovarian cancer, and so on (Luo and Xiang,
2021; Tan et al., 2021; Zhu and Mei, 2021). Moreover, lncRNAs
could exert carcinogenic effects as ceRNAs in PTC (Zhang et al.,
2019; Sui et al., 2020). In the present study, we systematically
analyzed PTC-related genes and identified five hub lncRNAs for
marking PTC tissues. By establishing lncRNA-miRNA-mRNA
ceRNA network, two prognostic risk signatures were constructed
for predicting OS and DFS of PTC respectively. Finally, three
potential drugs were screened.

Firstly, five hub lncRNAs were identified by integrating four
gene chips (GSE29265, GSE3678, GSE33630, and GSE3467) from
GEO using differential expression analysis combined with RRA
approach. The five lncRNAs of SLC26A4-AS1, NR2F1-AS1,
MIR31HG, ST7-AS1, and RNF157-AS1 then underwent
comprehensive validation tests. Significant expression difference
could be observed between tumor and normal tissues in four GEO
datasets, TCGA, and GEPIA databases, Moreover, ROC curve
analysis shows that these five hub genes yield excellent diagnostic
efficiency between tumor and normal tissues based on all four GEO
datasets and TCGA and almost all AUC values higher than 0.8 in
all five datasets. Actually, previous researchers have identified
lncRNAs as prognostic markers of PTC, such as TTTY10

TABLE 2 | | Univariate and multivariate Cox regression analyses of four immune cells and disease-free survival of PTC patients.

Univariate cox regression Multivariate cox regression

HR 95% CI p value HR 95% CI p value

Macrophages M0 90.4 8.59-952 <0.001 102.85 8.55-1236.73 <0.001
Eosinophils 0.0188 5.75E-10-615000 0.653 19.06 0-9.00E+08 0.744
T cells regulatory (Tregs) 6.92 7.62E-04-62800 0.677 0.51 0-16667 0.898
T cells CD4 memory resting 0.434 0.0181-10.4 0.607 0.954 0.0265-34.306 0.979

FIGURE 10 | Structures of the three most significant bioactive chemicals. (A) pioglitazone (B) benserazide (C) SB-203580.

TABLE 3 | | Three bioactive compounds with the top three negative connectivity scores in the CMap analysis.

Drug Dose, µM Cell Connectivity score Up score Down score

Pioglitazone 10 MCF7 −1 −0.935 0.772
Benserazide 14 PC3 −0.99 −0.902 0.789
SB-203580 1 MCF7 −0.97 −0.876 0.779
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(Chen et al., 2019), LINC00284, RBMS3-AS1, and ZFX-AS1 (Zhao
et al., 2018) and five lncRNAs of PPARG, E2F1, CCND1, JUN, and
EZH2 (Sun et al., 2020) for predicting tumor recurrence in PTC.
We have also performed ROC analysis for them in our four GEO
datasets and TCGA. Among them, TTTY10 and LINC00284 both
are included in the five datasets, but RBMS3-AS1 and ZFX-AS1 are
only in TCGA. The five lncRNAs identified by Sun et al. (2020) are
not in all datasets. So, the ROC analysis was performed on
TTTY10, LINC00284, RBMS3-AS1, and ZFX-AS1 respectively,
as shown in Supplementary Figure S4. It shows that only
LINC00284 can give AUC values higher than 0.8 in three
datasets and all others lower than 0.8. TTTY10 gives a poor
performance with AUC values lower than 0.6.

In addition, lncRNA-mRNA co-expression network analysis
shows that the common co-expressed mRNAs of the five hub
lncRNAs are mainly involved in the cancer-related biological
processes or pathways, which can indicate to some extent that
these hub lncRNAs play crucial roles in PTC and other cancers.
Finally, by deep literature-exploring, all of the five lncRNA genes
have been confirmed as having important roles in cancers. All the
above analysis proves that they would be potential biomarkers for
PTC diagnosis.

However, the five hub lncRNA genes give poor correlation
with the survival prognosis of PTC patients by univariate Cox
regression analysis. So based on this, we aim to investigate the
prognosis features from their interacting miRNAs and target
mRNAs, since much more prognostic signatures have been
constructed using miRNAs and mRNAs in cancers, such as
gastric cancer, endometrial carcinoma, and so on (Cui et al.,
2021; Deng et al., 2021). Among 713 target miRNAs identified by
the starBase v2.0, 17 miRNAs are demonstrated to be
differentially expressed in TCGA. And then miRDB,
miRTarBase, and TargetScan 7.2 were used to give the reliable
target mRNAs and 68 differentially expressed ones were
identified in TCGA. Using five hub lncRNAs, 17 miRNAs, and
68 mRNAs, the lncRNA-miRNA-mRNA ceRNA network were
constructed. Univariate and step-wise multivariate Cox regression
analyses were performed and two prognostic signatures were
achieved for effective prediction of PTC’s OS and DFS
respectively. Here, they are named as PTC-mi1m4 and PTC-m3.
The Kaplan-Meier analyses suggest that both signatures could
successfully divide PTC patients into high and low-risk groups.
The low-risk patients always have longer survival times than high-
risk patients by two risk scores.Moreover, the time-dependent ROC
analysis manifest that both of them can better predict long-term
survival than short-term survival of PTC patients. The stratification
analysis shows that both signatures could be independent applicable
prognostic indicators of PTC even after adjusting for clinical factors
such as stage, age, and gender.

The immune cells are an essential part in the tumor
microenvironment and the effects of them on therapy is
simulative or impedimental. Meanwhile, the activation status
of immune cells may be different in different cancer tumors
(Wu and Dai, 2017). Therefore, we estimated the proportions of
22 immune cells in PTC and analyzed those with significant
differences between high and low-risk groups. As a result,
dendritic cells activated, macrophages M0, and Tregs were

demonstrated to be associated with the four feature mRNAs in
OS prognostic signature. And macrophages M0, eosinophils,
T cells CD4 memory resting, and Tregs were demonstrated to
also be associated with the three feature mRNAs in DFS prognostic
signature. The previous study by Xie et al. has displayed that all the
three immune cells, including dendritic cells activated
macrophages M0 and Tregs, play a tumor-promoting role in
PTC (Xie et al., 2020). In our study, dendritic cells activated
and macrophages M0 are associated with OS and DFS
respectively by the regression analysis. Specifically, dendritic
cells activated and macrophages M0 give higher proportion in
high-risk patients based on OS-associated signature. So, we can
speculate that they may be possible targets for immunotherapy of
PTC. Tregs has an antitumor effect between PTC OS and DFS; its
role may need further analysis by using wet lab experiments.

Disclosing the potential drugs that may reverse the expression
of hub genes may improve the prognosis of patients with PTC.
Therefore, we performed CMap analysis on the five feature mRNAs
derived from two riskmodels to screen the potential compounds for
the therapy of PTC. Three compounds (pioglitazone, benserazide,
and SB-203580) were identified. Through literature-searching, all
three bioactive compounds were shown to regulate PTC-related
biological processed or pathways by targeting to the five feature
mRNAs, but the practical applicability of those drugs should be
experimentally confirmed in future researches.
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