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Abstract.—A binary phylogenetic network may or may not be obtainable from a tree by the addition of directed edges
(arcs) between tree arcs. Here, we establish a precise and easily tested criterion (based on “2-SAT”) that efficiently
determines whether or not any given network can be realized in this way. Moreover, the proof provides a polynomial-
time algorithm for finding one or more trees (when they exist) on which the network can be based. A number of
interesting consequences are presented as corollaries; these lead to some further relevant questions and observations,
which we outline in the conclusion. [Algorithm, Antichain, Phylogenetic network, phylogenetic tree, reticulate evolution,
2-SAT.]

INTRODUCTION

Starting from any rooted binary phylogenetic tree, if
we sequentially add one or more arcs (directed edges),
each placed from a point on one tree arc to a point on
another tree arc, then provided no directed cycles arise,
we obtain a rooted binary phylogenetic network. Many
classes of phylogenetic networks can be generated in this
way, even if, at first, their descriptions seem somewhat
different. For instance, networks based on hybridization
can be drawn by adding two arcs from points on tree
arcs to meet at a new hybridization vertex, with a further
arc leading to a hybrid offspring; however, an equivalent
network can be produced by starting with a phylogenetic
tree on the same leaf set and simply adding arcs just
between tree arcs (Fig. 1 provides an example).

Here, we explore a key observation due to van
Iersel (2013), namely that not every binary phylogenetic
network can be obtained from a tree by simply adding
arcs between tree arcs. In this article, we provide a precise
mathematical characterization of the networks that can
be obtained in this manner. This in turn allows us to
readily show that certain classes of networks are tree-
based, while others are not. We then describe an efficient
algorithm for determining whether any given network is
tree-based and finding possible trees from which to build
the network. We illustrate the use of this algorithm on
a recent phylogenetic network concerning the complex
hybrid evolution of wheat.

Informally, we say that a binary phylogenetic network
is a “tree-based network” if it can be obtained from
a rooted binary phylogenetic tree by sequentially
attaching arcs between the arcs of the tree. This concept
is relevant to the question of whether phylogenetic
networks can be viewed as really just trees with
some reticulate arcs between the branches or whether
some networks are inherently less tree-like, so that the
concept of an “underlying tree” may be meaningless.
This is particularly relevant to the ongoing debate
about whether the evolution of certain groups (e.g.,

prokaryotes) should be viewed as tree-like with
reticulation or whether the very notion of a tree should
be dispensed with (Dagan and Martin 2006; Doolittle
and Bapteste 2007; Martin 2011). A network that is not
tree-based cannot be described as tree-like evolution
with directed links between the branches of the tree
(at least for the taxa under study—the existence of
unsampled or extinct taxa (Szöllősi et al. 2013) can alter
this conclusion, as we show). Conversely, a network
that is tree-based can still allow for genuine reticulation
events such as the formation of hybrid taxa from two
ancestral lineages.

Phylogenetic networks can be viewed as providing
either an “explicit” picture of reticulate evolution or
as giving an “implicit” representation of conflict in
the data (c.f. Huson et al. 2010, p. 71). In the explicit
setting, vertices having two incoming arcs correspond
to hypothesized reticulate evolutionary events such
as hybrid evolution, endosymbiosis, and lateral gene
transfer (either individual transfers, or “highways”
of lateral gene transfers (Bansal et al. 2013)). In the
“implicit” setting, the networks are frequently unrooted,
as in the popular “NeighborNet” method (Bryant and
Moulton 2003), and the degree of reticulation is a
measure of the extent to which trees constructed from
different loci (“gene trees”) disagree with each other,
even though the evolution of the taxa may be essentially
tree-like (such networks can also help identify true
reticulation when it is present (Holland et al. 2008)).

Conflicts between gene trees arise by well-studied
random processes at the interface of population genetics
and molecular evolution, such as incomplete lineage
sorting, gene duplication and loss, and lateral gene
transfer (see Knowles and Kubatko 2010 or Szöllősi et al.
2015). In this case, there is is often assumed to be a
“species tree”, with non-reticulate processes (incomplete
lineage sorting and gene duplication) occurring within
the branches of the tree, and with the reticulate process of
lateral gene transfer providing linking arcs between the
branches. Provided the level of random lateral transfers
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FIGURE 1. A tree-based network on three leaves in which all possible trees on three leaves could be the base.

is not too high it is still possible to infer a “central
tendency” species tree accurately (Roch 2013; Steel et al.
2013), as well as correcting conflicting gene trees (Bansal
et al. 2014).

In this article, we are concerned with a more basic
question arising for explicit phylogenetic networks—
namely, if one has a rooted binary phylogenetic network,
regardless of how this may have been obtained, then we
wish to determine whether or not it can be described
as a tree with additional arcs. As we discuss further in
the conclusion, the interpretation of tree-based requires
some care, as there may be other trees that could equally
well be the underlying tree of the network (so any given
tree need not be a “central tendency” species tree).

The structure of this article is as follows. We first
provide a precise definition of the concept of a tree-
based network, and then state our main result. After
deriving a number of consequences from this result, we
then show how it leads to a simple algorithm to test
if a network is tree-based, and we provide a sample
application. We then discuss the delicate relationship
between a network being tree-based and displaying a
tree, before concluding with a number of observations
and some questions.

Definitions
First, we make the definition of a “tree-based network”

more precise. Given a set X of taxa, a binary phylogenetic
network (over X) refers to any directed acyclic graph N =
(V,A), for which:

• X is the set of vertices that have out-degree 0 and
in-degree 1 (leaves);

• there is a unique vertex of in-degree 0, called the
root (denoted �), which has out-degree 1 or 2;

• every vertex other than � or a leaf either has in-
degree 2 and out-degree 1, or in-degree 1 and out-
degree 2.

We say that a binary phylogenetic network N is a tree-
based network (with base tree T) if N can be obtained
by the following procedure. First, subdivide each arc
a of T some number na ∈{0,1,2,...} of times and call
the resulting degree-2 vertices attachment points and the
resulting tree T′ a support tree (for N derived from T).
Next, sequentially place additional arcs between any two

attachment points, provided that the network remains
binary (i.e., no two additional arcs start or end at the
same attachment point) and acyclic (i.e., no directed
cycle is created). We call these additional arcs linking
arcs. Any attachment point that is not incident with a
linking arc is then suppressed. Notice that this allows
for parallel edges to be present in a tree-based network
(if two attachment points are adjacent in T′ with a linking
arc between them).

Requiring a network N to be based on a tree T is
a much stronger condition than just requiring that N
“displays” T. We will explore the relationship between
these two concepts further in the section: “The trees
displayed by a tree-based network.” The interested
reader is referred to Huson et al. (2010) for general
background on phylogenetic networks.

Some basic observations to note at this point are as
follows:

(i) All vertices of any network that is based on T are
vertices of the support tree T′ (i.e., no new vertices
are created, since a linking arc is not allowed to
start or end on another linking arc).

(ii) The order in which the additional arcs are attached
in converting T′ to N is not important.

(iii) A tree-based network can have different possible
base trees; for example, Figure 1 shows a binary
network on {a,b,c} that can be based on all three of
the possible three-taxon trees.

(iv) Not all binary phylogenetic networks are tree-
based, one example (from van Iersel 2013) is shown
in Figure 2(i) and another in Figure 2(ii). On the
other hand, networks that are tree-based may not
appear so because of the way they are drawn, an
example being Figure 2(iii).

In contrast to this last point, several classes of
networks are tree-based. Clearly, horizontal gene
transfer networks define one such class (since there is a
canonical tree associated with each such network which
contains every vertex of the network (Francis and Steel
2015)) but so, too, are tree-child networks, as noted
by van Iersel (2013) (see Corollary 2 below). Since any
hybridization network is also a tree-child network, it
follows that every hybridization network is tree-based
(as noted above). Our goal here is to characterize when a
binary phylogenetic network is tree-based, and provide
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FIGURE 2. Some pertinent examples of binary networks, one tree-based and two not: Examples (i) (from van Iersel 2013) and (ii) are not
tree-based, while Example (iii) is tree-based, despite first appearances. One can verify that (i) and (ii) are not tree-based by using the algorithm
given in Corollary 3, although for these two examples, Proposition 2 suffices (see text for details). Example (iii) is tree-based via the tree arcs
(u,x) and (x,v); in this case (u,v) and (w,x) are linking arcs.

criteria for deciding whether a given network is tree-
based, along with an algorithm to determine this. We
also explore the subtle relationship between a network
being based on a tree, and the weaker but more widely
known notion of the network displaying a tree.

THE MAIN THEOREM

Our main theoretical result can be stated informally as
follows. The question of whether or not a binary network
is tree-based can be restated as an equivalent question
in propositional logic called “2-SAT”, and which is
easily solved. To make this precise we introduce some
additional notation.

Let N = (V,A) be a rooted binary phylogenetic network
on leaf set X. For an arc a= (u,v)∈A, we say that u is the
source and v the target of a, and that a is an incoming arc
of v and an outgoing arc of u. Let S1 be the subset of arcs
in A whose source has out-degree 1 or whose target has
in-degree 1. We say that a subset S of A is admissible if
S contains S1 and satisfies the following two constraints
for every v∈V:

(C1) If v has in-degree 2 then exactly one of its incoming
arcs is in S.

(C2) If v has out-degree 2 then at least one of its outgoing
arcs is in S.

The problem 2-SAT is a classic and easily solved
problem in logic to determine whether a conjunction of
clauses each involving just two literals (or their negation)
has a satisfying assignment. For example, suppose that,
in a court case, witnesses have stated the following three
opinions as to who may or may not have been involved in
a crime: “Peter or Susan”, “John or not Peter”, and “not John
or not Susan”. As an instance of 2-SAT, the satisfiability
question asks whether these three witness statements

could all be correct. In this case they can, namely, if John
and Peter were involved in the crime but Susan was not.
With these concepts in hand, we can now state the main
result, the proof of which is given in the Appendix.

Theorem 1

(a) A rooted binary phylogenetic network N = (V,A) is tree-
based if and only if there exists an admissible subset S of
A. In this case S forms the arcs of a valid support tree for
N and the arcs in A−S are linking arcs. Moreover, there
is a bijection between the set of admissible subsets S of A
and the set of valid support trees for N.

(b) Determining whether N is tree-based can be restated as
a question of whether a particular instance of 2-SAT
has a satisfying assignment, and this can be solved in
polynomial (linear) time.

An immediate consequence of part (a) of this theorem
is that it is the case that any non-tree-based rooted binary
phylogenetic network can be expanded to become tree-
based by the addition of extra arcs and leaves, as the next
corollary shows. This is relevant in biology because these
additional leaves may represent taxa that have become
extinct in the past, and so can not be sampled today
(Fournier et al. 2009; Szöllősi et al. 2013), or are still extant
today but have not been included in the sample of taxa
under study. In other words, any binary phylogenetic
network can be realized as a tree with additional linking
arcs, provided that one allows additional “unseen” taxa
in the past to play a certain role in the evolution of the
taxa sampled today.

Corollay 1 For any binary phylogenetic network N over leaf
set X there exists a tree-based phylogenetic network N+ over
a leaf set X+ that contains X for which N =N+|X.

Here N+|X is the restriction of N+ to those vertices
that have a path to at least one leaf in X (it is obtained
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from N+ by deleting all vertices and arcs that do not lie
on a path to a leaf in X, and then suppressing any vertices
of in-degree and out-degree equal to 1).

Proof . Write N = (V,A) and let S=A. Then S fails
to be admissible only by violations of condition (C1).
Thus we can convert S into an admissible subset S′ by
performing the following step for each vertex v of N that
has in-degree 2. Select either one of the incoming arcs
arriving at v—say, (u,v)—and subdivide this arc and
attach a new leaf xv (specific to v) to the subdividing
vertex w. Now remove (u,v) from S and replace it with
the arcs (u,w) and (w,xv). Once this step is performed
for all vertices of in-degree 2, the set S′ of arcs of
the resulting network N′ is admissible and so N′ is
tree-based. Moreover, N′|X =N. �

Necessary and Sufficient Conditions for Tree-Based

We now describe two further ways of characterizing
tree-based. These are more immediate and of less direct
algorithmic relevance, but we state them here as they
provide a more complete picture of what “tree-based”
means. We say that a set of arcs in a directed graph is
independent if no two arcs in the set share a vertex. Also,
a rooted spanning tree of a network N is any network that
contains all the vertices of N and some subset of the arcs
of N, and which is a tree. The proof of the following result
is provided in the Appendix.

Proposition 1. Let N = (V,A) be a rooted binary
phylogenetic network on leaf set X. The following are
equivalent.

(a) N is tree-based.
(b) There is an independent set I of arcs of N for which N′ =

(V,A−I) is a rooted tree.
(c) N has a rooted spanning tree (with root �) that contains

the arcs in S1 and with all its leaves in X.

Next we consider a necessary condition for N to be
tree-based, based on the concept of “antichains”. This
can provide a rapid way to verify that certain networks
cannot be tree-based. An antichain in any directed graph
is simply a subset A of vertices that has the property
that there is no directed path in the graph from any one
vertex in A to any other vertex in A. Let N be a binary
phylogenetic network. If, for any antichain A of non-leaf
vertices in N, there exists at least |A| arc-disjoint paths
from A to the leaf set, we say it satisfies the antichain-to-
leaf property. By a version of Menger’s theorem for disjoint
sets of vertices in directed graphs (Böhme et al. 2001), the
antichain-to-leaf property is equivalent to the statement
that for any antichain A of non-leaf vertices in N, at least
|A| arcs of N must be cut in order to separate A from X.

The following result, the proof of which is also in the
Appendix, provides a necessary condition for N to be
tree-based; if it fails we know immediately that N cannot
be tree-based.

Proposition 2. If a binary phylogenetic network over leaf set
X is tree-based then it satisfies the antichain-to-leaf property.
In particular, the largest antichain in any tree-based network
N over X has size exactly |X|. Thus any tree-based network
that has a larger antichain than the number of leaves cannot
be tree-based.

The last part of Proposition 2 provides an easy way to
verify that the network in Figure 2(i) is not tree-based,
since it contains an antichain (the set {u,v,w}) that is
larger than the leaf set of the network. Similarly, the
network in Figure 2(ii) is not tree-based because it has an
antichain of four vertices (a,c and the two grandparents
of b) but only three leaves.

It might seem plausible that the antichain-to-leaf
property is also a sufficient condition for a network to
be tree-based. Alas, this is not the case, and Fig. 3 shows
a particular case where the antichain-to-leaf property
holds, yet the network is not tree-based.

We turn now to some further necessary and sufficient
conditions for N to be tree-based.

Proposition 3. Consider a binary phylogenetic network N
over leaf set X.

(i) If each vertex of N of in-degree 2 has parents that both
have out-degree 2, then N is tree-based.

(ii) If N has a vertex of in-degree 2 whose parents both have
out-degree 1, then N is not tree-based.

Proof . Part (i) was established in the proof of
Lemma 1 of Gambette et al. (2015) by an elegant
application of Hall’s matching theorem for digraphs.
For part (ii) note that the two parents form an antichain
but paths from these parents to leaves both have to
go through the edge below v, meaning they are not
arc-disjoint. Thus, such a network violates the antichain-
to-leaf property, and so cannot be tree-based by the first
sentence in Proposition 2. �

We end this section by showing how Theorem 1
provides a convenient way to verify that tree-child
networks are tree-based, as are tree-sibling networks (a
result stated by van Iersel 2013 without proof).

Recall that a network is a tree-child network if every
non-leaf vertex is the parent of at least one vertex of in-
degree 1 (i.e., the child is either a leaf or has outdegree 2),
while (more generally) a tree-sibling network is a network
for which every vertex v of in-degree 2 has a sibling v′ that
has in-degree 1. “Sibling” here means that the vertices
share a parent. A network N is reticulation visible if every
vertex v of N of in-degree 2 has the property that for
some leaf x of N all paths from the root of N to x pass
through v. Tree-child networks are a subset of the tree-
sibling networks, but tree-sibling and reticulation visible
represent different classes (and one is not a subset of the
other).

Corollay 2 The class of tree-based networks includes tree-
child networks (and thus hybridization networks), and, more
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a) b)

FIGURE 3. (a) A network that is not tree-based, even though it satisfies
the antichain-to-leaf property. That this network fails to be tree based
can be verified by applying Corollary 3; starting with the arcs in S1
labeled t (shown in bold in (b)) and applying the conditions (C1)′ and
(C2)′ repeatedly, we are forced to label both of the arcs outgoing from
v by f , and at the next step (C2)′ would assign one of these two arcs a
second label t.

generally, tree-sibling networks. It also includes the class of
reticulation visible networks.

Proof . For tree-sibling networks, for each vertex v of
in-degree 2, select exactly one sibling v′ of v that has in-
degree 1, and if p is the parent of v and v′ label the arc
(p,v) by f . Then if S is the set of arcs of N minus the arcs
labelled f then S is an admissible subset of arcs for N,
and so, by Theorem 1, N is tree-based. For reticulation-
visible networks, Gambette et al. (2015) showed that such
networks satisfy the condition described above in part (i)
of Proposition 3, which, in turn, they established suffices
for N to be tree-based. �

Note that although all tree-sibling networks are tree-
based, it is easy to construct an example of a tree-based
network that is not tree-sibling (an example is provided
by van Iersel 2013).

AN ALGORITHM

Theorem 1 furnishes a polynomial-time algorithm
that takes any binary phylogenetic network N and
determines whether or not it is tree-based. An extension
can also then be used to determine a valid support tree
for N, and indeed to compute all of these (however,
there may be exponentially many and even counting the
number of them may be difficult).

First, we describe a simple test that decides whether
or not a network is tree-based, and which is based on a
well-known criterion for testing the satisfiability of any
instance of 2-SAT by taking the transitive closure of the
implication relation (we give an example below).

To present this algorithm it is helpful to restate
conditions (C1) and (C2) in an equivalent way, by making
two modifications. First, we will indicate that an arc a is
in S or not in S by assigning the arc the label t (=“true”)
and f (“false”) respectively. Second, we will state the
two conditions (C1) and (C2) in the form of implications
(“if … then”) to show how a label assigned to one arc can
“force” the assignment of a label to an adjacent arc.

(C1)′ for each vertex with in-degree 2, (i) if one of the
incoming arcs has label t then the other incoming
arc is assigned label f , and (ii) if one of the incoming
arcs has label f then the other incoming arc is
assigned label t.

(C2)′ for each vertex with out-degree 2, if one of the
outgoing arcs has label f then the other outgoing
arc is assigned label t.

Now, let us label each arc in S1 by t, and then extend
this labeling to other arcs by repeated applications of
rules (C1)′ and (C2)′ when they apply. It is clear that two
things could happen: either a single label is assigned
to (some or all of) the arcs of N and the rules do not
assign a label to any further arcs, or else at some point
an arc could be assigned a label different from the one it
has received earlier in the process. In turns out that N is
tree-based precisely if this latter case does not occur. This
is formalized in the following corollary of Theorem 1,
which is justified by a well-known algorithm for testing
satisfiability of 2-SAT (Krom 1967).

Corollay 3 N is tree-based if and only if case (i) does not arise
under the following procedure: Assign all arcs in S1 label t
and then repeatedly apply rules (C1)′ and (C2)′ to extend this
labelling to other arcs of N, until either (i) an arc is assigned a
label different from its existing label or (ii) the conditions can
no longer be applied.

Notice that the only arcs that do not receive an
immediate label by their membership of S1 are the pairs
of arcs that are incoming to a vertex of in-degree 2. If the
label for one of these arcs is subsequently determined
(by application of the C′ conditions) then the status of
the other arc in the pair is fixed by (C1)′. An example of
how this algorithm works is provided in Figure 3. In this
case the algorithm detects that the network is not tree-
based, since it leads to the case (i) where an arc is assigned
a label different from its existing label. Although this
algorithm is easy to apply by hand on small examples,
for very large networks there exist faster (linear time)
algorithms for deciding satisfiability of 2-SAT and these
could be applied, however these are more technical to
describe (Aspvall et al. 1979).

Suppose now that each arc of N receives at most one
label. Then N is tree-based, and if every arc of N gets a
label then, by Theorem 1, there is a unique support tree
for N. However, another possibility is that only some
of the arcs of N are assigned a label. In this case, there
exists more than one support tree (though the network
may still only be based on one possible phylogenetic tree,
that has had its edges subdivided in different ways).

To find a support tree for N it suffices to select any
arc a that remains unlabelled at the end of the process
described above, then assign one label (t or f ) to a and
apply the process again of extending the labeling using
repeated applications of (C1)′ and (C2)′. We can then
continue this procedure (selecting an unlabeled arc and
extending the labeling so far obtained) until all arcs
receive a label. The arcs labeled t then correspond to
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FIGURE 4. (i) A network from Marcussen et al. (2014) showing three ancient hybridization events in the evolution of bread wheat. Corollary 3
terminates at (ii) to show that the network is tree-based. Finding a particular support tree requires selecting a label for an unlabeled arc, extending
the labeling using the rules (C1)′ and (C2)′ repeatedly, and continuing this process. In this example, the six unlabeled arcs consist of three pairs,
with the arcs in each pair incoming to one of the three vertices of in-degree 2. Assigning a label (t or f ) to an arc in one pair determines the
assignment for the other arc in that pair but does not force any further arc assignments. Thus three independent assignments can be made for
each pair, leading to 23 =8 choices in total. For the particular choice shown in (iii) we obtain the support tree T′ shown in (iv) and thereby the
tree-based representation shown in (v). In this example, the eight rooted binary phylogenetic trees that the network can be based on are all
distinct.

arcs of a support tree for N, and the arcs labeled f are the
linking arcs.

It is possible in this way to generate all the possible
support trees for N, however there may be exponentially
many of them, since if N has k vertices of in-degree 2, then
the number of support trees can be as large as 2k . Even
counting the number of support trees may be hard, since
counting the number of satisfying solutions of 2-SAT is
known to be #P-complete (Valiant 1979).

Example
We now provide a simple illustration of how this

algorithm works by applying it to a phylogenetic
network proposed recently by Marcussen et al. (2014) to
represent the complex hybrid evolution of bread wheat.
Our application here is not intended to provide support
for or against particular claims in that paper. Rather, the
purpose is to show how the algorithm can be applied to

a small but realistic phylogenetic network to determine
whether or not it is tree-based, and if it is, to illustrate
how the tree(s) and linking arcs can be readily identified.

Figure 4(i) shows a binary phylogenetic network on
five leaves and three reticulations (vertices of in-degree
2). This network is essentially equivalent to the one
shown in Figure 3 of Marcussen et al. (2014), under the
taxon labeling a=Triticum uartu, b=Triticum turgidum,
c=Triticum aestivum, d=Aegilops tauschii, e=Aegilops
speltoides.

First, notice that the algorithm in Corollary 3 tells
us immediately that N is tree-based, since the initial
labelling of the arcs in S1 by t (shown in Fig. 4(i)) does
not extend further (Proposition 3(i) also shows that N is
tree-based). To find a support tree we see that assigning t
to either of the two arcs arriving at the lowest recitulation
vertex does not cause any dual-labeled arc to arise. The
same holds at the other two reticulation vertices, and
these choices can all be made independently. Thus, there
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FIGURE 5. A network that is based on a tree ab|c (left) and displays
bc|a (right), but is not based on the tree bc|a. Notice that in the right-
hand network, vertex v requires a linking arc to be attached to another
linking arc.

are 23 =8 eight possible support trees, and in this case the
eight associated rooted-binary phylogenetic trees (that
the support trees are subdivisions of) are all distinct.

THE TREES DISPLAYED BY A TREE-BASED NETWORK

We have seen that a tree-based network can be based
on more than one tree. An obvious question then is what
one can say about the trees that can act as a base for a
given tree-based network N. There is a related notion
that applies to any binary phylogenetic network (tree-
based or not), namely the concept of “displaying” a
rooted phylogenetic tree, which we need to recall first.
Given a binary phylogenetic network N over X, N is said
to display a rooted binary phylogenetic tree T if T can
be obtained from N by deleting arcs and vertices, and
suppressing any resulting vertices of in-degree and out-
degree equal to 1 (Cordue et al. 2014). Notice that if N
has at most k vertices of in-degree 2, then it can display
at most 2k trees, and there has been some recent interest
in identifying a class of networks for which this holds
(Willson 2010) or quantifying the extent to which it can
fail (Cordue et al. 2014). A second active area of interest
has involved determining the computational complexity
of deciding (for various categories of networks) whether
a given network N displays a given tree T (van Iersel et al.
2010; Gambette et al. 2015).

It is clear that if N is a tree-based network, and is based
on T, then N must display T, since we can just delete the
linking arcs, and suppress any resulting vertices of in-
degree and out-degree equal to 1. However, it is possible
for a tree-based network to display the tree T but fail to
be based on T (Fig. 5). In other words, the notion of a
network being based on a tree is stronger than simply
displaying the tree.

Moreover, it turns out that the set of trees that are
displayed by a network that is based on T need not bear
any relation at all to T; indeed, for each positive integer
n, there is a tree-based network displaying all trees on
n leaves. This network can be based on any tree on n
leaves as the following result shows (its proof is also in
the Appendix):

Proposition 4. For any n≥2 and any rooted binary
phylogenetic X-tree T on n leaves, there is a tree-based binary

network N over X, based on T and with order n3 linking arcs,
such that N displays all rooted binary phylogenetic X-trees.

CONCLUDING COMMENTS

We end with some final comments.

1. Establishing that a network is based on a tree T
does not necessarily mean that the evolution of
the taxa under study was primarily represented by
T (or, indeed, on any rooted tree) with just some
additional transfer events (like horizontal gene
transfer, or endosymbiosis) between branches of
the tree. As we have seen, hybridization networks
can also be tree-based, even though they are
described somewhat differently. Rather, tree-based
means that one can represent evolution using a
rooted tree and linking arcs, and this does not, in
itself, confer or require any particular mechanism
of evolution for the taxa under study.

2. Our results suggest a number of further relevant
questions. We have seen that a tree-based network
N can be based on more than one tree. However,
given a network, how many base trees can it have?

(a) Is it possible to characterize the set of rooted
binary phylogenetic trees on which N can be
based?

(b) Given a tree-based network N and an
arbitrary rooted binary phylogenetic tree T,
can it be decided in polynomial time whether
or not N is based on T?

(c) Is it possible that there is a network on a
leaf set X that is a tree-based network for all
trees on X? The answer is “yes” for |X|=3, as
shown in Figure 1.

3. The networks we have studied so far are required
to be acyclic. However, basing a network N on a tree
T suggests adopting a possibly stronger condition
that relies on the assignment of an ordering of
the vertices of N to reflect the temporal nature
of vertical (tree-like) and horizontal (reticulate)
evolution. More precisely, suppose that N is a
network based on T. A map t from the vertices
of N to the real numbers (or the integers) is then
a strong temporal ordering for N relative to a valid
support tree T′ derived from T (i.e., one containing
all the vertices of N), provided that t satisfies the
two properties:

(i) If (u,v) is any arc of T′, then t(u)< t(v).
(ii) If (u,v) is a linking arc, then t(u)= t(v).

Condition (i) reflects the biological point that
vertical evolution (a lineage persisting through
time plus speciation events) is proceeding with
a natural time scale. Condition (ii) captures the
notion that reticulate evolution requires the two
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FIGURE 6. Three networks with no strong temporal ordering relative
to any valid support tree. Network (i) fails to be acyclic (and so is
technically not even a binary phylogenetic network), but Networks (ii)
and (iii) are acyclic (and so have a weak temporal ordering).

donor species to both be extant at some time in the
past. However, if we allow for additional species
(not sampled, or perhaps now extinct (Szöllősi et al.
2015)) to play a role in evolution, then Condition (ii)
needs to be relaxed to the following condition:

(ii)′ If (u,v) is a linking arc then t(u)≤ t(v),

When N satisfies (i) and (ii)′, we say that t is a weak
temporal ordering for N relative to T′.
Notice that the (weak) temporal ordering condition
in itself implies that N must be acyclic, since if
v1,...,vk =v1 is a directed cycle in a tree-based
network, then some pair of adjacent vertices in
the cycle—say vi and vi+1—forms an arc of the
support tree and so t(vi)< t(vi+1). However, since
the t-values of the vertices in the remainder of the
path from v1 to vk =v1 is non-decreasing (by (i)
and (ii)′), this would imply that t(v1)< t(vk)= t(v1),
which is a contradiction. Figure 6 illustrates three
tree-based networks that have no strong temporal
ordering relative to any valid support tree.

It turns out that every acyclic network (and thus
every tree-based network) has a weak temporal
ordering. To see this, note that because N is an
acyclic directed graph, it is possible to order the
vertices v1,v2,... so that if (vi,vj) is an arc of N then
i< j (Proposition 1.4.2 of Bang-Jensen and Gutin
2001). Thus, if we let t(vi)= i for each i, we obtain
a weak temporal ordering for N. In other words,
if we accept the justification for relaxing temporal
ordering based on the possible role of unsampled
or extinct taxa in the reticulate evolution of the
extant species under study, then the resulting weak
temporal ordering constraint does not provide any
real restriction on the class of tree-based networks.
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APPENDIX: MATHEMATICAL PROOFS

Proof of Theorem 1
Proof . Part (a) Suppose that N is tree-based, and let

T′ be a support tree for N. Then the set S of arcs of
T′ contains S1, and S also satisfies conditions (C1) and
(C2) for every vertex v∈V of in-degree or out-degree 2,
respectively. Thus S is admissible.

Conversely, suppose that S is an admissible subset of
arcs of N. Consider the network N′ = (V,S) consisting of
all the vertices in N and just the arcs in S. We claim that
this is a rooted tree, with root � (the root of N) and leaf
set X (the leaf set of N). First, notice that N′ has no vertex
of in-degree 2, by condition (C1). Second, every arc a that
is incoming to a leaf x∈X of N is present in S′, and so a
is also an arc of N′ and so the leaf set of N′ contains X.
It remains to check that (1) N′ contains no other leaves,
and (2) the only vertex of in-degree 0 in N′ is �. For (1),
suppose v is vertex of N′ that is not in X. Then in N, v has
strictly positive out-degree. If v has out-degree 1 in N,
then the outgoing arc from v is present in S1 and thereby
in S, while if v has out-degree 2, at least one of the two
outgoing arcs is present in S by condition (C2). Thus, v
cannot be a leaf of N′, establishing claim (1). Turning to
claim (2), suppose that v has in-degree 0. Then either (i)′
v has in-degree 1 or 2 in N, or (ii)′ v is the root vertex of N.
Now (i)′ cannot hold since the admissibility of S implies
that at least one incoming arc into v is present in N′ (if
v has in-degree 1, then the incoming arc lies in S1 and
hence S, while if v has in-degree 2, condition (C1) implies
that one incoming arc into v is present in N′). Case (ii)′
must now apply since every finite acyclic network has
at least one arc of in-degree 0. This establishes claim (2),
and thereby the “if" direction in the first statement of
Part (a).

For the second statement of Part (a), we simply observe
that the function S �→ (V,S) from admissible subsets of A
to valid support trees for N is a bijection since it has a
(left and right) inverse in the opposite direction, namely
T′ = (V,S′) �→S′.

Part (b) We will show that any rooted phylogenetic
network can be translated directly into an instance of
2-SAT (a conjunction of clauses, each involving just two
literals or their negations) in such a way that the existence
of an admissible subset of arcs for N corresponds to the
satisfiability of the corresponding 2-SAT instance. For
readers unfamiliar with propositional logic, the symbols
∧ and ∨ (conjunction and disjunction) between clauses
can be read as “and” and “or”, respectively (where “or”
is inclusive, allowing more than one clause to be true)
while ¬ in front of a clause can be read as “not” (i.e., the
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negation of the clause). Given N, let the set of literals
be the arc set A, and consider the conjunction of the
following clauses C�:

CN :=
∧

a∈S1

Ca ∧
∧

v∈Vin−2

(Cv ∧C′
v)∧

∧
w∈Vout−2

Cw,

where Vin−2 (resp. Vout−2) is the set of vertices of N of
in-degree 2 (resp. out-degree 2) and for a∈S1:

Ca =a; (A1)

while for v∈Vin−2 (with incoming arcs a,b):

Cv = (a∨b) and C′
v = (¬a∨¬b); (A2)

and for w∈Vout−2 (with outgoing arcs a′,b′):
Cw =a′∨b′. (A3)

Notice that CN is an instance of 2-SAT (a conjunction
of clauses, each of which involves just two literals or their
negation), and that if we interpret a truth assignment to
A as indicating whether a∈A is an element of S (“true”)
or of A−S (“false”), then CN is satisfiable if and only if
N has an admissible subset S (since the three types of
clauses in (A1)–(A3) respectively capture the conditions
S1 ⊆S and conditions (C1) and (C2) for admissibility).

Part (b) now follows by the equivalence between
admissibility and tree-based in part (a), and the classic
result (dating back to Krom 1967) that any instance of 2-
SAT can be solved in polynomial time (indeed in linear
time by more recent techniques (Aspvall et al. 1979)). �

Proof of Proposition 1
Proof . [(a) ⇔ (b)] Suppose that N is tree-based.

Then for any tree-based representation for N, no two
linking arcs can share the same vertex (by considering
the various possible cases). Moreover, a linking arc is
never incoming to an in-degree 1 vertex, or outgoing
from an out-degree 1 vertex, and so deleting linking arcs
will not disconnect the network. Thus if we take I to be
the linking arcs in any tree-based representation for N
then N′ = (V,A−I) is an associated support tree for N.
Conversely, suppose that (b) holds for some set I. Since
N′ is connected it has leaf set X, and so N′ is a subdivision
of some rooted phylogenetic X-tree T. Now if we regard
each arc in I as a linking arc then we recover N (since
I is independent, and N′ is connected, these arcs are all
placed validly).

[(a)⇔ (c)] If N is tree-based, then any valid support
tree T′ for N satisfies the conditions specified in (c).
Conversely, suppose that T̃ is a rooted spanning tree of
N (with root �) that contains the arcs in S1, and has no
leaves outside of X. Since T̃ is a spanning tree it contains
all vertices of N, and any additional arcs in N are either
(i) from a vertex of out-degree 1 in T̃ to a vertex having in-
degree and out-degree equal to 1 in T̃, or (ii) from a vertex
of out-degree 0 in T̃ to a vertex having in-degree and out-
degree equal to 1 in T̃; however, case (ii) is excluded by

FIGURE A1. A tree-based binary network that displays all rooted
binary phylogenetic X-trees with n leaves.

the assumption that T̃ has no leaves outside of X. Thus
if we let S be the set of arcs of T̃, then S contains S1, and
condition (C1) holds (since T̃ is a tree), and condition (C2)
also holds from case (i). Thus S is an admissible subset
of arcs for N, and so N is tree-based. �

Proof of Proposition 2
Proof . Suppose N is based on a tree. Then any

antichain A of N is also an antichain in any support tree
T′ for N, since removing the linking arcs in returning to
T′ from N cannot create paths between vertices. For each
vertex v∈A, select a leaf xv that lies below v (i.e. there
is a directed path from v to xv). Since T′ is a tree, these
|A| are all arc-disjoint. Moreover, the reinsertion of the
linking arcs in moving from T′ to N does not alter the
arc-disjointness of these |A| paths.

For the second claim, observe that X is itself an
antichain of N of size |X|. Suppose there were an
antichain A of N of size strictly greater than |X|; we will
show that this implies that N is not tree-based. Let A1
and A2 be the sets of vertices in A that are leaves and
non-leaves, respectively. Since |A|> |X| it follows that
|A2|≥1. Now if there were |A2| arc-disjoint paths from
A2 to the leaves of N then these |A2| leaves together with
A1 would comprise |A| distinct leaves. Since |A|> |X|,
this is not possible, and so A2 violates the antichain-
to-leaf property, and hence N is not a tree-based
network. �

Proof of Proposition 4
Proof . Order the leaves of T as x1,x2,x3,...,xn. For

each xi, consider the pendant arc ai of T that is incident
with xi. Place a linking arc from ai to aj for each pair i,j
with i< j. Above these

(n
2
)

arcs, place another set of
(n

2
)

linking arcs, again from ai to aj for each pair i,j with i< j.
Continue this process so as to place a total of n−1 sets of(n

2
)

such collections of linking arcs between the pendant
arcs of T to obtain a network Ñ based on T containing
1
2 n(n−1)2 linking arcs altogether (Fig. A1).

We claim that Ñ displays all rooted binary
phylogenetic X-trees. To see this, note that any rooted
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binary phylogenetic X-tree T′ can be constructed by a
sequence of n−1 steps of a “coalescent” process which
starts with a graph of n isolated leaves. At each step
this process joins two elements of the graph so-far
constructed to a root vertex (the number of components
of the resulting forest decreases by 1 at each step, and
so we arrive at a tree after n−1 steps)—for an example
of this coalescent process, see Figure 2.8 of Semple and
Steel (2003). The generous placement of the linking arcs
in Ñ allows for this coalescent process to be realised (for
any tree T′) in Ñ. �
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