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Abstract: Cell migration is essential for physiological, pathological and biomedical processes such
as, in embryogenesis, wound healing, immune response, cancer metastasis, tumour invasion and
inflammation. In light of this, quantifying mechanical properties during the process of cell migration
is of great interest in experimental sciences, yet few theoretical approaches in this direction have been
studied. In this work, we propose a theoretical and computational approach based on the optimal
control of geometric partial differential equations to estimate cell membrane forces associated with cell
polarisation during migration. Specifically, cell membrane forces are inferred or estimated by fitting a
mathematical model to a sequence of images, allowing us to capture dynamics of the cell migration.
Our approach offers a robust and accurate framework to compute geometric mechanical membrane
forces associated with cell polarisation during migration and also yields geometric information of
independent interest, we illustrate one such example that involves quantifying cell proliferation
levels which are associated with cell division, cell fusion or cell death.

Keywords: cell migration; optimal control; geometric partial differential equations; mechanical
membrane forces; cell polarisation

1. Introduction

Cell migration is a fundamental cellular process that is essential to life and is linked
to many important physiological and pathological events such as the immune response,
wound healing, tissue differentiation, embryogenesis, and tumour invasion [1–7].

During migration, mechanical processes play a pivotal role, for example cellular
biomechanics direct its physical behaviour, as well as its cellular functions in the biological
context of health and disease [8–10]. Cells also physically interact with their extracellu-
lar environments via mechanical forces, for example, cell division, apoptosis, bleb and
mitosis [11–13]. The strength of the forces varies as the sensitivity of a cell evolves with
surrounding biomechanical and biochemical stimulus [11].

A key determinant of cellular biomechanics is the actin cytoskeleton [8]. It contains
dynamic actin architectures that continuously re-arrange and turnover. The cytoskeletal
forces are exerted on a plasma membrane, which define and insure the stability of the
interior of the cell [14]. At the leading edge, a protrusion force is generated by actin
architectures. Membrane tension balances these locally imposed forces and ensures rear
retraction [10]. The characteristic time scale is short, often sub-seconds. The measured
forces suggest they may range from Pico-Newtons (pN) to Micro-Newtons (µN) [10,14].
The cellular force generation intertwines with many other processes, forming a complex
system. In addition, a noticeable change in a single cell behaviour may lead to a significant
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event on a tissue scale, so unravelling the mutual interplay between physical interactions
such as protrusion and retraction forces are essential to understanding cell dynamics [10].

According to the research by Lieber et al. in 2013 [10] and Barbieri et al. in 2021 [8],
there is very little understanding and limited ways to quantify cellular forces. The former
claims a hypothesis on how membrane tension is set and regulated by cells, but states there
is very little evidence to either support or disprove it; the latter describes challenges in
quantification due to technical constraints.

Traditionally, our understanding of cell dynamics often comes from visual inspection
using high-throughput, high-resolution microscopy and related imaging techniques [8,15].
Phase-contrast microscopes utilise partially coherent illumination to extract quantitative phase
data [16,17]. Interferometric-based techniques make use of the Fourier decomposition [18,19].
Other alternative techniques include optical coherence tomography [20] and digital holo-
graphic microscopy [15,21]. Additionally to imaging, Simson et al. in [9] reports an
interferometric technique to measure bending modulus, membrane tension and adhesion
energy. A mechanic-optical biosensor is described in [22] to sense local cell adhesive forces.
In [10] the authors discuss about membrane fluctuations and [23] summarises soft polymers
that are typically used to measure cellular forces.

In this study, we propose an alternative theoretical and computational approach
whereby, instead of measuring physical quantities in experiments, we describe the underly-
ing rules (and often hypotheses) using mathematical equations, thereby obtaining a model
for a migrating cell which incorporates certain assumptions on the physics underlying mi-
gration. There have been a number of studies carried out using simulations of such models
to model cell migration, e.g., in [24] and subsequent related works, a phase-field model for
keratocyte migrations is developed, in [25], some quantitative predictions are derived on
how adhesion geometry and stiffness change cell behaviour. In this paper, we approach the
problem of membrane force estimation during cell migration as the problem of computing
forces such that we fit an established model of cell migration [26,27] to microscopy data
that provides the cell membrane position at a series of time points. Specifically, we use the
frames of imaging data to extract the position of the cell membrane at a series of times and
use this data in an optimal control model as our target positions for the position of the cells
under our mathematical model at the corresponding times. The control which is computed
to minimise the difference between the cell positions generated computationally and the
data corresponds to the protrusive force active at the cell membrane. This approach, i.e.,
the optimal control of phase field models albeit in a different context has received recent
interest e.g., [28]. Computational simulations also help to build devices which can then be
used to directly measure cellular properties, such as the microsystems summarised in [11].

The major novelties of the present work with respect to [26,27] are threefold: firstly,
an application of the optimal control approach to time series data from real experiments,
secondly, parameterisation of the model allowing the control problem to be interpreted as
an approach for the estimation of forces during cell migration and finally, the application
of the approach to the biologically important problem of quantifying cell division (or
apoptosis) rates in a population of cells. These novelties, transform the approach from
something that is of mainly theoretical interest to something that is of considerably utility
to biological practitioners.

This paper is organised as follows. In Section 2, we describe our theoretical and
computational modelling approach. We take experimental observations of cell migration
from three different cell types: keratocyte in [29], epithelial bladder cancer cell from the T24
cell line in [30], and epithelial kidney cancer cell from the MDCK cell line in [31]. Using our
theoretical model, we re-create the corresponding computational cells and compute the
predicted membrane forces. In Section 3, we present our results. We conclude our results
in Section 5.
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2. Materials and Methods
2.1. Mathematical Model for Membrane Force Estimation

We consider a volume-constrained Allen-Cahn equation with forcing as the “forward
model” in an optimal control approach to whole cell tracking. The model arises from
considering a simplified force balance on the cell membrane, further details on the model,
the corresponding sharp interface formulation and its physical justification are provided
in [26]. The volume constrained Allen-Cahn equation with forcing, a diffuse interface
approximation to forced mean curvature flow, is stated as follows

ετ∂tφ(~x, t) = δε4φ(~x, t)− δ
ε G′(φ(~x, t)) + η(~x, t) + λ(t), in Ω× (0, T],

φ(~x, 0) = φ0(~x), in Ω,
∇φ(~x, t) · νΩ(~x) = 0, on ∂Ω.

(1)

In the above model, φ(~x, t) is a phase field variable whose zero level set corresponds
to the cell membrane; ε, satisfying 0 < ε � 1 is a parameter governing the interfacial
width of the diffuse interface, G(φ) = 1

4 (1− φ2)2 is a double well potential which has
minima at ±1 and λ is a time-dependent constraint on the mass of the cell that models a
volume constraint [32]. In practice our constraint differs from conservation of mass since
the target data may have differing ‘mass’ (effectively cell area) from image to image. The
initial condition φ0(~x) is taken as the initial image from the experimental observations. νΩ
is the outward normal to ∂Ω.

Without loss of generality we assume the domain Ω = [0, L]2. Biologically, φ(~x, t) can
be viewed as a volume fraction (φ ≈ 1 in the cell bulk, φ ≈ −1 in the extracellular matrix,
φ ≈ 0 on the cell membrane), ε as the thickness of cell membrane, τ is an effective friction
due to the interaction with the extracellular matrix, δ is the surface tension and since we
focus on the two-dimensional, rather than three-dimensional cases, we average assuming a
constant cell height of 0.1 µm.

In our modelling framework, η(~x, t) is a membrane force generated by the cell during
migration. A positive η indicates a protrusive force that drives the cell forward, while a
negative force corresponds to a retractive force that allows the cell to contract enabling the
cell to dislocate from the substrate to move its body forward. We make the assumption that
the cells move as a result of forces that are only exerted in a region close to the membrane
which is biologically reasonable since forces leading to migration are primarily exerted in
the the actin cortex which is a thin region close to the membrane [26,27].

The physical interpretation of the model variables in Equation (1) is given in Table 1 below.

Table 1. Physical interpretation of the model variables in Equation (1).

Parameter Description

ε Membrane thickness
τ Friction
φ Volume fraction
~x Spatial coordinate
t Time variable
L Domain length
T Time of entire experiment
δ Surface tension
η Forcing exerted on cell membrane

Next we give the physical units of the variables in Model (1), their balance can be
interpreted as follows
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ε︸︷︷︸
µm

τ︸︷︷︸
pNs/µm2

∂tφ︸︷︷︸
1/s

= δ︸︷︷︸
pN

ε︸︷︷︸
µm

4φ︸︷︷︸
1/µm2

+

pN︷︸︸︷
δ

ε︸︷︷︸
µm

G′(φ) + η︸︷︷︸
pN/µm

+ λ︸︷︷︸
pN/µm

. (2)

In the above equation, the units are µm : micrometer, s : second, and pN :
pico-newton. In Table 2 we present the values we use for the parameters in the model,
together with the references that gave rise to these choices.

Table 2. Values of physical parameters used in Model (1).

Parameter Description Value

δ Surface tension 1–10 pN [14,24,33]
τ Friction force ≈2.62 pNs/µm2 [24]
ε Membrane thickness ≈1.0 µm [24]
η Forcing exerted on cell membrane Fitting variable to be computed

in the remainder of this paper

From here onwards, we wish to work with a unit-free model, and to this end, we
introduce the dimensionless variables

~̄x =
~x
L

, ε̄ =
ε

L
, t̄ =

t
T

, η̄ =
η

F/L
, δ̄ =

δ

F
, τ̄ =

τ

FT/L2 , (3)

where the characteristic scale F is related to the kinetic scaling.
Applying the above scaling, we obtain the following dimensionless model

ετ̄
∂φ(~̄x,t̄)

∂t̄ = δ̄ε4φ(~̄x, t̄) + δ̄
ε̄ G′(φ(~̄x, t̄)) + η̄(~̄x, t̄) + λ(t̄), in Ω̄× Ī,

φ(~̄x, 0) = φ0(~̄x), in Ω̄,
∇φ(~̄x, t̄) · νΩ̄(~̄x) = 0, on ∂Ω̄,

(4)

where Ω̄ = [0, 1]2 and Ī = (0, 1].

2.2. Formulation and Approximation of the Optimal Control Problem and Biological Interpretation

The approach we consider can be thought of as finding a forcing term η̄(~̄x, t̄) in
Equation (4) such that the model best-fits the images. The methodology was first proposed
in [26]; it sought to find η̄(~̄x, t̄) that minimises the following objective functional

J(η; φ) =
θ

2

∫ T

0

∫
Ω

η2(~̄x, t)d~̄xdt +
1
2

Nobs

∑
i=1

∫
Ω

(
φ(~̄x, ti)− φobs,i(~̄x)

)2d~̄x,

where Nobs is the number of images we wish to fit to, φobs,i(~̄x) is a (phase-field) represen-
tation of the data we wish to fit to at time ti and θ > 0 is a regularisation parameter that
is necessary for the optimal control problem to be well posed. We omit the details on the
formulation and solution of the optimal control problem in this primarily applications
focussed work, referring the interested reader to references [26,27].

The primary computational work in solving the optimal control problem lies in ap-
proximating the solution to Equation (1) which (typically) must be carried out a number
of times. We refer the reader to [34–36] and references within for more details on phase-
field models and their solution methods. We previously developed two approaches for
the approximation of the optimal control problem, a finite element approach in [26] and
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an adaptive, parallelised finite difference approach in [27], which is based on geometric
multi-grid methods. The computational cost in fitting to the multiple datasets that we
consider below prompts us to use the more efficient approach of [27] in this work and we
refer to [27] for further details on the space-time discretisation. For completeness, we briefly
describe our approach for obtaining the results presented in this paper in the Appendix A.

We note that the computed η̄(~̄x, t̄) can be interpreted physically as the membrane force
(protrusive or retractive) required such that the motion of the boundary of the simulated
cells under the model best resembles that of the imaging data. The interpretation of this
η̄(~̄x, t̄) we employ in the present work is that it corresponds to the estimate of the forces
exerted on the membrane, e.g., F-Actin based protrusion or myosin based contraction
which govern the motion of the cell.

2.3. Model Parameters for the Different Biological Datasets

In Table 3 we give the spatial and temporal settings associated with the three cell types
to which we apply our model: keratocyte in [29], epithelial bladder cancer cell from the
T24 cell line in [30], and epithelial kidney cancer cell from the MDCK cell line in [31].

Table 3. Model parameters for the three different biological datasets.

Parameter Description Value

keratocyte

x Domain length in x axis 81.5 µm
y Domain length in y axis 81.5 µm
t Length of time 360 s

TI Time interval between frames in the video 20 s
L Characteristic length 81.5 µm
Υ Characteristic time 360 s
F Characteristic force for surface tension 10 pN
τ̄ (Dimensionless) friction force 4.85
ε̄ Numerical interfacial width 0.01

RTS No. Reconstructed Time Steps between frames 10

T24

x Domain length in x axis 170 µm
y Domain length in y axis 170 µm
t Length of time 1920 s

TI Time interval between frames in the video 480 s
L Characteristic length 170 µm
Υ Characteristic time 1920 s
F Characteristic force for surface tension 10 pN
τ̄ (Dimensionless) friction force 3.16
ε̄ Numerical interfacial width 0.005

RTS No. Reconstructed Time Steps between frames 10

MDCK

x Domain length in x axis 220 µm
y Domain length in y axis 220 µm
t Length of time 1800 s

TI Time interval between frames in the video 300 s
L Characteristic length 220 µm
Υ Characteristic time 1800 s
F Characteristic force for surface tension 10 pN
τ̄ (Dimensionless) friction force 7.04
ε̄ Numerical interfacial width 0.05

RTS No. Reconstructed Time Steps between frames 5
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3. Results

For each of the biological datasets considered, we treat the initial frame of the video
as data used to generate the initial conditions for the model. The remaining frames in the
dataset are the target data we seek to fit the model to. Further details on our approach to
extracting a phase field representation of the cell from imaging data are given in [26,27]. Our
approach gives us the computed cell positions together with the estimated force such that
the motion of the cells under our model recreates the observed motion from the imaging
data. We use Figure 1 to illustrate our model when applied to experimental data from T24
cell line [30]. There is an 8-min gap between two adjacent frames in this experiment, and
we take frames 3 and 4, for example. Our discretisation yields 10 time steps between these
two frames. The first row in Figure 1 has two adjacent frames from the experimental data,
and the second row shows the initial computed cell outline (obtained from the previous
computation covering frames 2 to 3) and solutions at the 10 time steps with the computed
optimal force. The solution from the 10th time step would then be used as the initial shape
to compute the next stretch between frames 4 and 5. The dark shadow in the background
shows the target shape as the objective, which is the shape of the cell from frame 4. This
process continues successively throughout the full dataset.

Figure 1. The first row illustrates two adjacent frames from the T24 experimental data [30] that were
taken 8 min apart. The second row shows the initial shape and computed solutions at 10 intermediate
time steps accordingly. The dark shadow in the background shows the targeted shape as the objective,
which is the shape of the cell from frame 4. Bars indicate 20 µm.

As an example in Figure 2, we present the first frame of our results on T24. We show
the original image from T24 experiment [30] on the top-left; our segmentation of the shape
of the T24 cancer cell on the top-right (this segmentation technique is a combination of
Otsu and edge detection, we refer the reader to [27,37] for more details); on the bottom-left,
we demonstrate the interfacial region of the cell, its centroid position, and we continually
overlay the cell shapes as the cell migrates. On the bottom right, we show the exerted
forces where we use colour coding (red as protrusion and blue as retraction) to illustrate
the location and amount of forces exerted on the cellular interfacial region, representing
the cell membrane
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Figure 2. (Top-left): The original image from experimental observation; (top-right), The segmentation
of the T24 cancer cell from the image; (bottom-left): We define the interfacial region of the cell and
its centroid position. Within this sub-figure, we continually overlay the cell shapes and positions
as the cell migrates; (bottom-right) : We use colour coding to identify red as protrusion and blue as
retraction forces and the locations they are exerted on the cellular interfacial region. Bars indicate
20 µm.

In Table 4, we summarise both protrusion and retraction forces re-created during
the simulations of keratocyte migration (shown in Figure 2 and video in Appendix A).
Each experimental image serves as a starting position or a goal. Our estimated forces are
evaluated between adjacent frames. For the keratocyte [29], the actual real-world time
between frames is 20 s. In Table 4, we show the average cell membrane length from our
simulation in µm, the accumulated forces, the number of reconstructed time steps (denoted
by RTS throughout), and the percentage of cell membrane where protrusion or retraction
forces are exerted.
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Table 4. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the keratocyte. C. M. is an abbreviation for cell membrane. We note here that the
Lagrange multiplier λ(t) in (1) is in effect a global spatially constant volume constraint force which is
not included in the totals stated above.

Time Duration. Avg. C. M. Total Protrusion Over % of Total Retraction Over % of
between Frames Len. (µm) Force (pN) C. M. Force (pN) C. M.

1–2 (20 s) 94 33,480 75.3 5637 24.7
2–3 (20 s) 97 34,457 70.0 8253 30.0
3–4 (20 s) 97 37,047 73.8 7999 26.2
4–5 (20 s) 98 36,450 70.0 9301 30.0
5–6 (20 s) 98 37,076 70.3 10,334 29.7
6–7 (20 s) 99 36,338 70.2 10,688 29.8
7–8 (20 s) 100 36,076 70.5 10,722 29.5
8–9 (20 s) 101 38,377 71.6 9625 28.4

9–10 (20 s) 101 38,553 68.9 10,630 31.1
10–11 (20 s) 102 38,768 72.2 9723 27.8
11–12 (20 s) 88 37,751 68.2 10,788 31.8
12–13 (20 s) 90 36,796 70.4 10,001 29.6
13–14 (20 s) 89 40,149 72.4 9289 27.6
14–15 (20 s) 90 38,893 68.6 10,743 31.4
15–16 (20 s) 91 39,012 69.0 11,296 31.0
16–17 (20 s) 92 42,167 71.1 11,013 28.9
17–18 (20 s) 92 39,910 69.7 10,920 30.3
18–19 (20 s) 93 39,074 67.8 11,753 32.2

Our results on the epithelial bladder cancer cell T24 [30] are shown in Table 5. The
layout of the table and its corresponding video in Appendix A are very similar to the
keratocyte simulation.

Table 5. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the T24. C. M. is an abbreviation for cell membrane. We note here that the Lagrange
multiplier λ(t) in (1) is in effect a global spatially constant volume constraint force which is not
included in the totals stated above.

Time Duration. Avg. C. M. Total Protrusion Over % of Total Retraction Over % of
between Frames Len. (µm) Force (pN) C. M. Force (pN) C. M.

1–2 (8 min) 224 165,361 43.8 134,424 56.2
2–3 (8 min) 178 212,371 55.6 48,428 44.4
3–4 (8 min) 191 161,132 57.6 37,831 42.4
4–5 (8 min) 175 173,554 51.0 45,541 49.0

The results of the epithelial kidney cancer cell MDCK [31] are shown in Table 6
and are presented in the similar manner, apart from an additional diagram shown in the
corresponding video in Appendix A on the right-hand side.

Table 6. Details of estimating the membrane forces and its evolution through cell morphology
reconstruction of the MDCK. C. M. is an abbreviation for cell membrane. We note here that the
Lagrange multiplier λ(t) in (1) is in effect a global spatially constant volume constraint force which is
not included in the totals stated above.

Time Duration. Avg. C. M. Total Protrusion Over % of Total Retraction Over % of
between Frames Len. (µm) Force (pN) C. M. Force (pN) C. M.

1–2 (5 min) 427 256,865 48.7 186,380 51.3
2–3 (5 min) 730 617,225 69.0 183,354 31.0
3–4 (5 min) 1063 692,221 61.9 466,208 38.1
4–5 (5 min) 1066 566,266 54.8 465,805 45.2
5–6 (5 min) 1022 537,507 56.7 310,618 43.3
6–7 (5 min) 1077 655,875 60.0 340,670 40.0
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We note that making direct comparisons of our results with experimental studies
is challenging since other forces relevant to migration, such as traction forces generated
through interactions with the substrate, are neglected in our model and often membrane
forces are not directly measured. However, our results are consistent with available experi-
mental results which attempt to measure retractive and/or protrusive forces generated by
migrating cells; these results conclude that the total force exerted by the cells is of the order
of 10s of Nano-Newtons [38].

Geometric Quantities That Are of Biological Interest

Based on the computed phase field information, we can compute important and
biologically relevant geometric information that is of significant interest to experimentalists.
Through simple post-processing of the model outputs, we may obtain geometric quantities
such as circularity, curvature and elastic energy of the membrane. We demonstrate one
such post-processed quantity of interest by considering a dataset that consists of multiple
cells undergoing division and demonstrating how our approach allows us to quantify
cell proliferation rates, and also demonstrate geometrically, the cell division process. To
proceed, we first state how to compute the Euler number of the cell membranes which in
effect corresponds to the total number of cells present in the simulation. The Euler number,
in two dimensions in the phase-field formulation is given by [39]

Nε =
1

2πc

∫
{|φε |<c}

(
−∆φε +

∇|∇φε|2 · ∇φε

2|∇φε|2

)
d~̄x. (5)

Here φε is the computed phase-field function. As this number corresponds to the
number of cells present, it is extremely useful as it gives us the means to automatically
track events such as cell division and cell fusion during the process of cell migration. This
approach is extremely valuable as it could automate an otherwise laborious task of counting
division, fusion or death events and removes the need for genetic manipulations which
would be required to highlight such events. We illustrate this in the video in Appendix A
related to the kidney cancer cell MDCK [31] where a number of cell divisions occur during
the video and these are tracked accurately by the Euler number of the computed phase field.

For completeness, we include the final frame of the result video on the kidney cancer
cell MDCK in Figure 3. In this figure, the original image from the experimental observation
is shown as the first image on the first row, with a red box highlighting our choice of three
cells used in our simulation. The second image on the first row illustrates the segmentation
of the corresponding cells in the first image on the first row. The first image on the second
row shows the interfacial region of the selected cells and their centroid points. In this
sub-figure, we continually overlay the cell shapes and portions as they migrate. We use red
for protrusion and blue for retraction forces to identify the regions where they are exerted
around the cellular interfacial region. The dark shadows in the background illustrate the
targeted shapes our model is replicating, and the bar on the right-hand side shows the
maximum and minimum amount of forcing that the colour coding is illustrating. The only
image on the third row shows our Euler number from Equation (5) computed at each RTS.
Within this data, the initial three cells are divided into six cells, and we use red circles to
indicate the cell division events in this graph.



J. Imaging 2022, 8, 199 10 of 14

Figure 3. (The first image on the first row): The original image from experimental observation and
the choice of the initial three cells which are used in the simulation. In this figure, it is the last frame
of the data. The second image on the first row: The segmentation of the cells from the image on the
left. (The first image on the second row): We define the interfacial region of the cell and its centroid
position, within this sub-figure, we continually overlay the cell shapes and their positions as they
migrate. (The second image on the second row): We use colour coding to identify red as protrusion,
and blue as retraction forces and the locations they are exerted on the cellular interfacial region, the
dark shadows in the background illustrate the targeted shapes that model (1) replicates. The bar on
the right-hand side shows the maximum and minimum amount of forcing that the colour coding
is illustrating. (The only image on the third row): We show the Euler number from Equation (5)
computed at each RTS and red circles indicate the events of cell division. Bars indicate 20 µm.
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4. Discussion

Single or population cell migration is essential for many biological processes such as
immune response, embryogenesis, gastrulation, wound repair, cancer metastasis, tumour
invasion, inflammation and tissue homeostasis. However, aberrant or defects in cell
migration lead to various abnormalities and life-threatening medical conditions [40–42].
Increasing our knowledge on cell migration can help abate the spread of highly malignant
cancer cells, reduce the invasion of white cells in the inflammatory process, enhance the
healing of wounds and reduce congenital defects in brain development that lead to mental
disorders. While single-cell sequencing has accelerated breakthroughs in cancer research
and transformed our understanding of tumour biology, leading to significant impacts for
cancer treatments, understanding and quantifying membrane force generation associated
with cell migration remains an open problem, in this study we have exploited our modelling
approach of using optimal control of surface geometric partial differential equations posed
on the cell membrane to predict and estimate biological quantities of interest, such as
protrusion and retraction forces. Our approach is substantially different from current-
state-of-the-art modelling of such forces, it sets premises to study cell migration through
complex multi-dimensional environments where force generation between the cell and the
extracellular matrix is critical [40–42].

5. Conclusions

A number of recent studies such as [10] remark that small changes in mechanical
forces generated from individual cells can lead to fundamental changes at tissue levels.
However, as [8] indicates, it is technologically challenging to simply measure those forces
during experiments, such as during the process of cell migration.

In this work, we estimate the forces exerted by migrating cells by computing ‘optimal’
forces such that a mathematical model for cell migration best fits observed imaging data.
In this paper, we took experimental data of three different cell types: keratocyte in [29],
epithelial bladder cancer cell from the T24 cell line in [30], and epithelial kidney cancer
cell from the MDCK cell line in [31]. For each case, we demonstrate how we re-create the
observed cell migration and summarise the protrusion and retraction forces generated
under our model. We also note our approach is applicable to multiple cells and can be
applied in three dimensions, given appropriate datasets in 3D. Our approach could also
allow us to access biologically relevant quantities such as membrane length, circularity
and curvatures. We demonstrate one example using the MDCK cell line dataset [31]
in which a number of cell divisions occur during the evolution. Our approach deals
robustly with this setting allowing accurate quantification of cell proliferation rates which
is generally cumbersome if carried out manually. Moreover, we provide a means of tracking
(automatically) the number of cells present which could be of practical use if one wishes to
measure the rate of cell divisions, cell death or cell fusion.

Our proposed approach is amenable to further improvements and these include
computing more accurate measurements of parameters such as friction force and surface
tension as well as more refined modelling of migration itself. We note that it would be
relatively straightforward to extend our simulations to three space dimensions, which
would enable the recreation of more accurate cells and their environments [27] but a
major challenge in this case is obtaining sufficiently high-resolution imaging data. As [43]
states, cell-matrix adhesions and cytoskeletal organisation could be different in 2D and 3D
measurements, and may alter key cell responses, including morphology, migration and
proliferation. We also note that in principle this approach can be adapted to more complex
models of cell migration and this is merely a proof-of-concept study illustrating the utility
of our approach.
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Appendix A

• File link for “keratocyte.avi”, accessed on 11 July 2022 :
https://www.dropbox.com/s/pbcyos1voqjmx2x/keratocyte.avi?dl=0
Caption for media file with file name “keratocyte.avi”:
Top-left: the original image from experimental observation; top-right, our segmen-
tation of the keratocyte from the image; bottom-left: we define the interfacial region
of the cell and its centroid position, within this sub-figure, we continually overlay
the cell shapes and positions as it migrates; bottom-right: we use colour coding to
identify red as protrusion and blue as retraction forces and the locations where they
are exerted on the cellular interfacial region, the bar on the right-hand side shows the
maximum and minimum amount of forcing that the colour coding is illustrating. Bars
indicate 20 µm.

• File link for “T24.avi”, accessed on 11 July 2022:
https://www.dropbox.com/s/t0te420wx7niy0p/T24.avi?dl=0
Caption for media file with file name “T24.avi”: Top-left: the original image from
experimental observation; top-right, our segmentation of the T24 cancer cell from
the image; bottom-left: we define the interfacial region of the cell and its centroid
position, within this sub-figure, we continually overlay the cell shapes and positions as
it migrates; bottom-right: we use colour coding to identify red as protrusion, and blue
as retraction forces and the locations where they are exerted on the cellular interfacial
region, the dark shadows in the background illustrate the targeted shapes that our
model is trying to replicate, the bar on the right-hand side shows the maximum and
minimum amount of forcing that the colour coding is illustrating. Bars indicate 20 µm.

• File link for “MDCK.avi”, accessed on 11 July 2022:
https://www.dropbox.com/s/5gb7w1ddefczsm0/MDCK.avi?dl=0
Caption for media file with file name “MDCK.avi”: The first image on the first row:
the original image from experimental observation and our choice of three cells which
are used in our simulation; the second image on the first row: our segmentation of
the cells from the image on the left; the first image on the second row: we define
the interfacial region of the cell and its centroid position, within this sub-figure, we
continually overlay the cell shapes and positions as it migrates; the second image
on the second row: we use colour coding to identify red as protrusion, and blue as
retraction forces and the locations they are exerted on the cellular interfacial region,

https://www.dropbox.com/s/pbcyos1voqjmx2x/keratocyte.avi?dl=0
https://www.dropbox.com/s/t0te420wx7niy0p/T24.avi?dl=0
https://www.dropbox.com/s/5gb7w1ddefczsm0/MDCK.avi?dl=0
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the dark shadows in the background illustrate the targeted shapes that our model is
trying to replicate, the bar on the right-hand side shows the maximum and minimum
amount of forcing that the colour coding is illustrating.; the only image on the third
row: we show our Euler number from Equation (5) computed at each RTS and red
circles indicate the events of cell division. Bars indicate 20 µm.

• Our approach to present simulation results The mathematical model in Equation (1)
and its dimensionless form (i.e., Equation (4)) exist continuously in both space and
time in the closed domain Ω. We apply discretisation schemes to obtain a discrete
system at each reconstructed time step (RTS). For example, the situation presented in
Figure 1 has been discretised into 10 time steps. Solving such a system yields its simu-
lation result at its corresponding reconstructed time step. We use φi and ηi to represent
the discrete solutions on a grid point i where there are N grid points, and ΩL is the
number of grid points on one axis of the square domain Ω. φi describes the evolution
of the cell shape and takes values either−1 or 1 in- or outside of the cell. When φi is be-
tween −1 and 1, it illustrates the phase-field interfacial region and the cell shape. The
phase-field variable undergoes a smooth transition between the values of 1 and −1.
The membrane corresponds to the zero level set of the phase field variable. In order to
evaluate quantities on the membrane in our simulations results we need to specify the
interfacial region from our simulation by considering a small interval around zero to
be the interfacial region since our method does not explicitly track the interface itself.
We define grid points i that has values of φi between −0.02 and 0.02 as the cell mem-
brane. We evaluate the average length of the cell membrane on the interval I, where

I = t
TI

using the formula,
[

∑I∗RTS
k=(I−1)∗RTS+1 ∑N

i=1
{ L

ΩL
| − 0.02 < φk

i < 0.02
}]

/RTS. ηi

is the forcing, and we are interested in these exerted closely around the cell mem-
brane. The total protrusion force on the interval I is evaluated using the formula,
∑I∗RTS

k=(I−1)∗RTS+1 ∑N
i=1
{

ηk
i | − 0.02 < φk

i < 0.02 and ηk
i > 0

}
. The total retraction force

on interval I is evaluated using the formula, ∑I∗RTS
k=(I−1)∗RTS+1 ∑N

i=1
{

ηk
i | − 0.02 < φk

i <

0.02 and ηk
i < 0

}
. The choice of RTS affects the stability of the solution methods,

and we refer the reader to [34–36] for the computational details.
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