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ANALYTIC PERSPECTIVE

Simpson’s Paradox is suppression, but Lord’s 
Paradox is neither: clarification of and correction 
to Tu, Gunnell, and Gilthorpe (2008)
Carol A. Nickerson1^ and Nicholas J. L. Brown2*

Abstract 

Tu et al. (Emerg Themes Epidemiol 5:2, 2008. https​://doi.org/10.1186/1742-7622-5-2) asserted that suppression, 
Simpson’s Paradox, and Lord’s Paradox are all the same phenomenon—the reversal paradox. In the reversal paradox, 
the association between an outcome variable and an explanatory (predictor) variable is reversed when another 
explanatory variable is added to the analysis. More specifically, Tu et al. (2008) purported to demonstrate that these 
three paradoxes are different manifestations of the same phenomenon, differently named depending on the scal-
ing of the outcome variable, the explanatory variable, and the third variable. According to Tu et al. (2008), when all 
three variables are continuous, the phenomenon is called suppression; when all three variables are categorical, the 
phenomenon is called Simpson’s Paradox; and when the outcome variable and the third variable are continuous but 
the explanatory variable is categorical, the phenomenon is called Lord’s Paradox. We show that (a) the strong form of 
Simpson’s Paradox is equivalent to negative suppression for a 2× 2× 2 contingency table, (b) the weak form of Simp-
son’s Paradox is equivalent to classical suppression for a 2× 2× 2 contingency table, and (c) Lord’s Paradox is not the 
same phenomenon as suppression or Simpson’s Paradox.
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Paradox, Suppression
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Tu, Gunnell, and Gilthorpe’s Emerging Themes in Epide-
miology article [1] asserted that suppression, Simpson’s 
Paradox, and Lord’s Paradox are all the same phenom-
enon—the reversal paradox. In the reversal paradox, the 
association between an outcome variable and an explana-
tory (predictor) variable is reversed (changes sign) when 
another explanatory variable (which may be called a third 
variable, a covariate, a confounding variable, a disturber, 
a concomitant variable, a control variable, a background 
variable, or a lurking variable) is added to the analysis [2]. 
More specifically, Tu et al. [1] purported to demonstrate 
that these three paradoxes are different manifestations 
of the same phenomenon, differently named depending 
on the scaling of the outcome variable, the explanatory 
variable, and the third variable. According to Tu et al. [1], 

when all three variables are continuous, the phenomenon 
is called suppression; when all three variables are cat-
egorical; the phenomenon is called Simpson’s Paradox; 
and when the outcome variable and the third variable are 
continuous but the explanatory variable is categorical, 
the phenomenon is called Lord’s Paradox.

Tu et al. [1] are partly right and partly wrong. The inac-
curacies in their presentation stem from their

•	 failing to distinguish between the three different 
types of suppression, only one of which involves an 
association reversal;

•	 failing to distinguish between the strong form of 
Simpson’s Paradox, in which there is an association 
reversal, and the original weak form, in which there is 
not [3]; and
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•	 misunderstanding Lord’s Paradox, which cannot be 
equated with either Simpson’s Paradox or suppression.1

Because Tu et  al.’s [1] article seems to have had consider-
able influence in the decade or so since it was published—
Google Scholar indicates that it has been cited more than 
180 times—it is important that these inaccuracies be rec-
tified. We clarify and correct Tu et al.’s [1] presentation by 
first describing suppression, Simpson’s Paradox, and Lord’s 
Paradox. We next employ Cornfield’s inequality [4] to show 
mathematically that suppression and Simpson’s Paradox are 
indeed the same phenomenon, as Tu et al. [1] asserted, and 
provide a simple example of Lord’s Paradox to demonstrate 
that it is neither suppression nor Simpson’s Paradox, con-
trary to Tu et al.’s [1] claim. We then examine Tu et al.’s [1] 
hypothetical examples of suppression, Simpson’s Paradox, 
and Lord’s Paradox. We conclude briefly by agreeing with 
Tu et al. [1] that these paradoxes have serious implications 
for the interpretation of evidence from observational studies 
that employ contingency-table analyses or regression-based 
models but emphasize the importance of accurate descrip-
tions of these paradoxes and the relations between them.

Suppression
Consider an ordinary least squares regression with a cri-
terion or outcome variable Y and two possible explana-
tory or predictor variables X1 and X2 . For simplicity 
and with no loss of generality, we assume that all three 
variables are standardized, and that the variables are 
scored so that the correlation between the two explana-
tory variables ( rX1X2

 ) is greater than or equal to zero and 
the correlation between the outcome variable and the 
first explanatory variable ( rYX1

 ) is positive.2 Then the 

correlation between the outcome variable and the sec-
ond explanatory variable ( rYX2

 ) may be negative, zero, 
or positive. The simple regression coefficient for X1 or 
X2 is obtained by regressing Y on either X1 alone or X2 
alone, respectively. With standardized variables, the sim-
ple regression coefficient is equivalent to the correlation 
between the explanatory variable and the outcome vari-
able. The partial regression coefficient ( β ) for X1 and for 
X2 is obtained by regressing Y on both X1 and X2 . These 
partial regression coefficients can also be computed from 
the three correlations as follows:

Researchers often seem to believe that, in a regres-
sion predicting an outcome variable from two explana-
tory variables, one or the other of two situations must 
occur: either X1 and X2 are independent, or X1 and X2 are 
redundant:

•	 Independence occurs when the two explanatory vari-
ables are uncorrelated. The partial regression coeffi-
cient for each of the two explanatory variables then 
equals its corresponding simple regression coef-
ficient. For example, if the correlations between the 
three variables Y, X1 , and X2—rYX1

 , rYX2
 , and rX1X2

—
equal .44, .33, and .00, respectively, the partial regres-
sion coefficients for X1 and X2 equal .44 and .33.

•	 Redundancy occurs when the two explanatory varia-
bles are correlated. Each partial regression coefficient 
has the same sign as, but is less than, its correspond-
ing simple regression coefficient. For example, if the 
correlations rYX1

 , rYX2
 , and rX1X2

 equal .44, .33, and 
.60, respectively, the partial regression coefficients 
for X1 and X2 equal .38 and .10 [5, Figure 1, p. 308]. 
Redundancy is the most common regression situa-
tion.

But three other situations are possible when the two 
explanatory variables are correlated: reciprocal suppres-
sion, classical suppression, and negative suppression [6, 
pp. 84–91, 7–9].

•	 Reciprocal suppression (also called cooperative sup-
pression) occurs whenever the correlation between 
the outcome variable and the second explanatory 
variable is negative. The partial regression coefficient 
for each of the two explanatory variables is greater 
than its corresponding simple regression coefficient 
but the sign is unchanged. For example, if the corre-
lations rYX1

 , rYX2
 , and rX1X2

 equal .44, − .20 , and .60, 
respectively, the partial regression coefficients for 

β1 = (rYX1
− rYX2

× rX1X2
)/(1− rX1X2

2)

β2 = (rYX2
− rYX1

× rX1X2
)/(1− rX1X2

2).

1  Tu et  al. [1, p. 7] wrote that “The reversal paradox is often used as the 
generic name for Simpson’s Paradox, Lord’s Paradox, and suppression (see 
Table 4). Whilst the original definition and meaning of the reversal paradox 
was derived from the notion that the direction of a relationship between two 
variables might be reversed after a third variable is involved, this neverthe-
less may generalize to scenarios where the relationship between variables is 
enhanced, not reduced or reversed, after the third variable is introduced.”
In our view, this generalization is inappropriate and likely to lead to confusion. 
Strictly speaking, the reversal paradox requires that a negative relation between 
two variables become a positive association, or vice versa. A null (zero) asso-
ciation becoming a non-null (positive or negative) association, or vice versa, is 
not an example of the reversal paradox, although it is an anomaly and a para-
dox. Reciprocal suppression, in which both partial regression coefficients are 
larger than their corresponding simple regression coefficients, is not an exam-
ple of the reversal paradox. Moreover, if the association between an outcome 
variable and an explanatory variable is reduced for both explanatory variables, 
this indicates redundancy, not a paradox (reversal or otherwise).
2  To score variables so that the correlation between the two explanatory 
variables ( rX1X2 ) is greater than or equal to zero and the correlation between 
the outcome variable and the first explanatory variable ( rYX1 ) is positive may 
require reversing the original scale of one of the three variables. To reverse 
the scale of a variable, for each data point compute
reversed value of data point = maximum value of scale+minimum value of scale

−original value of data point

Reversing the scale of a variable has no effect on the magnitude of its correla-
tion with some other variable; it simply reverses the sign of that correlation.
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X1 and X2 equal .88 and − .73 [5, Figure  1, p. 308]. 
Because reciprocal suppression does not involve a 
sign reversal, its occurrence cannot be considered an 
example of the reversal paradox.

•	 Classical suppression (also called traditional suppres-
sion) occurs whenever the correlation between the 
outcome variable and the second explanatory variable 
equals zero (or in some presentations, nearly zero). 
The partial regression coefficient for the explanatory 
variable having the zero correlation with the outcome 
variable is negative; the partial regression coefficient 
for the explanatory variable having the non-zero 
correlation with the outcome variable has the same 
sign as, but is greater than, its corresponding simple 
regression coefficient. For example, if the correlations 
rYX1

 , rYX2
 , and rX1X2

 equal .44, .00, and .60, respec-
tively, the partial regression coefficients for X1 and X2 
equal .69 and − .41 [5, Figure 1, p. 308]. Because clas-
sical suppression involves a change from a zero asso-
ciation between one of the explanatory variables and 
the outcome variable to a non-zero association, its 
occurrence, strictly speaking, cannot be considered 
an example of the reversal paradox.

Reciprocal suppression always occurs when the cor-
relation between the outcome variable and the second 
explanatory variable is negative, and classical suppres-
sion always occurs when the correlation between the out-
come variable and the second explanatory variable is zero 
(assuming that the correlation between the outcome vari-
able and the first explanatory variable is positive, and that 
the correlation between the two explanatory variables is 
positive, as explained earlier).

•	 Negative suppression (also called net suppression) 
can, but does not necessarily, occur when the corre-
lation between the outcome variable and the second 
explanatory variable is positive. Negative suppression 
occurs whenever the correlation between the two 
explanatory variables ( rX1X2

 ) is greater than the ratio 
of the correlations of the two explanatory variables 
with the outcome variable, with the smaller of these 
two correlations placed in the numerator of the ratio 
and the larger placed in the denominator, so that the 
ratio is less than or equal to 1.00. That is, negative 
suppression occurs if 

rX1X2
> rYX1

/rYX2
if rYX2

> rYX1

or

rX1X2
> rYX2

/rYX1
if rYX1

> rYX2
.

 Otherwise, redundancy occurs. In negative suppres-
sion, the partial regression coefficient for the explan-
atory variable that has the larger correlation with the 
outcome variable keeps the same sign and is greater 
than its corresponding simple regression coefficient. 
The partial regression coefficient for the explana-
tory variable that has the smaller correlation with 
the outcome variable reverses sign and can be less 
than, equal to, or greater in magnitude than its cor-
responding simple regression coefficient. For exam-
ple, if the correlations rYX1

 , rYX2
 , and rX1X2

 equal .44, 
.10, and .60, respectively, negative suppression occurs 
because .60 is greater than .10/.44 = .23 . The partial 
regression coefficients for X1 and X2 equal .59 and 
− .26 , respectively [5, Figure  1, p. 308; see also 10]. 
The occurrence of negative suppression is an exam-
ple of the reversal paradox.

Although the occurrence of classical suppression is not 
an example of the reversal paradox (because there is no 
sign reversal), and the occurrence of negative suppres-
sion is an example of the reversal paradox (because there 
is a sign reversal), classical suppression can be regarded 
nonethless as a special case of negative suppression 
because, whenever the correlation of one of the explana-
tory variables with the outcome variable equals zero, the 
correlation between the two explanatory variables (which 
is positive) must exceed the ratio of the correlations of 
the two explanatory variables with the outcome variable 
(which equals zero).

Suppression can occur in regression models with more 
than two explanatory variables, but its operation is more 
complicated [7, 11] and has not been much investigated 
in the statistical literature. Tu et  al. [1] focused on the 
case of two explanatory variables, so we will not consider 
further here the case of more than two.

Simpson’s Paradox
Simpson [12] noted that in a 2× 2× 2 contingency table, 
with the level of each of the three dichotomous variables 
coded 0 or 1, there can be an association of two of the 
three variables at each level of the third variable although 
there is no overall association of the two variables. He 
provided a hypothetical medical example with an out-
come variable “status” (alive, dead), an explanatory vari-
able “treatment” (untreated, treated), and a third variable 
“sex” (male, female), with the table cell frequencies shown 
in Table 1. When sex is disregarded, there is no associa-
tion between treatment and status; the untreated and 
the treated persons have the same probability of death 
(.50). When sex is considered, there is a negative asso-
ciation between treatment and status for both males and 
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females, with untreated males having a higher probabil-
ity of death than treated males (.43 vs. .38), and untreated 
females having a higher probability of death than treated 
females (.60 vs. .56).3 

Simpson [12] described the weak form of the paradox 
that now bears his name, although the phenomenon was 
known much earlier [13, 14; see also 3]. In the weak form 
of Simpson’s Paradox, a lack of association between two 
variables transmutes into a positive or negative associa-
tion when a third variable is considered. Strictly speak-
ing, the occurrence of the weak form of Simpson’s 
Paradox, like classical suppression, cannot be considered 
an example of the reversal paradox. Since 1951, when 
Simpson wrote his article, Simpson’s Paradox usually 
has been defined and/or demonstrated in terms of an 
actual association reversal, which is the strong form of 
Simpson’s Paradox. For example, Charig, Webb, Payne, 
and Wickham [15] showed that the association between 
the “surgical outcome” (failure, success) and the “type of 
surgery” (open surgery, percutaneous nephrolithotomy) 
for kidney stones reversed when the “kidney-stone size” 
(large, small) was taken into account. Charig et [15] pre-
sented their results in terms of percentages rather than 
probabilities. As shown in Table  2, when kidney-stone 
size was disregarded, 83% of the percutaneous nephroli-
thotomies were successful, whereas only 78% of the open 

surgeries were successful. But when surgical outcome 
was examined separately for large kidney stones and 
small kidney stones, open surgeries were more success-
ful than percutaneous nephrolithotomies for both large 
kidney stones (73 vs. 69% ) and small kidney stones (93 vs. 
87%).4 Simpson’s Paradox has also been observed in con-
tingency tables larger than 2× 2× 2 (usually 2× 2× k ). 
For example, Simpson’s Paradox occurred in a contin-
gency table with two airlines (America West, Alaska), 
two performances (on time, delayed), and five cities (Los 
Angeles, Phoenix, San Diego, San Francisco, Seattle). 
Although America West Airlines had a higher percentage 
of on-time flights overall than did Alaska Airlines, Alaska 
Airlines had a higher percentage of on-time flights for 
each of the five cities [16].

Lord’s Paradox
Lord [17] described a problem in the interpretation of 
studies examining the relation between an outcome 
variable and a pre-existing group variable when both a 
pretest measure and a posttest measure of the outcome 
variable are available. Suppose that a university is inter-
ested in determining whether the diet provided in its 
dining halls has an effect on the weight of the students, 
and whether there might be a sex difference in this effect. 
Student weight is assessed twice, at the beginning of the 
school year in September, and at the end of the school 
year in June. Lord [17] noted that two different ways 
of analyzing the data yield different results. When the 

Table 1  Associations between treatment and status. Adapted from Simpson [11, Item 10, p. 241]

Status coded 0 = alive, 1 = dead; treatment coded 0 = untreated, 1 = treated; sex coded 0 = male, 1 = female

Untreated Treated

Association between treatment and status, disregarding sex

 Alive 6 20

 Dead 6 20

 Total 12 40

 Probability dead .50 .50 No association

Male Female

Untreated Treated Untreated Treated

Association between treatment and status for each sex

 Alive 4 8 2 12

 Dead 3 5 3 15

 Total 7 13 5 27

 Probability dead .43 .38 .60 .56 Negative association for 
both male and female

4  Charig et al. [15] coded kidney-stone size 0 = small and 1 = large . For con-
sistency with our presentation of suppression, we have reversed this coding.

3  In his example, Simpson [11] coded status (which he called “survival”) 
0 = dead and 1 = alive , treatment 0 = untreated and 1 = treated , and sex 
0 = female and 1 = male . Thus, in the two subtables for sex (female and 
male), there was a positive association between treatment and status. For con-
sistency with our presentation of suppression, we have reversed the coding of 
status and sex. The coding of dichotomous variables is arbitrary; such recod-
ing does not affect the results of the contingency-table analysis.



Page 5 of 11Nickerson and Brown ﻿Emerg Themes Epidemiol            (2019) 16:5 

outcome variable (June or posttest weight) is regressed 
on both the group variable (the explanatory variable sex) 
and the third (or control) variable (September or pretest 
weight), there is a significant effect of sex on June weight, 
with men being heavier. When the difference between 
the June weight and the September weight is regressed 
on sex, however, there is no significant effect of sex.

As was the case with the (weak) form of Simpson’s 
paradox presented by Simpson [12], Lord’s Paradox, as 
presented by Lord [17], did not describe an association 
reversal, but a change from no association to an associa-
tion (here, assuming that sex is coded 0 for women and 1 
for men, a positive association). We are unaware of pub-
lished examples of Lord’s Paradox in which there is an 
actual association reversal, but certainly it is the case that 
an association reversal can occur when the same data set 
is analyzed using these two different methods of analysis.

Simpson’s Paradox is suppression
Suppression focuses on the changes to the regression 
coefficients when a second explanatory variable is added 
to a regression model containing only one explanatory 
variable. That is, an examination of suppression compares 
the signs and magnitudes of the regression coefficients 
(alternatively, part correlations or partial correlations [9]) 
for the regressions predicting Y from X1 alone and Y from 
X2 alone to the signs and the magnitudes of the regres-
sion coefficients for the regression predicting Y from 
both X1 and X2 . Simpson’s Paradox focuses on changes to 
probabilities, ratios, or percentages computed for a 2× 2 
contingency table to the probabilities, ratios, or per-
centages computed for the two subtables of a 2× 2× 2 

contingency table created by considering a third variable. 
Nonetheless, the strong form of Simpson’s Paradox is 
equivalent to negative suppression and the weak form of 
Simpson’s Paradox is equivalent to classical suppression, 
as consideration of “Cornfield’s inequality” [4] shows.

Cornfield et  al. [4; see also 18] derived the neces-
sary conditions for a third (“common cause”) variable to 
account for the observed association between an explan-
atory (“apparent cause”) variable and an outcome vari-
able, assuming that this observed association is spurious. 
These conditions establish the minimum effect size nec-
essary for the third variable to reverse the observed asso-
ciation, resulting in Simpson’s Paradox. For simplicity, we 
use the following mnemonic notation: O and O′ represent 
the 1 and 0 values of the outcome, A and A′ represent 
the 1 and 0 values of the apparent cause, and C and C ′ 
represent the 1 and 0 values of the common cause in a 
2× 2× 2 contingency table. P(O) is the probability of O, 
P(O|A) is the probability of O given that A has occurred, 
and so on. P(O) and P(O′) sum to 1, of course, and anal-
ogously for the other two variables. Cornfield et  al. [4] 
explicitly assumed the association between the outcome 
(O) and the common cause (C), and the association 
between the apparent cause (A) and the common cause 
(C), to be positive, which seems reasonable in a disease 
context. One way of expressing Cornfield’s inequality is

Because P(C|A)− P(C|A′) is less than or equal to 1,

P(O|A)− P(O|A
′) = [P(O|C)− P(O|C

′)]

× [P(C|A)− P(C|A′)].

P(O|C)− P(O|C
′) ≥ P(O|A)− P(O|A

′).

Table 2  Associations between type of surgery and surgical outcome. Adapted from Charig et al. [14, Tables I and II, p. 880]

Surgical outcome coded 0 = failure, 1 = success; type of surgery coded 0 = open surgery, 1 = percutaneous nephrolithotomy; kidney-stone size coded 0 = large 
stone, 1 = small stone

Open surgery Percutaneous 
nephrolithotomy

Association between type of surgery and surgical outcome, disregarding kidney-stone size

 Failure 77 61

 Success 273 289

 Total 350 350

Percentage success 78% 83% Positive association

Large stone Small stone

Open surgery Percutaneous 
nephrolithotomy

Open surgery Percutaneous 
nephrolithotomy

Association between type of surgery and surgical outcome for each kidney-stone size

 Failure 71 25 6 36

 Success 192 55 81 234

 Total 263 80 87 270

 Percentage success 73% 69% 93% 87% Negative associations
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That is, to reverse the observed association between the 
outcome and the apparent cause, the association between 
the outcome and the common cause must be stronger 
than the association between the outcome and the appar-
ent cause.

Cornfield’s inequality can also be expressed in terms of 
correlations. When the variables are dichotomous, the 
correlation r is equivalent to the φ coefficient, a measure 
of association for contingency tables. The φ coefficient 
for a 2× 2 contingency table can be expressed in terms of 
probabilities. For example, for the variables O and C,

and analogously for the variable pairs O and A, and A and 
C.

If the association between the outcome O and the 
apparent cause A is completely due to the association 
between each of these two variables and the common 
cause C, then

or, in terms of r,

Rearranging terms gives

Substituting Y for O, X1 for A, and X2 for C shows that 
this is the boundary for negative suppression described 
earlier for continuous variables:

Thus, the strong form of Simpson’s Paradox is equivalent 
to suppression—specifically, negative suppression—for a 
2× 2× 2 contingency table, as Tu et al. [1] asserted.

To make all this concrete, consider again the kidney-
stone example of the strong form of Simpson’s Paradox in 
Table 2. Table 3 rearranges the data in the bottom panel of 
Table 2 into three 2× 2 contingency tables—one for sur-
gical outcome by type of surgery, one for surgical outcome 
by kidney-stone size, and one for type of surgery by kid-
ney-stone size—and includes all the relevant probabilities 
and φ coefficients. Cornfield’s inequality indicates that an 
association reversal will occur between the outcome vari-
able (surgical outcome) and the treatment variable (appar-
ent cause: type of surgery) when the third or confounding 
variable (common cause: kidney-stone size) is considered 
because the association between the outcome variable 
and the third variable [ P(O|C)−P(O|C ′) ; .88−.72 = .16 ] 
is greater than the association between the outcome 
variable and the treatment variable [ P(O|A)−P(O|A′) ; 

φOC = [P(O|C)− P(O|C
′)]

×

√

[P(C)× P(C ′)]/[P(O)× P(O′)]

φOA = φOC × φAC

rOA = rOC × rAC .

rAC = rOA/rOC .

rX1X2
= rYX1

/rYX2
.

.83−.78 = .05 ]. Analogously, comparison of the φ coeffi-
cients for the three 2× 2 tables shows that negative sup-
pression, and thus an association reversal, must occur 
when the third variable is added to the regression predict-
ing the outcome variable from the treatment variable. The 
φ coefficients for the three contingency tables in Table 3 
equal .06, .20, and .52, respectively. The φ coefficient 
for the treatment variable and the third variable (.52) is 
greater than the ratio of the φ coefficients of each of these 
variables with the outcome variable ( .06/.20 = .30 ), indi-
cating that negative suppression must occur and that the 
regression coefficient for the treatment variable (which 
has the smaller association with the outcome variable) will 
reverse sign. The regression coefficient for the treatment 
variable changes from .06 to − .23 , indicating a positive 
association between type of surgery (with open surgery 
coded 0 and percutaneous nephrolithotomy coded 1) 
when kidney-stone size is not included in the regression 
but a negative association when it is.

Although Cornfield et al. [4] did not explicitly mention 
the situation where the association between the outcome 
and the apparent cause is null—the weak form of Simp-
son’s Paradox—Cornfield’s inequality applies here as well, 
because P(O|A)− P(O|A′) = 0 and hence is less than 
P(O|C)− P(O|C ′) , which is positive, and so the associa-
tion between the outcome and the apparent cause at each 
level of the common cause will be non-null. Thus, the 
weak form of Simpson’s Paradox is equivalent to classical 
suppression for a 2× 2× 2 contingency table.

For Simpson’s [12] example, Table 4 rearranges the data 
in the bottom panel of Table  1 into three 2× 2 contin-
gency tables—one for death by treatment, one for death 
by sex, and one for treatment by sex—and includes all 
the relevant probabilities and φ coefficients. Cornfield’s 
inequality indicates that the null association between 
the outcome variable (death) and the treatment variable 
(apparent cause: treatment) will become non-null when 
the third or confounding variable (common cause: sex) 
is considered because the association between the out-
come variable and the third variable [ P(O|C)−P(O|C ′) ; 
.56−.40 = .16 ] is greater than the association between 
the outcome variable and the treatment variable 
[ P(O|A)−P(O|A′) ; .50−.50 = .00 ]. Analogously, compar-
ison of the φ coefficients for the three 2× 2 contingency 
tables shows that classical suppression, and thus a change 
from a null association to a non-null association, must 
occur when the third variable is added to the regression 
predicting the outcome variable from the treatment vari-
able. The φ coefficients for the three contingency tables 
in Table 4 equal .00, .16, and .22, respectively. In regres-
sion, a correlation of zero between the outcome variable 
and either one of the two explanatory variables guaran-
tees that classical suppression will occur. The regression 
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coefficients for X1 and X2 equal .17 and − .04 , indicating a 
small negative association between treatment and status 
when sex is considered.

Lord’s Paradox is not suppression or Simpson’s 
Paradox
Contrary to Tu et al.’s [1] claim, Lord’s Paradox cannot be 
equated with any type of suppression or with either the 
weak or the strong form of Simpson’s Paradox. All three 
forms of suppression depend on a comparison of the 
regression coefficients for X1 and X2 between the regres-
sions with one explanatory variable

and the regression with two explanatory variables

Lord’s Paradox, on the other hand, refers to a comparison 
of the regression coefficients for X1 between

and

The first regression is based on a difference-score defini-
tion of change, whereas the second regression is based 
on a residual-score definition of change. A difference 
score is computed by subtracting the pretest value from 
the posttest value and has a straightforward interpreta-
tion. A positive difference score means that the score has 
increased from the pretest to the posttest; a negative dif-
ference score means that the score has decreased from 
the pretest to the posttest. A residual score is computed 
by regressing the posttest on the pretest, or by including 
both the pretest and the posttest as explanatory variables. 
A residual score indicates whether the posttest score has 
changed more or less than expected based on the pretest 
score and the regression. A positive residual score means 
that the posttest score is larger than expected; a negative 
residual score means that the posttest score is smaller 
than expected. Lord’s Paradox is not actually a paradox, 
then, because the results of analyses based on two differ-
ent definitions of change are not comparable. The two dif-
ferent analyses do not ask the same question of the data.

The apparent distinction between the regression based 
on difference scores and the regression based on residual 
scores for Lord’s Paradox is that the latter has the pretest 
X2 on the right side of the equation but the former does 
not. Rewriting the equations more formally

Y ← X1

Y ← X2

Y ← X1 X2.

(Y − X2) ← X1

Y ← X1 X2.

(Y − X2) = β1X1 + e

and

(e represents error) and then adding X2 to both sides of 
the former

shows that the actual distinction between the two regres-
sions is that in the difference-score regression, the regres-
sion coefficient for the pretest X2 is forced to equal 1. Put 
differently, for pretest-posttest data, the difference-score 
regression and the residual-score regression will give 
exactly the same results if and only if the slope of the 
within-group regression line predicting posttest from 
pretest equals 1 for each group.

A simple example shows that suppression is not nec-
essary for Lord’s Paradox to occur. Consider the small 
hypothetical data set in Table  5.5 This data set exhibits 
Lord’s Paradox. Regressing posttest on group and pretest 
shows that there is no effect at all of group on posttest. 
Regressing the difference between posttest and pretest 
on group does show a significant effect of group, how-
ever. The correlations between group and pretest, group 
and posttest, and posttest and pretest equal .82, .94, and 
.96, respectively. The correlation of the two explanatory 
variables (.82) does not exceed the ratio of the correlation 
of each explanatory variable with the outcome variable 
( .94/.96 = .98 ) so there is no sign reversal and no nega-
tive suppression. Neither explanatory variable has a zero 
correlation with the outcome variable, so there is no clas-
sical suppression, and all three correlations are positive, 
so there is no reciprocal suppression. This example dem-
onstrates that Lord’s Paradox is not the same as suppres-
sion and hence, not the same as Simpson’s Paradox. For 
reasons that are unclear, a few other authors have made 
the same mistake of considering Lord’s Paradox to be the 
same as Simpson’s Paradox (e.g., [19, 20]).

Tu et al.’s [1] three examples
Tu et al. [1] presented a hypothetical example of suppres-
sion, of Simpson’s Paradox, and of Lord’s Paradox. The 
motivation for these three examples is the “fetal origins 
of adult disease” (FOAD) hypothesis developed by the 
epidemiologist Barker [21], which suggests a possible 
association between low birth weight and various chronic 
diseases in adulthood (e.g., hypertension, diabetes, coro-
nary artery disease). The question is whether current 
(adult) weight should be considered in analyzing this 
association; many studies have found an inverse associa-
tion between birth weight and adult disease only when 

Y = β1X1 + β2X2 + e

Y = β1X1 + X2 + e

5  This data set was found on an Internet website. Unfortunately, we did not 
record the uniform resource locator (url) for the website and so are unable to 
credit the person who created the data set.
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current weight (or some other measure of adult body 
size) is considered. In Tu et  al.’s [1] three hypothetical 
examples, the outcome variable is systolic blood pressure, 
the explanatory variable is birth weight, and the third 
variable is current weight.

Example of suppression
For their example of suppression, Tu et  al. [1] simu-
lated continuous values of systolic blood pressure, birth 
weight, and current weight for 1000 adult men so that 
the correlation between each pair of three variables is 

Table 3  Three 2× 2 contingency tables for the data in Table 2

Surgical outcome coded 0 = failure, 1 = success; type of surgery coded 0 = open surgery, 1 = percutaneous nepholithotomy; kidney-stone size coded 0 = large 
stone, 1 = small stone

Open surgery Percutaneous nephrolithotomy

Association between type of surgery and surgical outcome, disregarding kidney-stone size

 Failure 77 61

 Success 273 289

 Total 350 350

 Percentage success 78% 83% Difference = 5% φ = .06

Large stone Small stone

Association between kidney-stone size and surgical outcome, disregarding type of surgery

 Failure 96 42

 Success 247 315

 Total 343 357

 Percentage success 72% 88% Difference = 16% φ = .20

Open surgery Percutaneous nephrolithotomy

Association between type of surgery and kidney-stone size, disregarding surgical outcome

 Large stone 263 80

 Small stone 87 270

 Total 350 350

 Percentage small stone 25% 77% Difference = 52% φ = .52

Table 4  Three 2 times 2 contingency tables for the data in Table 1

Status coded 0 = alive, 1 = dead; treatment coded 0 = untreated, 1 = treated; sex coded 0 = male, 1 = female

Untreated Treated

Association between treatment and status, disregarding sex

 Alive 6 20

 Dead 6 20

 Total 12 40

 Probability dead .50 .50 Difference = 0 φ = .00

Male Female

Association between sex and status, disregarding treatment

 Alive 12 14

 Dead 8 18

 Total 20 32

 Probability dead .40 .56 Difference = .16 φ = .16

Association between sex and treatment, disregarding status

 Untreated 7 5

 Treated 13 27

 Total 20 32

 Probability treated .65 .84 Difference = .19 φ = .22
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positive.6 The correlation between blood pressure and 
birth weight equals .11,7 the correlation between blood 
pressure and current weight equals .50, and the corre-
lation between birth weight and current weight equals 
.52. Note that the association between birth weight and 
blood pressure is positive and significant in these simu-
lated data. When current weight is considered, however, 
the association between birth weight and blood pressure 
becomes negative and remains significant. As Tu et  al. 
[1] noted, consideration of current weight reversed and 
increased the association between birth weight and blood 
pressure, suggesting that low birth weight leads to adult 
hypertension.

Tu et  al. [1, p. 6] correctly stated that the analysis on 
these continuous variables is characterized by suppres-
sion, but mistakenly explained this example in terms of 
classical suppression, whereas in fact their example dem-
onstrates negative suppression. The correlation between 
the explanatory variable (birth weight) and the third 
variable (current weight) is greater than the ratio of the 
correlation of each of these variables with the outcome 
variable (blood pressure): .52 > (.11/.50 = .22) . The 
regression coefficient for the third variable increases 
from .50 to .61; the regression coefficient for the explana-
tory variable reverses sign and increases in magnitude 
from .11 to − .21 and remains significant.

Example of Simpson’s Paradox
For their example of Simpson’s Paradox, Tu et  al. [1, 
Table 2, p. 3] dichotomized the three simulated continu-
ous variables blood pressure (normal, high), birth weight 
(low, high), and current weight (low, high). They then 
first cross-classified blood pressure by birth weight, dis-
regarding current weight, showing that the probability of 
developing high blood pressure is higher for persons with 
a high birth weight than it is for persons with a low birth 
weight (.362 vs. .272); that is, the association between 
birth weight and blood pressure is positive and signifi-
cant in these simulated data. They then considered cur-
rent weight by cross-classifying blood pressure by birth 
weight for each of the two values of current weight. When 
current weight is considered, the probability of develop-
ing high blood pressure is lower for persons with a high 
birth weight than it is for persons with a low birth weight, 
both for persons with a low current weight (.199 vs. .231) 
and for persons with a high current weight (.550 vs. .569). 
That is, when current weight is considered, the associa-
tion between birth weight and blood pressure becomes 

negative. (Tu et al. [1] apparently did not realize that this 
negative association is not significant.) This association 
reversal exemplifies the strong version of Simpson’s Para-
dox. As in Tu et al.’s [1] example of suppression, in their 
example of Simpson’s Paradox, consideration of current 
weight reversed the association between birth weight and 
blood pressure, suggesting that low birth weight might 
lead to adult hypertension. This is not surprising, given 
that this example of Simpson’s Paradox is also an exam-
ple of negative suppression, as can be seen if the data are 
arranged into three 2× 2 contingency tables—one for 
blood pressure by birth weight, one for blood pressure 
by current weight, and one for birth weight by current 
weight. The correlations ( φ coefficients) computed for 
each table equal .10, .33, and .38, respectively. The cor-
relation between the explanatory variable (dichotomized 
birth weight) and the third variable (dichotomized cur-
rent weight) is greater than the ratio of the correlation of 
each of these variables with the outcome variable (dichot-
omized blood pressure): .38 > (.10/.33 = .30) , indicating 
that negative suppression has occurred. The regression 
coefficient for the third variable increases from .33 to 
.34; the regression coefficient for the explanatory vari-
able reverses sign and decreases in magnitude from .10 
to − .03.

Example of Lord’s Paradox
For their example of Lord’s Paradox, Tu et  al. [1] used 
the continuous outcome variable blood pressure, the 
dichotomized explanatory (group) variable birth weight, 
and the continuous third variable current weight. A two-
sample t test showed that, on average, the blood pressure 
of persons with a high birth weight is higher than that of 
persons with a low birth weight. That is, there is a posi-
tive and significant association between birth weight and 
blood pressure. But regressing continuous blood pres-
sure on both dichotomized birth weight and continuous 
current weight shows a negative association between 
birth weight and blood pressure. As with their exam-
ples of suppression and Simpson’s Paradox, in Tu et al.’s 
[1] example of Lord’s Paradox, consideration of current 
weight reverses the association between birth weight and 
blood pressure, suggesting that low birth weight leads to 
adult hypertension.

We don’t question the results for this example per se, 
but this association reversal is not an example of Lord’s 
Paradox. As explained earlier, Lord’s Paradox compares 
the effect of the explanatory (group) variable on the out-
come variable when the outcome variable is regressed on 
the explanatory variable and the third variable (residual-
score analysis) to the effect of the explanatory (group) 
variable when the difference between the outcome varia-
ble and the third variable is regressed on the explanatory 

6  All of the correlations reported in this section were computed from the sim-
ulation data set kindly provided to us by Dr. Yu-Kang Tu.
7  Tu et al. [1, Table 2, p. 6] reported the correlation between blood pressure 
and birth weight to be − .105 . The negative sign appears to be a typographi-
cal error.
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(group) variable (difference-score analysis). There is no 
such comparison in Tu et al.’s [1] example. Indeed, in this 
context, such a comparison does not make sense because 
it would involve the subtraction of current weight from 
blood pressure. Instead of being an example of Lord’s 
Paradox, this is an example of negative suppression. Note 
that the two-sample t test comparing blood pressure for 
persons of low and high birth weight is equivalent to 
regressing blood pressure on dichotomized birth weight. 
Thus, Tu et  al.’s [1] example compares the results of a 
regression with one explanatory variable to the results 
of a regression with two explanatory variables. The lat-
ter is the framework for suppression. It does not matter 
that one of the two explanatory variables is dichotomous; 
regression can accommodate as explanatory variables 
dichotomous variables as well as the more usual continu-
ous variables. The correlation between blood pressure 
and dichotomized birth weight equals .11, the correlation 
between blood pressure and current weight equals .50, 
and the correlation between dichotomized birth weight 
and current weight equals .44. The correlation between 
the explanatory variable (dichotomized birth weight) and 
the third variable (continuous current weight) is greater 
than the ratio of the correlation of each of these variables 
with the outcome variable (continuous blood pressure): 
.44 > (.11/.50 = .22) , resulting in negative suppression 
and a sign reversal. The regression coefficient for the 
third variable increases from .50 to .56; the regression 
coefficient for the explanatory variable reverses sign and 
increases in magnitude from .11 to − .13 and remains 
significant.

Tu et al. [1] concluded that consideration of a third var-
iable in epidemiological studies can lead to differences in 
the strength and the direction of the association between 
the outcome variable and the explanatory variable of 
interest and thus affects the interpretation of that asso-
ciation. They correctly indicated that these effects can 

occur regardless of whether the variables under consid-
eration are continuous, categorical, or some combination 
of continuous and categorical. They also noted that the 
question of whether consideration of the third variable 
yields valid or artifactual results cannot be determined 
by statistics alone but depends upon prior biological and 
clinical knowledge and underlying causal theory. In an 
earlier related article, Tu et  al. [22] indicated that they 
believe that current weight should not be considered in 
investigations of the association between birth weight 
and current blood pressure because it is on the casual 
pathway between birth weight and current blood pres-
sure and so is not a true confounding variable. Consid-
eration of current weight therefore yields results that are 
statistical artifacts, in their opinion.

Conclusion
Tu et al. [1] introduced their article by stating that sup-
pression, Simpson’s Paradox, and Lord’s Paradox pervade 
epidemiological research and have serious implications 
for the interpretation of evidence from observational 
studies, and concluded it by noting that these paradoxes 
cannot be resolved by statistical means. Instead, their 
resolution requires substantive knowledge, strong theo-
retical reasoning, and a priori causal models. As psychol-
ogists, we are unable to judge whether these paradoxes 
do in fact pervade epidemiological research. But we agree 
that they have serious implications for the interpretation 
of evidence from observational studies, not just in epide-
miology, but in all disciplines that employ contingency-
table analyses or regression-based models. We applaud 
Tu et al.’s [1] efforts to bring these paradoxes to the atten-
tion of epidemiologists, and heartily agree that their 
resolution requires more than statistics. But it is also 
important that the descriptions of the relations between 
these paradoxes be accurate. To this end, we hope that 
our corrections and clarifications to Tu et al.’s [1] article 
prove useful.
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