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Abstract: Cutaneous lupus erythematosus (CLE) is an autoimmune disorder like systemic lupus
erythematosus (SLE). Both SLE and CLE characterize autoantibody secretion and immune cell
recruitment. In particular, CLE can be divided into three more frequent types, varying in the severity
of the skin lesions they present. The role of type I IFN was shown to be one of the leading causes
of the development of this pathology in the skin. Different treatments have been developed and
tested against these different variants of CLE to decrease the increasing levels of CLE in humans. In
this article, a literature revision discussing the similarities between SLE and CLE is carried out. In
addition, new advances in understanding the development of CLE and the leading treatments being
evaluated in animal models and clinical trials are reviewed.
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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that mainly affects
women of childbearing age, representing around 90% of people with this pathology [1].
SLE is characterized by the production of auto-antibodies and the formation of immune
complexes directed against the body itself. The associated symptoms include skin lesions
with joint, renal, cardiac, and nervous system damage [2]. Renal impairment is one of
the most characteristic symptoms of SLE, which is generated by the development of
glomerulonephritis. It has been reported that 10% of people with SLE can develop chronic
renal failure, increasing to 40% over time [3]. The prevalence of this disease is highly
variable, with higher rates found in the United States compared to Africa, Europe, and
Australia [4].

On the other hand, cutaneous lupus erythematosus (CLE) is an autoimmune skin
disease with a wide range of clinical presentations. Multiple studies have evaluated the
possibility of progressing from CLE to SLE, which has a progression rate ranging from zero
to over 30% [5–7]. Particularly, CLE incidence is close to 4.3 per 100,000 individuals [8]. This
clinical pathology is frequently identified in females, but the contribution of the hormones in
the development of CLE remains unclear [9]. One of the most typical immunological factors
associated with CLE induction is the development of antinuclear antibodies (ANAs) [10].
Interestingly, other types of autoantibodies have been reported, such as Ro antibodies [11]
anti-smith (sm) [12], C1q [13], and HMGB1 [14]. These autoantigens can be affected by
UV stimulation [15]. Moreover, the role of the keratinocyte and UVB exposure is a critical
factor in the development of this disease [16].
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This review consists of an update of the components associated with developing SLE
and CLE, focusing on the latter. In addition, we review the most recent experimental
treatments being evaluated to control the pathology caused by CLE in murine models and
clinical tests.

2. Factors Triggering the Development of SLE

SLE development is multifactorial and is related to ethnicity, as well as genetic, envi-
ronmental, hormonal, and immunological factors [17]. Among the genetic factors associated
with SLE development, more than 40 polymorphisms have been found, which may affect
the interferon (IFN) and IL-10 secretion pathway [18]. On the other hand, some environ-
mental factors associated with SLE are cigarette smoking and mercury exposure, among
others [19]. At the immunological level, it has been reported that dysregulation of the
innate and adaptive immune system contributes to the generation of SLE [20]. The secretion
of type I IFN (IFN-α) has been identified to be associated with SLE development, with
elevated levels of this cytokine being found in patients with SLE [21]. IFN-α promotes
a pro-inflammatory environment that activates dendritic cells (DC), natural killer (NK),
macrophages, Lymphocytes T (LT), and Lymphocytes B (LB), producing a dysregulation of
the immune system tolerance [22,23].

On the other hand, IL-6 is a cytokine secreted by macrophages, LT, and fibroblasts.
IL-6 has been linked to the development of SLE, as it promotes the maturation of BLs to
plasma cells and may affect LT activity [24]. In addition, increased IL-6 has been reported
in serum samples from patients with SLE [25]. As the activation of LTs and LBs depends on
some co-stimulatory signals and cytokines, changes in the control and regulation of the
immune system are important to study in the context of SLE in order to identify the role of
the different cells and cytokines involved in this process.

Notably, it has been described that several cells of the immune system (DCs, macrophages,
and neutrophils, among others) are affected during SLE, altering their canonical functions
that may impact the activation and function of LTs and LBs [26]. Alteration in the regulation
of LTs may promote a polarization towards an immune profile that triggers SLE. In addition,
the LBs mature towards plasma cells that secrete antibodies that attack the organism or
generate immune complexes that function as signals for other immune system cells to
attack our body [27,28].

3. SLE Can Induce Cutaneous Lesions in Patients

One of the main aspects of SLE development is the appearance of cutaneous lesions
in about 80% of the patients diagnosed with this disease [29]. The apparition of the
cutaneous lupus erythematosus (CLE) has been associated with a condition triggered by
SLE [30] considered the first symptom of SLE in more than 25% of the population with this
condition [31]. This disease is diagnosticated in 70 cases per 100,000 people [30]. CLE can
be divided into three different categories lupus-dependent: acute cutaneous LE (ACLE);
subacute cutaneous lupus (SCLE), and chronic cutaneous LE (CCLE) [30,32].

Some of the genetic factors that have been described to promote skin damage in SLE
patients [33,34] include rs1143679 single nucleotide polymorphism (SNP) of itgam, which is
one of the most studied genetic factors that triggers malar rash (ACLE) and discoid lupus
DLE [35,36]. Moreover, an association between ITGAM and photosensitivity has been
reported [37]. Other studies have shown that rs1801274 SNP of the fcgr2a gene is associated
with rash malar [38], while rs11168268 SNP of the vdr gene is associated with cutaneous
alterations in patients with SLE [39]. In particular, genetic factors involved in CLE are
related to HLA class II alleles [40]. Along these lines, the variant DQA1*0102 showed an
increase that promotes CCLE. Moreover, in SCLE and DLE patients, the frequency of HLA
A*01, B*08, and DRB1*0301 alleles have been suggested as candidates associated with this
pathology [41].

On the other hand, some inflammatory cytokines, such as TNF-α, IL-18, and type I
IFN, are upregulated upon UV exposure [42–44]. In samples obtained from the epidermis
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and dermis samples of CLE patients, an increase in genes regulated by IFN were found.
Moreover, type I IFNs promote the infiltration of T helper 1 (Th1) cells, which enhances
pathology [45].

3.1. Acute Cutaneous Lupus Erythematosus (ACLE)

This condition is a dermal condition typically identified by the apparition of a butterfly
rush design. It is frequently associated with UV exposition [31]. During the development of
the ACLE, the occurrence of discrete or small erythematous macules, papules, and plaques
visible on the face can be observed. However, other close regions such as the scalp, neck,
and earlobes may be affected, showing signs of erosions, crusting, and scaling, which can
confuse with other dermal conditions such as dermatomyositis [31,46,47]. ACLE patients
exhibit a high association with systemic disease (up to 90%) [48], whereas up to 52% of
SLE patients display ACLE [49]. In addition, a high proportion of ACLE patients (85–95%)
are positive for antinuclear antibodies and display other autoantibodies against dsDNA
(30–40%) and Sm, as well as local granular skin deposits of IgM, IgG, and IgA [50,51].
Therefore, this form of lupus is highly associated with systemic autoimmune disease
clinical signs.

Still very little is known about the specific molecular pathways associated with ACLE.
A recent study indicates that patients can be distinguished from other types of CLE as
they exhibit reduced numbers of CD4+ tissue-resident memory T cells. In contrast, these
cells are more frequently observed in subacute and chronic cutaneous lupus, promoting
persistent damage [52]. Thus, ACLE pathogenesis seems to be independent of abnormal
T-cell function. As mentioned above, B cells and autoantibodies seem to be associated with
the pathogenesis of this type of lupus, and therapies targeting B cells appear to be effective
for its treatment. The use of a monoclonal antibody against CD20, Rituximab, which leads
to B cell depletion, was more effective in patients with ACLE compared to other types of
cutaneous lupus and reached a 43% effectiveness (6 out of 14 patients). In contrast, different
types of cutaneous lupus patients showed a poor response to the treatment, suggesting
B-cell-independent mechanisms in the pathogenesis of the disease [53].

3.2. Subacute Cutaneous Lupus Erythematosus (SCLE)

This condition is commonly found in the V area of the neck, upper trunk, shoulders,
and arms. Since the main lesion is observed, the apparition of erythematous macules
or papules is the most observed. These lesions can be evolved into papulosquamous
psoriasiform lesions or annular patches in almost half of the cases [31]. Association with
SLE occurs in a lower frequency (20–30% of cases) than ACLE [54], suggesting different
disease pathogenesis.

Genetic factors such as HLA-DR3 and HLA-DR2 have been associated with a higher
production of anti-Ro antibodies, which are characteristics of this condition and are as-
sociated with UV exposure [55]. In this line, hormonal changes in estrogen have been
reported to contribute to the induction of high titers of anti-Ro and anti-La antibodies and
photosensitivity [56,57]. This phenomenon is explained because estrogen can enhance IgG
production, especially anti-dsDNA autoantibodies, promoted by the activity of B cells and
the production of IL-10 from monocytes [57].

3.3. Chronic Cutaneous Lupus Erythematosus (CCLE)

This pathology can be represented in different degrees of severity, which distinguishes
five different categories: discoid LE (DLE), LE profundus/panniculitis (LEP), LEtumidus
(LET), verrucous/hypertrophic LE, and chilblain LE (CHLE) [58]. It represents the most
frequent manifestation of CLE, affecting the ears, the face, the scalp, and/or the neck.
In less than 20% of the cases, an expansion of the lesions is observed, which is located
mainly below the neck. Interestingly, these clinical manifestations can be increased in
smokers with a complement deficiency who can spread these lesions towards the back of
the hands [59]. In contrast to ACLE and SCLE, CCLE is characterized by the apparition
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and growth of a variable-sized erythematous plaque associated with an adherent follicular
hyperkeratosis. The erythema with follicular hyperkeratosis is the first visible lesion, and
then it progresses to atrophy, pigmentary changes, and scarring. These changes reported
in CCLE are persistent and induce sequelae. Moreover, depending on the severity of the
clinical manifestation of CCLE, patients can develop scarring alopecia on the scalp [50].
In a DLE, the cytotoxic lymphocytes can destroy stem cells of the hair follicle and cause
scarring in the skin lesions [57]. Compared to other types of SLE, only 8% of CCLE patients
develop systemic disease [60] whereas only 5% of DLE exhibit SLE [61]. Genetic factors
can be related to susceptibility to developing DLE and SLE. It is reported that HLA-B8 is
expressed in DLE patients. Interestingly, an increase in the expression of HLA-B8 has been
correlated as a predictive marker of the progress from DLE to SLE [57,62].

On the other hand, transcriptional analysis of lesioned biopsies from a cohort with
different types of CLE shows that patients with DLE exhibit a distinctive immunoglobulin
signature and enrichment of B-cell-associated pathways in the skin compared to ACLE
and SCLE patients. In addition, DLE patients exhibit more skin B cells than other types
of CLE. Still, this increase does not correlate with the augmented presence of peripheral
autoantibodies and SLE, suggesting that B cells play tissue-specific roles in developing
DLE [63]. Another study indicates that CLE patients with and without systemic disease
exhibit abnormal peripheral B-cell responses, characterized by unswitched memory and
increased effector responses. However, these responses were higher in patients with
systemic disease [64].

A study in patients with SCLE and DLE and healthy patients explored a possible role
of microRNA (miR) during the development of the pathology. Consistent with this notion,
changes in the expression levels of a wide variety of miRs expressed in lower concentrations
in subjects with SCLE or DLE compared to healthy controls have been described. However,
miR-21, miR-1246, and miR-150 were identified as being involved in an increase in some
cell phenotypes described as CD4+/IL-4+ and CD20+/IL-10+, CD4+/IFN-γ cells+, and
CD123+/CD196+/IDO+ [65].

The presence of miR has been identified in injured areas of volunteers with CLE.
When miR-31 is overexpressed, it is associated with epidermal apoptosis mediated by
positive regulation of bim, bax, p53, and casp3 genes [66,67]. In addition, miR-31 promotes
an increase in NF-κB activation in keratinocytes, triggering the overexpression of pro-
inflammatory cytokines such as IL-1β, IL-12, and IL-8. Additionally, miR-31 has been
associated with an increase in the recruitment of innate cells (neutrophils and monocytes),
which promotes the secretion of cytokines capable of favoring the recruitment of other
immune cells at the site of inflammation [66,67].

On the other hand, miR-485-3p has been identified mainly in lymphocytes and fibrob-
lasts recruited in the injured areas. The role of miR-485-3p promotes the activation of CD4+

and CD8+ lymphocytes. In addition, miR-485-3p has been related to a protective response
against the development of fibrosis through peroxisome PPARGC1A [66,67]. Therefore,
miR has been mainly associated with pro-inflammatory effects in CLE pathogenesis [66,67].

4. Immunological Involvement in the Development of CLE

One of the most typical immunological factors associated with CLE induction is the
development of antinuclear antibodies (ANAs). However, many CLE patients also develop
anti-Ro/SSA (anti-Sjogren’s syndrome-related antigen A) [10]. The Ro antibodies are
associated with two different ribonucleoproteins isotypes, TRIM21 (52 KDa) and TROVE2
(60 KDa) [68], where the latter is the most frequently found in CLE patients [11]. However,
almost three other antigens can be recognized by the immune system in CLE patients,
triggering the induction of autoantibodies. These molecules are known as smith (sm)
antigen [12], C1q [13], and HMGB1 [14]. UV stimulation can affect these autoantigens,
promoting the translocation towards the keratinocyte surface, facilitating the recognition
of these antigens by the immune system [15]. Although these secreted autoantibodies
can induce CLE in patients, their presence can modulate the different CLE in the patients.
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In this line, CCLE is characterized as not presenting extractable nuclear antigens (ENA),
anti-dsDNA, or anti-Ro/SSA. At the same time, SCLE promotes the induction of anti-
smith, anti-Ro/SSA, anti-RNP, and ENA autoantibodies. Finally, ACLE patients showed an
increase in the anti-dsDNA and ANA autoantibodies as in SLE patients, where females are
frequently affected (Figure 1) [69].
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Figure 1. The immune cells are involved in the induction of CLE. The figure shows the main
immunological mechanisms associated with the induction of ACLE (left panel), SCLE (middle panel),
and CCLE (right panel) in the presence of a stimulus with UVB light. The arrows pointing up
symbolize an increase, while the arrow pointing down represents a decrease.

On the other hand, the immune cells are essential to induce damage and collaborate with
CLE development. Once keratinocytes are affected by UVB radiation or drugs, this promotes
the activation of immune cells, which triggers a pathogenesis effect in the skin. Moreover,
keratinocytes can modulate the activation of absent in melanoma 2 (AIM2) inflammasome
through MDA5, RIG-I, c-GAS, and STING, but not TLR-independent nucleic acid ligands [48].

Langerhans cells (LC) are important antigen-presenting cells that reside in the epider-
mis and display dendritic-cell-like functions. In a murine model, during the stimulation of
keratinocytes with UVB radiation, LC upregulated ADAM17, which increases the avail-
ability of the active form of epidermal growth factor receptor (EGFR) ligands to avoid
damage to the keratinocytes (Figure 1) [70]. Interestingly, in an SLE murine model, the
activation of the EGFR pathway was affected by an impaired role of the LC, triggering
an increase in the cutaneous lesion of these mice [71]. These results are supported by a
recent study of CLE patients, which showed that microarray assays in biopsies from CLE
patients decreased EGFR signaling pathways [72]. Another DC subtype involved in CLE is
plasmacytoid DCs (pDCs), which are not typically found in the skin [73]. pDCs are essential
to initiate the pro-inflammatory pathogenesis induced by skin infections and autoimmune
diseases [74]. These cells are mainly found in DLE patients, promoting upregulation of
IFN-α [75]. It has been reported that pDCs are more so recruited in the presence of UVB,
considered an essential source of type I IFN to develop skin lesions [76,77]. Additionally,
the interaction between the HSP70 receptor Lox-1 presented in pDCs with HSP70 expressed
in keratinocytes promotes an increase in the uptake of exogenous DNA, which promotes
an increase in the type I IFN secretion by pDCs [78] (Figure 1). This effect is observed
in CLE and vitiligo patients [78]. On the other hand, CD16+ DCs have been reported in
SLE, triggering a robust interferon response in the skin, which could be related to CLE
pathogenesis [79].
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Interestingly, it has been described that IFN-κ is fundamental in the development
of CLE since it can enhance the type I IFN response, which is critical for promoting the
pathology [80]. In addition, these molecules show an enhanced response to photosensitivity
in keratinocytes against exposure to UV light [80]. As expected, the increased response to
type I IFN induced against skin lesions promotes a CD4+ polarization profile towards a
Th1 response. The importance of the IFN type I response and the polarization profile was
evaluated in biopsies from patients with CLE, identifying an increase in the IP10/CXCL10
and CXCR3 characteristic of the Th1 response and the MxA protein, which is induced by
type I IFN response [45].

The use of knockout mice for immune inhibitory receptor VISTA or programmed death-
1 homolog (PD-1H KO) on a BALB/c background showed a spontaneous development of
cutaneous and systemic autoimmune lupus. Notably, in CLE, lesions of PD-1H KO mice
were characterized by a cluster of pDCs similar to human DLE. Moreover, in this model,
it was possible to define that neutrophils are critical for early immune infiltrating cells in
CLE, suggesting that PD-1H constitutes an essential element involved in the pathogenesis
and progression of SLE and CLE [81].

Another immune cell involved in CLE development is the T cell, and its different
phenotypes have been evaluated in CLE patients. In SCLE patients, a significant decrease
in CD4 T cells and CD4/CD8 ratio (Figure 1) was found in comparison to DLE and
erythematosus lupus tumidus (LET). Further, a low number of FOXP3+ and CD39+ T
helper cells were found in SCLE and LET concerning DLE patients, suggesting that Tregs
cells are mainly affected in the more photosensitive CLE phenotypes [82].

On the other hand, the role of different cytokines was evaluated in serum from SLE and
CLE patients. This study detected an increase in the IL-6 cytokine in DLE and SLE patients
compared to the control group [83]. This effect was similar for IL-23, which increased in
DLE and SLE patients compared to the control group. Interestingly, the IL-17/IL-10 ratio
was also evaluated, showing that DLE and SLE presented an increase in this ratio compared
to the control group. These results suggest that CLE and SLE induce a Th17 profile over the
Treg profile (Figure 1). In this line, the development of therapies against these cytokines
could be a target to decrease the pathology associated with this autoimmune disorder [83].

Another population of T cells involved in CLE is the CD4+ tissue-resident memory T
(CD4+ Trm). These cells were evaluated in lesions from ACLE, SCLE, and DLE patients [52].
In this study, it was identified that CD4+ Trm cells were raised in the lesion of both SCLE
and DLE concerning ACLE. Furthermore, the increase in CD4+ Trm cells was correlated
with persistence in the lesions of SCLE and DLE. Further, the authors found that AIM2
expression in CD4+ Trm cells can discriminate between the affected groups of SCLE and
DLE compared to ACLE patients [52].

Moreover, it has been reported that the NKG2D receptor is strongly expressed in DLE
and SCLE [84]. The detection of the NKG2D receptor, which is commonly found on NK
cells and some T-cell populations [85,86] was related to an increase in the lymphocytic
infiltrate in DLE and SCLE [84]. These cells are recruited in skin lesions caused by stressed
keratinocytes, which overexpressed the MICB ligand, which is recognized by the NKG2D
receptor promoting skin damage [84].

The mast cells (MCs) are another type of immune cell that contribute to different lupus
erythematosus diagnostics associated with metalloproteinase production and contribute
to immune cell migration and tissue damage [87]. In this line, MCs are divided into three
different subsets: the chymase and tryptase (MCTC); tryptase-positive (MCT), which only
contain tryptase; and the only chymase-positive mast cells (MCC) [88–90]. In particular,
the MCTC are predominant in the skin [91]. A study comparing MCs’ infiltration into skin
biopsies from SLE, DLE, and SCLE found the highest infiltration of both chymase-positive
and tryptase-positive mast cells in SCLE and DLE patients. In contrast, a minor infiltration
was found in SLE patients [92].

B cells were evaluated using a humanized murine model. Here, the age-associated B
cell (ABC, T-bet+ CD11b+) group in response to IL-21 and TLR7/9 signals promotes the
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recruitment of autoreactive B cells, which produces IgG2a, IgG2b, and IgG3 antibodies,
which exacerbate inflammation and thus drive lupus-like autoimmunity [93] (Figure 1).
Another study showed that CCLE+/SLE− patients share B-cell abnormalities with SLE pa-
tients, including increased effector B cells and decreased unswitched memory. Additionally,
SLE and CCLE+/SLE− patients presented elevated 9G4+ IgG autoantibodies accompanied
by lower levels of anti-nucleic acid and anti-RBP antibodies [64].

To understand the role of B cells in CLE patients, a study evaluated the differences in the
expression profiles of these cells in DLE and SCLE patients using an autoimmune profiling
panel (NanoString) [94]. DLE patients showed an upregulated expression of CD19, CD20, and
CD79a. Moreover, an increase in protein production was found in immunoglobulins, B-cell-
activating factor (BAFF) receptors, and members of the Fc-receptor-like (FCRL) family [94].

Bioinformatic analyses from DLE and healthy control groups were evaluated to un-
derstand the role of different immune system components in DLE patients [95]. Immune
filtration analyses using the CIBERSORT database showed that DLE samples had a signifi-
cant increase in the number of CD8+ T cells, memory-activated CD4 T cells, γδ T cells, and
M1 macrophages, but reduced numbers of regulatory T cells and M2 macrophages [95].
Moreover, lower resting DCs, mast cells, and activated mast cells were found compared to
samples from healthy patients [95].

5. Current Treatments against Cutaneous Lupus

The first recommended treatment for localized cutaneous lupus lesions is topical
corticosteroids for short-term and prolonged use in scalp lesions. A randomized controlled
trial conducted in patients with DLE treated with a potent corticosteroid cream composed
of fluoxinide 0.05% was efficacious in 27% of cases compared to a 10% efficacy using a
low-potency steroid, 1% hydrocortisone [96]. In addition, a pilot study in DLE patients
showed a 73% efficacy using betamethasone 17-valerate 0.1% (73%) for treating facial
lesions [97]. However, this latter treatment was not significantly different from the other
alternative treatment with the calcineurin inhibitor pimecrolimus 1%, exhibiting an 86%
efficacy in DLE patients. Furthermore, the topical use of tacrolimus 0.1% and 0.03 %, other
calcineurin inhibitors, has also shown to be highly effective in cutaneous lupus lesions [98]
and facial DLE lesions [99]. Thus, steroids and calcineurin inhibitors can be used to treat
localized cutaneous lupus lesions, especially in DLE patients.

On the other hand, CLE patients are currently treated with antimalarials such as
hydroxychloroquine (HCQ) and quinacrine as the first line of treatment and have been
used for decades in more than 70 countries. For example, a phase 3 trial in Japan reported
that using HCQ in active CLE patients was safe up to 55 weeks of treatment and improved
the clinical signs of disease at week 16 [100]. However, these drugs presented several
adverse effects and the potential risk of retinopathy [101], as well as with the presence of a
particular group of T cells expressing CD69+CCR7+ and STAT3 [102].

Another study compared the use of HCQ and quinacrine (QC) [103], observing that
HCQ responders increased CD4+ T cells compared to QC. Moreover, HCQ presented lower
central memory T cells than control groups, while QC responders showed higher T regs
compared control group. Furthermore, in the QC group, an increase in the phosphorylated
(p) STING and IFNκ was found with respect to HCQ, suggesting that CLE patients can
present differential immune compositions [103].

Other drugs tested in different CLE subtypes are immunomodulatory imide drugs
(IMID), including thalidomide and lenalidomide, which can modulate innate and adap-
tive immune responses reported in CLE, preventing in particular inflammatory cytokine
production and modulating Treg responses [104]. A meta-analysis of 21 studies among
548 patients showed a 90% response in different CLE subtypes, especially in patients with
DLE and SCLE, but the pooled rate of thalidomide withdrawal was 24% due to adverse
effects including neuropathy and thromboembolic events. These results suggest that the use
of thalidomide should be avoided due to a neurotoxicity effect in patients with severely re-
fractory CLE or who are at high risk for severe scarring [105]. A similar IMID, lenalidomide,
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has shown efficacy in cases of severe refractory CLE with low frequency of neuropathy,
which could represent an alternative to the use of thalidomide [106].

Several biological agents have been tested for treating CLE patients but with inconclu-
sive results. Belimumab, a monoclonal antibody against BAFF, has been tested in a phase 3
trial for SLE patients who showed improvement in their mucocutaneous lesions [107]. In
line with this, a small study with 16 CLE patients who were refractory to other treatments
showed some response to the therapy with belimumab, especially those with mild and per-
sistent lesions [108]. Although treatment with the depleting B-cell antibody rituximab has
shown efficacy in treating SLE cases, only patients exhibiting acute and active cutaneous
disease benefit from the treatment, whereas those with SCLE and CCLE have shown poor
improvement in their skin lesions [109]. In addition, SLE patients with renal involvement
are more likely to respond to rituximab treatment, whereas those with lower disease activity
scores are less likely to improve [110].

Moreover, treatment with ustekinumab, which inhibits the pro-inflammatory cytokines
IL-12 and IL-23, was shown to be effective in one patient with SCLE [111] whereas a phase
2 study showed that this treatment was safe in patients with active SLE and improved
mucocutaneous disease [112] remains to be elucidated whether this treatment is more
effective against certain types of cutaneous lupus. Finally, the use of BDCA2 antibody
(BIIB059) was evaluated in clinical trials showing a decrease in the type I IFN by pDCs
reducing the immune infiltrates in skin lesions [113].

Other biological molecules used for the treatment of SLE are inhibitors of the JAK/STAT
pathway, which can prevent the secretion of pro-inflammatory cytokines, such as IL-6,
IL-21, and type I IFN [114]. A molecule described as a selective and reversible inhibitor
of JAK1 and JAK2 pathway, baricitinib, was tested in a phase 2 trial in SLE patients, but
no difference in disease score was reported [115]. However, another clinical trial showed
that decreases the presence of anti-dsDNA in SLE patients [116], whereas case reports
have reported that is effective for the treatment of skin lesions in cases of SLE and SCLE
patients [117–119]. Therefore, the use of baricitinib may be a promising alternative for the
treatment of cutaneous lesions in SCLE patients but phase 2 and 3 clinical trials are required
to further investigate its efficacy (Figure 2).
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6. Conclusions

CLE is a disorder involving many factors similar to those described for SLE, which
reinforces the idea that these two autoimmune pathologies may be a predisposing factor for
the appearance of the other pathology. In addition, different immunological components
such as cells and cytokines have been identified in both the different types of CLE and SLE;
it is necessary to identify factors specific to each pathology. In this sense, directing the new
studies to pathology-specific analyses that allow discriminating specific roles of cells during
the progression of the disease is key to developing better treatments to reduce severe cases
of these diseases. Finally, the new therapies under evaluation suggest promising effects in
reducing CLE symptoms. In addition, these treatments could positively impact reducing
the inflammatory processes associated with different skin diseases, triggered not only by
CLE but also by SLE, psoriasis, or other pathologies of autoimmune origin.
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