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Abstract

Citrus canker is one of the main bacterial diseases that affect citrus crops and is caused by

Xanthomonas citri which affects all citrus species worldwide. New strategies to control citrus

canker are necessary and the use of bacteriophages as biocontrol agent could be an alter-

native. Phages that infect Xanthomonas species have been studied, such as XacN1, a myo-

virus that infects X. citri. Here we report the isolation and characterization of a new jumbo

phage, vb_XciM_LucasX, which infects X. citri and X. fuscans. Transmission electron

microscopy allowed classification of LucasX in the Myoviridae family, which was corrobo-

rated by its genomic sequencing, annotation, and proteome clustering. LucasX has a

305,651 bp-long dsDNA genome. ORF prediction and annotation revealed 157 genes

encoding putative structural proteins such as capsid and tail related proteins and phage

assembly associated proteins, however, for most of the structural proteins it was not possi-

ble assign specific functions. Its genome encodes several proteins related to DNA replica-

tion and nucleotide metabolism, five putative RNA polymerases, at least one homing

endonuclease mobile element, a terminase large subunit (TerL), an endolysin and many

proteins classified as beneficial to the host. Proteome clustering and phylogeny analyses

showed that LucasX is a new jumbo phage having as its closest neighbor the Xanthomonas

jumbo phage Xoo-sp14. LucasX presented a burst size of 40 PFU/infected cell of X. citri

306, was completely inactivated at temperatures above 50˚C, presented survival lower than

25% after 80 s of exposition to artificial UV light and had practically no tolerance to concen-

trations above 2.5 g/L NaCl or 40% ethanol. LucasX presented optimum pH at 7 and a

broad range of Xanthomonas hosts, infecting twenty-one of the twenty-three strains tested.

Finally, the LucasX yield was dependent on the host strain utilized, resulting one order of
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magnitude higher in X. fuscans C 752 than in X. citri 306, which points out to the possibility

of phage yield improvement, an usual challenge for biocontrol purposes.

1 Introduction

Citrus canker is one of the main bacterial diseases that affect citrus crops worldwide, along

with HLB (huanglongbing) and CVC (citrus variegated chlorosis) [1–3]. The disease includes

three main types known as A, B and C, which differ in the symptoms aggressiveness and citrus

host range. Citrus canker A, caused by Xanthomonas citri subsp. citri (also known as X. citri
pv. citri A), is the most aggressive form of the disease, affects all citrus species and is found

worldwide. Citrus canker B is a milder disease caused by X. fuscans subsp. aurantifolii B and

citrus canker C is caused by X. fuscans subsp. aurantifolii C, which has a single citrus host. X.

fuscans B and C were previously classified as X. citri pv. aurantifolii B and C, respectively, and

are only found in South America [4]. Citrus trees affected with the disease display characteris-

tic lesions in leaves, fruit and stems, and show a premature loss of diseased leaves and fruit,

which decreases citrus productivity [3, 5].

Xanthomonas citri is a Gram-negative bacterium belonging to a genus that includes other

plant pathogens such as X. oryzae, X. campestris and X. vesicatoria [6]. X. citri is a rod-shaped

bacillus with polar flagella which can be disseminated by the air and the rain and infect suscep-

tible plants through the stomata and wounds on the plant surface [7]. Once inside the host, it

can produce the exopolysaccharide xanthan and form a biofilm, which contributes to pathoge-

nicity [8].

The control of citrus canker may be performed using two opposing strategies: i) exclusion

of the pathogen, which is based on quarantine measures and the eradication of contaminated

and suspect trees, or ii) management of the disease in endemic areas by spraying copper-based

bactericides, planting arboreal windbreakers, controlling the citrus leaf miner, and using resis-

tant or less susceptible cultivars. Despite its efficiency on the control of citrus canker, the exces-

sive or misuse of copper may affect the environment and the growth of the citrus root system,

leading to the impairment of nutrient uptake and underdevelopment of the tree canopy [9,

10]. Thus, new strategies to control citrus canker are necessary and the use of bacteriophages

could be a promising alternative [11]. Phages have been studied as a biocontrol agent for bacte-

rial diseases in many plant species, such as potato, tomato, lettuce, leek and grapes [12–18].

Indeed, phage-based products are now commercially available for the control of pathogenic

bacteria affecting crops, livestock and food [19].

Phages that infect Xanthomonas species have been isolated and characterized, such as

XacN1, a myovirus that infects X. citri [20] and whose head structure was elucidated by cryo-

electron microscopy [21]. With a 390-kbp genome, XacN1 is characterized as a jumbo phage,

a designation attributed to those phages with genomes larger than 200 kbp [22]. Phages Cp1

and Cp2 have been traditionally used for the typing of X. citri strains and their genomic and

molecular characterization allowed their assignment to different viral groups [23]. Temperate

phages such as XacF1, Cf2 and Xf109 (a X. oryzae phage) have also been described [24–26]. As

of September/2021, however, the NCBI virus genome database (https://www.ncbi.nlm.nih.

gov/genomes/GenomesGroup.cgi) includes only 29 Xanthomonas phage genomes and several

of them were isolated in species other than X. citri, such as Xf109.

The identification and characterization of new X. citri-infecting phages could foster their

use for biocontrol of citrus canker, as well as increase our understanding of phage diversity
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and dynamics. In this paper, we report the isolation of LucasX, a new jumbo phage that infects

a broad range of X. citri strains and X. fuscans, and present its structural and functional

features.

2 Materials and methods

2.1 Bacterial strains and growth conditions

X. citri and X. fuscans strains used in this study are listed in Table 1. Throughout this paper,

strains belonging to pathotypes A, B, and C are indicated as Xac, XauB and XauC, respectively.

The strain used for phage isolation was Xac 306, the first X. citri strain to be sequenced [27].

Bacterial stocks were kept in 20% glycerol at -80˚C. For all experiments, stocks were streaked

on Nutrient Agar (NA) medium (Difco NA, BD) and incubated at 30˚C for 24–48 h. Single

bacterial colonies were grown in Nutrient Broth (NB) medium (Difco NB, BD) at 30˚C with

shaking at 250 rpm for 24h.

2.2 Phage isolation and propagation

Phages were isolated from a soil sample collected at a citrus grove affected by citrus canker

in Matão, São Paulo, Brazil, according to the procedure described by Yoshikawa et al.

(2018) [20], with modifications. Six grams of this sample (corresponding to a soil volume

of approximately 5 mL) were mixed with NB medium to a final volume of 15 mL and

100 μL of an overnight culture of Xac 306 in a 50-mL tube. The suspension was incubated

overnight at 30˚C with shaking at 250 rpm and centrifuged at 7,000 g for 15 min. The

Table 1. Susceptibility of X. citri and X. fuscans strains to vB_XciM_LucasX.

Species Strain Accession number (NCBI) Susceptibility

Xac Xac 306/12 AE008923.1 (chromosome), AE008925.1 (pXAC64), AE008924.1 (pXAC33) Yes

Xac IBSBF 1421/75 - Yes

Xac FDC 1301/636 LAUQ00000000.1 (contigs) Yes

Xac FDC 1298 - Yes

Xac FDC 18 - Yes

Xac FDC 22 - Yes

Xac FDC 38 - Yes

Xac FDC 58 - Yes

Xac FDC 118 - Yes

Xac FDC 121 - Yes

Xac FDC 601 - Yes

Xac FDC 604 - Yes

Xac FDC 612 - Yes

Xac FDC 624 - Yes

XauB XauB 11122/1631 ACPX00000000.1 (contigs) Yes

XauB IBSBF 1583/1565 - No

XauB 1566 CP012002.1 (chromosome), CP012003.1 (pXfb35) No

XauC XauC IBSBF 338/1632 ACPY00000000.1 (contigs) Yes

XauC FDC 763 LAUI00000000.1 (contigs) Yes

XauC FDC 828 LAUP00000000.1 (contigs) Yes

XauC FDC 725 - Yes

XauC FDC 535 LAUH00000000.1 (contigs) Yes

XauC FDC 752 - Yes

https://doi.org/10.1371/journal.pone.0266891.t001
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supernatant was filtered through a 0.22-μm-pore membrane attached to a syringe and

100 μL of the filtered solution were mixed with 200 μL of an overnight culture of Xac 306

in 3 mL of semi-solid NA medium (NB medium with 0.4% agar) before plating onto NA

medium. After incubation at 30˚C overnight, one of the lysis plaques observed was picked

up using a Pasteur pipette and diluted in 100 μL of NB medium. The plating procedure

was repeated twice to ensure the isolation of a purified sample of the phage (109 PFU/mL

in NB medium), which was stored at 4˚C.

2.3 Transmission electron microscopy (TEM)

An ultrathin carbon film supported by lacey carbon on a copper grid (PELCO) was negatively

charged in an easyGlowTM Glow Discharge Cleaning System (PELCO). A volume of 3 μL of

the phage sample (109 PFU/mL) was deposited on the grid, followed by 3 μL of water and 3 μL

of 2% uranyl acetate. Excess liquid was removed with filter paper. The grid was analyzed in a

JEM-2100 (JEOL) at 200 kV.

2.4 Genome sequencing, assembly and annotation

DNA was extracted from 2 mL of the phage sample (109 PFU/mL) by a modified phenol-chlo-

roform method. To remove the exopolysaccharide produced by Xac 306, the phage sample was

mixed with the same volume of chloroform and 0.7 M NaCl. After centrifugation, the aqueous

phase was extracted twice with an equal volume of phenol-chloroform (1:1, v:v) and once with

an equal volume of chloroform. The DNA was precipitated with 0.6 volume of isopropanol

and 0.1 volume of 3M sodium acetate, washed with 70% ethanol and dissolved in 200 μL of

water. This procedure yielded a concentration of ~80 ng/uL and a 260 nm/280 nm absorbance

ratio of 1.8 as determined in a NanoVue spectrophotometer (GE).

For whole-genome sequencing, the phage DNA was quantified with the Quant-iT Pico-

green dsDNA assay kit (Life Technologies, USA). The shotgun genomic library was prepared

using an Illumina Nextera DNA library preparation kit (Illumina, Inc., USA) with 40 ng of

DNA. The resulting DNA fragment library was cleaned up with Agencourt AMPure XP beads

(Beckman Coulter, Inc., USA). The average fragment size was 665 bp, as determined in a 2100

Bioanalyzer. Quantification of Illumina sequencing library with KAPA Library Quantification

Kit, normalization, and sequencing was performed following standard protocols for sequenc-

ing in the Illumina MiSeq platform. The library was subjected to one run using the MiSeq

Reagent kit v2 (500-cycle format, paired-end reads). On average, Illumina reads from each end

of the fragments (R1 and R2) had, respectively, more than 80% and more than 60% of bases

with a Phred quality score of at least 30.

Reads quality was visually inspected with FastQC [28]. Since the quality of the R1 reads was

higher than that of the R2 reads, only the former was used for genome assembly (~ 2 million

reads). Reads were trimmed with Trimmomatic [29] with the following parameters: ILLUMI-

NACLIP:Trimmomatic-0.38/adapters/NexteraPE-PE.fa:2:30:10, LEADING:30, TRAILING:30,

SLIDINGWINDOW:4:30, and MINLEN:220. Approximately 920,000 reads (45%) remained

after trimming. Contaminant reads, i.e., reads that mapped to Xac 306 genomic or plasmid

DNA, were removed with bbduk [30], after which approximately 610,000 reads remained

(66%). The genome was then assembled using SPAdes [31]. Finally, the reads were mapped

back to the assembled contig using Bowtie2 [32].

The phage genome was initially annotated using the RASTtk pipeline [33] and submitted to

the NCBI database (accession number MW825358.1). Phage genome ORF prediction was also

performed with PHANOTATE [34], followed by sequences similarity searches using the

HMMER3 [35] for profile HMM sequence search against the Viral Orthologs Groups (VOGs;
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https://vogdb.org/) database (downloaded on August 14, 2021). The tool DeepCapTail [36]

was used to predict viral structural proteins (capsid and tail). A linear map of the annotated

phage was generated using the DNAFeaturesViewer (https://github.com/Edinburgh-Genome-

Foundry/DnaFeaturesViewer) Python library.

2.5 Phage genome comparisons and proteome-based clustering

Two phage genome datasets were used for ANI (ANIb and ANI TETRA) analysis using the

PyANI tool (https://github.com/widdowquinn/pyani). One dataset consists of all Xanthomo-
nas phages RefSeq entries present in the NCBI virus database, and the other one consists of all

RefSeq jumbo phages present in both the NCBI virus and the Millard Lab phage databases

(http://millardlab.org/bioinformatics/bacteriophage-genomes/phage-genomes-jul2021/). For

the proteome clustering analysis the annotated phage genome was analyzed using the vCon-

tact2 tool [37] with the complete Millard Lab phage RefSeq database (http://millardlab.org/

bioinformatics/bacteriophage-genomes/phage-genomes-jul2021/) consisting of 15,313 phage

genomes. Then, the data from the closest related phages were recovered and a new analysis

using only them was performed. The resulting protein clusters were evaluated for presence

and absence pattern for each grouped phage to generate a heatmap and hierarchical clustering

analysis. A core of protein clusters was retrieved, each protein sequence from each phage was

aligned, concatenated and the result was used to calculate a maximum likelihood phylogenetic

tree using the FastTree [38] with wag model and gamma optimization with 1000 bootstraps.

The resulting tree was visualized using the FigTree (https://github.com/rambaut/figtree/

releases/tag/v1.4.4) program.

2.6 One-step growth curve and phage stability

For the one-step growth curve, cells from 5 mL of an overnight culture of Xac 306 were col-

lected by centrifugation, suspended in 500 μL of NB medium and mixed with 100 μL of a

phage sample containing 105 PFU/mL. The starting MOI was 4 x 10−6. The mixture was incu-

bated at 30˚C for 5 min at 250 rpm to allow the phages to attach to the cells and centrifuged to

remove free phages. After the pellet was suspended in 10 mL of NB medium and culture was

incubated at 30˚C, 100-μL aliquots were taken every 30 min, mixed with 100 μL of Xac 306

from another overnight culture, and plated as described in item 2.2. Since a preliminary assay

indicated that cell lysis should occur after 2.5 h, the time between samplings was reduced to 15

min after 2 h of incubation and aliquots were diluted 20 times before the addition of the Xac

cells and plating. The experiment was performed in triplicate.

For thermal stability determination, phage samples were incubated in a thermal cycler at

temperatures ranging from 30˚C to 55˚C for 30 min and plated as described above. To deter-

mine the phage tolerance to NaCl, phage samples were plated with NaCl added to both solid

and semi-solid agar media at concentrations ranging from 0 to 5 g/L. To determine the phage

tolerance to UV light, about 135 μL of a phage sample were carefully pipetted onto empty Petri

dishes and exposed to UV light of a germicidal lamp in a biosafety cabinet (Aistream Class II

Type A2 BSC, Esco). The Petri dishes were placed at 60 cm from the lamp, which has an emis-

sion peak at 253.7 nm and the samples were plated as described above after being exposed

from 0 min to 2 min 40 sec. For pH stability determination, phage samples were incubated for

30 min in pH values ranging from 3 to 11, diluted and plated as described above. For ethanol

tolerance determination, phage samples were incubated for 30 min in ethanol concentrations

ranging from 0% to 80%, diluted and plated as described above. All experiments were per-

formed in triplicate.
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2.7 Host range analysis

The phage host range was determined using the plating method described above and a spot

test. Diluted phage samples were plated as described in item 2.2 using Xac 306 and other

twenty-two Xanthomonas strains belonging to the pathotypes A, B and C (Xac, XauB and

XauC) as hosts (Table 1). For the spot test, 2 μL of a phage sample containing 109 PFU/mL

were deposited on top of a bacterial streak of those same strains on NA medium. The forma-

tion of a clear zone would indicate a susceptible strain. For both experiments, the plates were

incubated overnight at 30˚C.

2.8 Phage yield in different strains

Since strains Xac 636 and XauC 752 produced larger lysis plaques when used as hosts for plat-

ing, their phage yields in liquid medium were compared to the yield of the Xac 306 strain, used

for the phage isolation. For each strain, an overnight bacterial culture in NB medium was

diluted to an optical density at 600 nm of 1.0. A volume of 50 μL of this bacterial sample was

mixed with approximately 103 PFU of the phage in 5 mL of NB medium in 50-ml tubes, which

were incubated at 30˚C and 250 rpm for 24 h. After centrifugation and filtration, the superna-

tants were diluted and plated using Xac 306 as host for phage quantification. For each strain,

the experiment was performed in triplicate.

3 Results

3.1 Phage isolation and propagation

Using the procedures described above, we have isolated a phage from a soil sample harvested

from a grove affected by citrus canker. The phage was isolated and propagated using Xac 306

cells as host in NB medium. Purified phage presented small plaques (~0.7 mm) in 0.4% or

0.3% agar as the top medium. The phage yield was typically around 109 PFU/mL in Xac 306

whereas no phage propagation was detected in this same host cultivated in LB (lysogeny

broth).

3.2 Phage morphology

Phage micrographs obtained by TEM are shown in Fig 1. The phage has an apparently icosahe-

dral head and a contractile tail, with no visible tail fibers, and is approximately 325 nm long

when the tail is extended. Based on the presence of a contractile tail and its dsDNA genome, it

can be classified in the Myoviridae family.

3.3 Phage genomic features and annotation

The genome assembly, performed by SPAdes [31] with ~610,000 reads, produced a longer

contig of 305,778 bp, which had no similarity to the genome of the host strain Xac 306. This

contig was assumed to be the phage genome and had coverage of 237.7x. The assembly also

produced other four contigs shorter than 4,000 bp which mapped to Xac 306 genome. Bowtie2

analysis using all reads (~610,000) indicated that 99.9% of the reads mapped back to the longer

contig once, 0.1% did not map, and no reads mapped more than once. The contig had 127 bp

direct terminal repeats, indicating that the assembled phage genome was complete. To deter-

mine if the ends of the contig corresponded to the physical ends of the genome, we performed

a PCR using primers that hybridized near the contig ends and with their 3’ ends pointing out-

wards. Since the PCR was positive even in the absence of circularization procedures, we

hypothesized that the genome can circularize or indeed be either circular or circularly per-

muted with a length of 305,651 bp with the removal of one of the repeats. A linear map of the
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annotated phage is shown in Fig 2 and Table 2 shows some of the genomic features of the

phage. The GC content of the phage genome was 54.9%, whereas that of the Xac 306 chromo-

some is 64.8% (Da Silva et al. 2002). Of the 394 ORFs identified by the PHANOTATE tool and

searched by HMM, 181 ORFs could be assigned functions, 171 remained as hypothetical, and

42 were identified with no known function. The DeepCapTail analysis identified 157 putative

structural proteins, corresponding to about 40% of the ORFs. The HMM analysis identified 1

HNH endonuclease, 7 proteins classified as being beneficial for the host, 12 classified as having

virus replication function, and 1 structural protein with beneficial function for the host (S1

Table). Additionally, the hypothetical genes of LucasX were searched against all of the available

genes/ proteins of bacteriophages on NCBI virus (database downloaded on July 11, 2021)

using BlastP and BlastN. From the 171 CDS predicted to be hypothetical (S1 Table), 149 of

them remained as ‘no hit’ for e-values equal to or less than 10−5 (S2 Table), indicating that

these are novel viral genes since they are not present in other known phages.

As our results showed that the phage is a novel X. citri-infecting phage belonging to the

Myoviridae family (3.2. and 3.4 sections), it was named vB_XciM_LucasX, according to the

nomenclature scheme proposed by Kropinski, Prangishvili, and Lavigne (2009) [39].

Fig 1. Transmission electron micrograph (TEM) of vB_XciM_LucasX particles. A phage lysate (109 PFU/mL) in

NB were placed on a negatively-charged copper grid and stained with 2% uranyl acetate. The grid was analyzed in a

JEM-2100 (JEOL) at 200kV. Phage particles can be seen with their tail extended (A) and contracted (B), which is

typical of phages of the Myoviridae family.

https://doi.org/10.1371/journal.pone.0266891.g001

Fig 2. LucasX genome. The annotation was performed by HMM searches using the Viral Ortholog Groups (VOGs) database and the tool DeepCapTail. The

figure was produced using the Python library DNAFeaturesViewer.

https://doi.org/10.1371/journal.pone.0266891.g002
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3.4 Comparative genomic analysis and clustering

The ANIb analysis showed no nucleotide sequence similarity of LucasX with any of the

Xanthomonas or Jumbo phage genomes publicly available. Using the TETRA nucleotide analy-

sis (ANI TETRA) the higher observed similarity was 69% with the Xanthomonas phage Xoo-

sp14, a jumbo phage that infects Xanthomonas oryzae pv. oryzae [40]. Thus, the ANI analysis

confirmed the novelty of the LucasX phage genome.

The proteome clustering and network analysis performed with vContact2 [37] assigned

LucasX genome to a novel viral cluster (cluster VC_312_0), connected with other 58 phages

from various clusters indicating proteome similarity at family level (Fig 3). This result corrobo-

rates with the one obtained by electron microscopy analysis (Fig 1) that evidenced LucasX as a

member of the Myoviridae family (S3 Table).

Data from the 58 phages, determined as closest to LucasX by the network analysis, were

retrieved, including LucasX itself (totaling 59 phages), and a new proteome cluster analysis

was performed. The resulting presence and absence matrix showed a highly variable proteome

pattern for all analyzed phages (Fig 4). Nevertheless, only the phage Xoo-sp14 showed a closer

proteome pattern to LucasX. This analysis also revealed a core of 4 protein clusters in all 59

phages (PC_0000, PC_0001, PC_0002, PC_0003), whose respective annotations are shown in

S4 Table. Fig 5 shows the maximum likelihood tree calculated using the core protein clusters,

where the closest neighbor of LucasX is the Xanthomonas phage Xoo-sp14, as expected from

the previous analysis.

3.5 Phage growth and stability

The results of the growth and stability experiments are shown in Fig 6. LucasX presented a

latency period of approximately 90 min and a burst size of approximately 40 PFU/infected cell

when Xac 306 was used as host. It remained viable (>80%) up to 45˚C but was almost

completely inactivated at 50˚C for 30 min. LucasX presented a low tolerance to NaCl, with an

approximately linear reduction in viability from 100% to 0% in NaCl concentrations ranging

from 0 g/L to 2.5 g/L. Viability was reduced to approximately 20% at an apparently exponential

rate when LucasX was exposed to UV light for up to 2 min 40 s and to 60% and 70% when it

was incubated for 30 min at pH 5 and pH 9, respectively, being that the phage was completely

inactivated at pH 3 and 11. Finally, LucasX remained stable in ethanol concentrations up to

20% but was inactivated in 40% ethanol.

3.6 Host range

As shown in Table 1, LucasX can infect most of the Xanthomonas strains tested as found for

both spot test and plating method. All of the fourteen Xac strains and all of the six XauC strains

tested were susceptible to phage infection. Of the three XauB strains tested, only one was

Table 2. Genomic features of vB_XciM_LucasX.

Genome size 305,651 bp

Sequencing coverage 237.7x

GC content 54.92%

ORFs 394

With function assigned 181

Hypothetical 213

tRNA genes 5 (2 Leu, Thr, Ser, Gln)

Rho-independent terminators 47

https://doi.org/10.1371/journal.pone.0266891.t002
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susceptible (XauB 1631) and the other two were resistant (XauB 1565 and XauB 1566) to

phage infection. Except for strains Xac 636 and XauC 752 (which are further discussed in item

3.7), all susceptible strains produce plaques with the same size as those produced by Xac 306.

3.7 Phage yield in different strains

Plating of LucasX using strains Xac 306, Xac 636 and XauC 752 as hosts is shown in Fig 7. The

same volume from the same phage sample was used in the three plates. Plaques were visibly

larger in Xac 636 (~1.4 mm) and even larger in XauC 752 (~2.1 mm), suggesting that propaga-

tion in liquid medium should yield more phages per volume for the later strains. On average,

propagation in NB medium (in the conditions described in item 2.8) yielded 1.99 x 109 PFU/

mL with Xac 306, 2.64 x 109 PFU/mL with Xac 636, and 4.44 x 1010 PFU/mL with XauC 752

(Fig 7).

4 Discussion

We have isolated vb_XciM_LucasX, a new Myoviridae jumbo phage that infects X. citri and X.

fuscans strains, from a soil sample collected at a citrus grove affected with citrus canker in

Brazil.

At first, we attempted to isolate phages from soil collected at healthy groves. Although the

isolation of Xanthomonas phages from soil collected in healthy orchards has been reported

Fig 3. Network analysis based on proteome similarity made with vContact2 and visualized with Cytoscape (v3.8.2). LucasX annotated proteome was

assigned to a novel viral cluster (cluster VC_312_0). A total of fifty-eight phages from the Myoviridae family were found to be connected to LucasX, as shown

in detail, being that only one of them is not a Jumbo phage. LucasX phage is marked in red.

https://doi.org/10.1371/journal.pone.0266891.g003
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[41], our attempts with this kind of sample were not successful. We also tried to isolate phages

by mixing the soil samples with NB medium and filtering the samples before inoculating them

with Xac 306, but this approach was also unproductive. LucasX was finally isolated by mixing

the soil sample (from a citrus grove afflicted with citrus canker) with NB medium and inocu-

lating Xac 306 directly in the suspension, with no prior filtration, as described by Yoshikawa

et al. (2018) [20]. Additionally, the same procedure was unsuccessful when LB medium was

Fig 4. Heatmap analysis of the protein clustering for LucasX and the 58 closest phages performed by vContact2. The presence/absence matrix was

generated in python. The red color indicates presence while white represent absence of a protein cluster.

https://doi.org/10.1371/journal.pone.0266891.g004
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used instead of NB medium. Our results highlight the importance of using different strategies

when isolating phages, especially when exploring new sample sources. Besides, phages have

been isolated from unusual environments. Di Lallo et al. (2014) [42] isolated phage FPSA2,

whose bacterial host is the causal agent of kiwifruit bacterial canker, from a municipal sewage

sample. Clavijo-Coppens et al. (2021) [43] have reported that phages able to infect the plant

pathogens Xylella fastidiosa and Xanthomonas albilineans were isolated from surface and sew-

age waters, but not from infected plants.

After isolating LucasX in NB medium, we were unable to propagate it in LB medium. Since

LB has a higher NaCl concentration than NB medium, we studied the LucasX survival in NB-

agar with increasing NaCl concentrations. As expected, phage survival decreased as the NaCl

concentration was increased. At 5 g/L NaCl, which is the concentration of NaCl in LB

medium, phage growth was completely inhibited. These results highlight the importance of

exploring different growth media when isolating new phages, since their salt tolerance can

vary drastically from those already reported in the literature. Actually, phages have been

Fig 5. Tree calculated using the core of protein clusters of vB_XciM_LucasX and related phages. The proteome-

based comparison places vB_XciM_LucasX (in red) close to other phages of the Myoviridae family. The figure was

produced using the FastTree tool for maximum likelihood calculation and the FigTree visualization tool.

https://doi.org/10.1371/journal.pone.0266891.g005
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Fig 6. Growth and stability of vB_XciM_LucasX in Xac306. The phage had a latency period of approximately 90 min and a burst size

of approximately 40 phages per infected cell of Xac306 (A) and remained viable up to 45˚C (B). However, its viability decreased with

NaCl concentrations ranging from 0 to 2.5 g/L (C). Its viability also decreased when exposed to the UV light of a safety cabin for a few

seconds (D). The optimum pH is 7 and its viability decreased to 60–70% when incubated at pH 5 and 9; it was completely inactivated at

pH 3 and 11 (E). Finally, the phage remained stable in ethanol concentrations up to 20% but was inactivated in 40% ethanol (F). The

graphs were produced using the software GraphPad Prism and the bars indicate the standard deviation of three replicates.

https://doi.org/10.1371/journal.pone.0266891.g006
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reported to be typically diluted and stored in SM buffer (saline-magnesium buffer), which con-

tains 5.8 g/L NaCl [44, 45] and an NaCl concentration as high as 1 M (58.44 g/L) has been

used for the isolation of Klebsiella-infecting phages from coastal water sediments [46]. Korf

et al. (2020) [47] have reported that five of six phages under their investigation remained stable

for 6 weeks in PBS (phosphate-buffered saline), PBS with 0.1 g/L NaCl, and PBS with 5 g/L

NaCl, and even in LB, with no difference in viability among these four conditions.

LucasX has a 305,651 bp-long, dsDNA genome. The ORF prediction using PHANOTATE

resulted in a higher number of ORFs than that annotated by RASTtk. Analysis using blast

(blast 2.11.0) showed that the vast majority of ORFs identified by the RASTtk were annotated

by PHANOTATE and the new ORFs found are overlapping and/or small ORFs. Based on the

HMM and DeepCapTail results, the LucasX genome encodes many proteins related to DNA

transcription and replication, at least 1 homing endonuclease (LUCX_172) mobile element,

many proteins classified as beneficial to the host, as well as enzymes related to nucleotide

metabolism. It encodes five putative RNA polymerases (locus tags LUCX_9, LUCX_73,

LUCX_76, LUCX_94, LUCX_95) and an endolysin (LUCX_152). ORF LUCX_38 is predicted

to encode the terminase large subunit (TerL). Nucleotide metabolism-related proteins include

thymidine kinase (LUCX_147), thymidylate synthase (LUCX_157), deoxyuridine 5’-triphos-

phate nucleotidohydrolase (LUCX_248), ribonucleoside-diphosphate reductase 1 alpha and

beta subunits (LUCX_288 and LUCX_289), and dihydrofolate reductase (LUCX_323).

Another notable ORF is LUCX_291, which was annotated as a gene transfer agent protein.

Fig 7. Plaque morphology and phage yield in different Xanthomonas strains. Plaques formed by vB_XciM_LucasX

on semi-solid NB-agar plates are larger when strains Xac 636 and XauC 752 are used as hosts (A). The plates were

photographed after 48 h at 30˚C. When propagated in liquid medium, phage yield is slightly higher in Xac 636 and

about one order of magnitude higher in XauC 752 relative to Xac 306 (B). The graph was produced using the software

GraphPad Prism and the bars indicate the standard deviation of three replicates.

https://doi.org/10.1371/journal.pone.0266891.g007
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Gene transfer agents (GTA) are phage-like elements which can form capsids in which random

pieces of their genome of origin can be packaged and horizontally transferred [48]. An Inter-

Pro analysis with the protein encoded by this ORF indicates the presence of a glycoside hydro-

lase domain which is also present in the GTA protein found in the bacterium Rhodobacter
capsulatus, the first organism in which a GTA was identified [49]. Other GTA proteins were

not identified in LucasX and the evolutionary significance of this protein remains unknown.

The morphology of LucasX is typical of the Myoviridae family, with an apparently icosahe-

dral head of 125 nm and a contractile tail of approximately 200 nm. The tail sheath could be

observed both in extended and in contracted states. When contracted, the sheath is reduced to

approximately half of its extended length. No baseplate or spikes were visible by TEM. Most

authors employ highly purified phage particles for TEM, usually by PEG precipitation followed

by CsCl gradient purification [50, 51], but we were able to obtain sufficiently good micro-

graphs using phage from lysates that had only been filtered. In fact, although samples prepared

for TEM will not be biologically active and usually come from a pure sample, it has been pro-

posed that the manipulation of phage samples should be kept to a minimum to avoid changing

phage properties [52].

The genome of LucasX has around 157 genes encoding putative structural proteins such as

capsid and tail proteins and phage assembly-associated proteins, as depicted in the Fig 2. How-

ever, for most of the structural proteins it was not possible assign specific functions so they

were annotated as “virion structural protein”. The exceptions are LUCX_16 and LUCX_54,

which were annotated as putative chaperone and phage tubulin-like protein, respectively.

Many authors construct phylogenetic trees for phages using specific genes/proteins, such as

the major capsid protein, terminases or RNA polymerase [20, 50, 53]. Since LucasX does not

show a high degree of similarity to other phages, we decided to use the four protein clusters

that were identified as core in the protein cluster analysis. The tree generated by FastTree indi-

cates that LucasX is more closely related to the Xanthomonas phage Xoo-sp14 [40] when com-

pared to the other phages in the analysis. The group in which LucasX is found also includes

phages that infect Ralstonia (phages RSF1, RSL2, RP12 and RP31), Burkholderia (phage

FLC6), and Pseudomonas (phage pPa_SNUABM_DT01).

LucasX has a broad range of Xanthomonas hosts, infecting twenty-one of the twenty-three

strains tested. Phage XacN1, a X. citri-infecting jumbo phage, was tested against ten strains,

nine of which were susceptible to it [20]. LucasX infected all Xac and XauC strains and also

one of the three XauB strains tested. Xac causes the most severe form of citrus canker and is

the most widely spread pathotype, whereas XauB is found only in Argentina and is more

aggressive on lemon and less aggressive on sweet orange, tangerines and grapefruit [54]. Two

XauB strains, XauB 1565 and XauB 1566, were resistant to the infection by LucasX, but their

resistance mechanisms remain unknown. As for thermal tolerance, LucasX remained viable

up to 45˚C but its viability dropped sharply when temperature was increased to 50˚C. As for

pH stability, LucasX remains at least 60% viable in a pH range of 5 to 9, with a pH optimum of

7. Viability also decreased when the phage was exposed to the UV light of a biosafety cabinet

lamp for a few minutes. Although having a broad range of hosts may be advantageous, suscep-

tibility to high temperatures and UV light may be detrimental for biocontrol purposes [55].

Strategies to overcome these limitations have been proposed, such as including skim milk and

sucrose in the phage formulation or applying the phages in the evening to reduce exposure to

sunlight [56–58]. Nevertheless, LucasX resistance to UV light was assessed in an artificial envi-

ronment, with direct exposure to a UV lamp, so a lower UV sensibility can be expected in the

case of natural sunlight exposure in the field. We also demonstrated that LucasX can be inacti-

vated in 40% ethanol. Our results show that LucasX can be inactivated using ordinary labora-

tory equipment and chemicals, which may be a relevant biosafety aspect.
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After the serendipitous observation that LucasX produced larger plaques when it was plated

using strains Xac 636 and XauC 752 as hosts, we hypothesized that propagation in those strains

should give higher phage yields. While the yield is only slightly higher in Xac 636, in XauC 752

it is more than one order of magnitude higher in comparison with the strain used for phage

isolation. Although this result does not provide strong evidence of a direct relationship

between plaque size and yield in liquid-medium propagation, it does show that improvements

in phage yield can be obtained by carefully choosing the host strain. The mass production of

phages is perceived as one of the biggest challenges to the widespread use of phages as antibac-

terial agents [59, 60]. Different strategies for improving phage yield have been reported, such

as optimizing the starting MOI and bacterial inoculum [61] or using different bioreactor

arrangements [62, 63]. To the best of our knowledge, however, there is no report for the

improvement of phage yield by systematic screening for high-producing strains of the bacterial

host.
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