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A B S T R A C T   

Background and purpose: Disease recurrence and distant metastases (DM) are major concerns for oropharyngeal 
cancer (OPC) patients receiving definitive chemo-radiotherapy. Here, we investigated whether pre-treatment 
primary tumor positron emission tomography (PET) features could predict progression-free survival (PFS) or DM. 
Methods and materials: Primary tumors were delineated on pre-treatment PET scans for patients treated between 
2005 and 2018 using gradient-based segmentation. Radiomic image features were extracted, along with SUV 
metrics. Features with zero variance and strong correlation to tumor volume, stage, p16 status, age or smoking 
were excluded. A random forest model was used to identify features associated with PFS. Kaplan-Meier methods, 
Cox regression and logistic regression with receiver operating characteristics (ROC) and 5-fold cross-validated 
areas-under-the-curve (CV-AUCs) were used. 
Results: A total of 114 patients were included. With median follow-up 40 months (range: 3–138 months), 14 
patients had local recurrence, 21 had DM and 38 died. Two-year actuarial local control, distant control, PFS and 
overall survival was 89%, 84%, 70% and 84%, respectively. The wavelet_LHL_GLDZM_LILDE feature slightly 
improved PFS prediction compared to clinical features alone (CV-AUC 0.73 vs. 0.71). Age > 65 years (HR = 2.64 
(95%CI: 1.36–5.2), p = 0.004) and p16-negative disease (HR = 3.38 (95%CI: 1.72–6.66), p < 0.001) were 
associated with poor PFS. A binary radiomic classifier strongly predicted DM with multivariable HR = 3.27 (95% 
CI: 1.15–9.31), p = 0.027, specifically for patients with p16-negative disease with 2-year DM-free survival 83% 
for low-risk vs. 38% for high-risk patients (p = 0.004). 
Conclusions: A radiomics signature strongly associated with DM risk could provide a tool for improved risk 
stratification, potentially adding adjuvant immunotherapy for high-risk patients.   

1. Introduction 

Oropharyngeal cancer (OPC) is one of the most common cancers of 
the head and neck, accounting for about 30% in the United States [1], 
with increasing incidence among younger patients [2]. Combined 

radiation therapy (RT) and chemotherapy are key components of 
definitive treatment. This is especially true for patients with human 
papilloma virus (HPV) p16-positive tumors, as these patients have 
promising prognoses following definitive treatment, with 3-year sur-
vival rates of about 80%, compared to around 60% for patients with 
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HPV-negative tumors [3–5]. Despite recent treatment advances, 
treatment-related toxicities still carry significant morbidity for these 
patients and local recurrence or distant metastases (DM) are a major 
concern [4,6–8]. 

The use of Fluorodeoxyglucose (FDG) positron emission tomography 
(PET) has become an important component of staging and treatment 
planning for OPC [9,10] with current research efforts examining the 
potential of using PET for prediction of treatment outcome [11–13]. 
With quantitative imaging biomarkers gaining popularity across the 
oncology field, there is definitely an evolving role of PET scans in the 
management of OPC. One such development is the derivation of radio-
mic image features, which are mathematical representations of the 
textural patterns of a three-dimensional image of a tumor. 

As far as recent treatment adaptation is concerned, the focus has 
been on attempting to de-intensify the treatment in order to reduce 
toxicity, especially for patients with HPV p16-positive disease who are 
known to have better prognoses [14,15]. Among such efforts are several 
ongoing clinical trials aimed at reducing the dose of radiation for pa-
tients with HPV-associated OPC. 

In our institution we see a large portion of patients from underserved 
communities typically underrepresented in clinical trials. Moreover, 
many of our patients with OPC often present with large tumors and 
advanced disease, which is associated with worse treatment outcome. In 
this study our aim was to investigate whether radiomic features of the 
primary tumor derived from pre-treatment FDG-PET scans were asso-
ciated with progression-free survival (PFS) or DM. We hypothesized that 
a PET-based radiomics risk score could improve the risk stratification for 
these patients, beyond that of important clinical factors such as HPV p16 
status. 

2. Materials and methods 

2.1. Patient selection 

In this Institutional Review Board approved retrospective study, we 
included consecutive patients with oropharyngeal cancer treated with 
definitive RT and chemotherapy in our department between 2005 and 
2018. Further inclusion criteria were a pre-RT FDG-PET scan showing 
some PET-avid disease in the primary tumor and a minimum follow-up 
of 3 months post RT. Patients who received post-operative adjuvant RT 
were not included. 

2.2. Primary tumor segmentation and radiomic feature extraction 

Primary tumors were identified in the pre-treatment attenuation- 
corrected PET scans using the information available from the patients’ 
diagnostic work-up. Once identified, the primary tumor was segmented 
on the PET scan using the PET-edge function in MIM (MIM software Inc., 
Cleveland, OH). The PET-edge function, a gradient-based semi-auto-
matic algorithm, was used to generate the primary tumor segmentations 
in order to make them less sensitive to inter-observer variations. The 
majority of the FDG-PET scans were acquired on a Philips GEMINI PET/ 
CT scanner, with voxel size 4x4x4 mm3 and reconstructed using an 
iterative time-of-flight algorithm (BLOB-OS-TF), with more details 
provided in supplementary table S1. Commonly used metrics including 
metabolic tumor volume (MTV), mean standardized uptake value 
(SUVmean), SUVmax and total lesion glycolysis (TLG) were tabulated from 
the tumor segmentations directly in MIM. 

Radiomic features were generated using the RadiomiX toolbox 
(Radiomics, Liege, Belgium). PET scans with accompanying tumor 
contours were exported in DICOM format and pre-processed using 
isotropic resampling to 4 × 4 × 4 mm3 and z-score normalization to 
reduce the dependency on specific scanner type and reconstruction 
protocol. The image intensity was discretized into 32 separate bins. 
Radiomic features were calculated based on the pre-processed three- 
dimensional tumor region of interest (ROI) data, as well as its Laplacian 

of Gaussian (LoG) and wavelet convolutions using coiflet1 filtering. 
Features were calculated based on second order statistics, intensity 
histogram, local intensity, shape, gray-level co-occurrence matrix, gray- 
level run length matrix, gray-level size zone matrix, gray-level distance 
zone matrix, neighborhood gray-tone difference matrix, neighborhood 
gray-level dependence matrix and fractal dimension. 

2.3. Statistical analysis 

Radiomic features with zero variance, i.e. no variation in the value of 
a particular feature between different patients, were excluded from the 
analysis. Features with a strong correlation (Pearson’s r > 0.75) to MTV, 
SUVmax, TLG, disease stage, gross tumor volume, HPV p16 status, 
smoking status or age were excluded from the analysis. Following this, 
features with strong cross-correlation (Pearson’s r > 0.75) were elimi-
nated, keeping the feature with the smallest average correlation with all 
other candidate features. 

A random forest model with 500 classification trees was trained for 
predicting progression-free survival (PFS) on the remaining radiomic 
features using the randomForest 4.6–14 R package. The ten most 
important radiomic features selected in the random forest model were 
then evaluated by individually adding each feature to a multivariable 
logistic regression model of PFS adjusted for known clinical prognostic 
variables (disease stage, age, HPV p16 status and smoking). Any radio-
mic features showing a significant association with PFS (p < 0.05) after 
adjusting for these clinical factors were included in the final radiomics 
risk signature. Included radiomic features were split into quartiles and 
assigned risk scores based on visual examination of the association with 
PFS in each quartile, from which a binary radiomics risk classifier 
grouped patients as either low-risk or high-risk. 

Logistic regression models with 5-fold cross-validation were con-
structed to evaluate the classification performance of models using only 
clinical variables, SUV metrics, or radiomic features as well as clinical +
SUV metrics or clinical + radiomic features. The areas under the receiver 
operating characteristics (ROC) curves with bootstrap bias corrected 
95% confidence intervals were used to compare classification perfor-
mance and Akaike information criterion (AIC) and Hosmer-Lemeshow 
tests to assess goodness-of-fit. Models were constructed on a complete 
case basis, with no imputation of missing data. 

Kaplan-Meier methods with log-rank tests and Cox proportional 
hazards regression were used to examine the association with PFS, local 
control and distant control based on time from RT until end of follow-up. 
The reproducibility of the identified radiomic features was tested by an 
independent observer re-contouring the primary tumor ROIs for a sub- 
group of 30 randomly selected patients and re-computing the corre-
sponding radiomic features. Statistical analyses were performed using R 
version 4.1.0 and STATA v.14 (StataCorp, College Station, TX), with p <
0.05 as the statistical significance threshold. 

3. Results 

One-hundred and fourteen patients were included in this analysis. 
The median follow-up was 40 months (range: 3 to 138 months) and the 
median time from PET scan to start of RT was 16 days (inter-quartile 
range: 11 to 40 days). The majority of patients were male (75%), about 
half of all patients had HPV p16-positive disease (56%) and a large 
proportion presented with stage IV disease (71%), with further details 
shown in Table 1. Fourteen patients had a local recurrence, 21 had DM 
and 38 patients died within the study period. The 2-year actuarial local 
control, distant control, PFS and overall survival was 89%, 84%, 70% 
and 84%, respectively. 

A total of 4,442 radiomic features were calculated for each patient, 
with 4,221 features excluded that left 221 image features entered into 
the random forest model. The ten most important features identified in 
the random forest model are shown in supplementary fig. S1. Only the 
wavelet_LHL_GLDZM_LILDE radiomic feature was significantly associated 
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with PFS (p = 0.021) after adjusting for clinical factors (cf. supple-
mentary table S2). There was no significant association between this 
radiomic feature and any of the tabulated clinical variables (supple-
mentary table S3) and no correlations were found with gross tumor 
volume or standard SUV metrics (supplementary fig. S2). 

The classification performance of the logistic regression model for 
PFS based on clinical features was good with 5-fold cross-validated AUC 
(CV-AUC) of 0.71, with slight improvement when adding the radiomic 
feature (CV-AUC 0.73), cf. Table 2. Detailed results for the logistic 
regression models are provided in supplementary table S4. A lower AIC 
value (121.6 vs. 125.5) showed a better fit to the PFS data when 
including the radiomic feature, compared to clinical features alone. The 
model based on standard SUV metrics alone did not show good pre-
dictive performance (CV-AUV 0.57) and no improvement was seen when 
adding SUV metrics to the clinical features, resulting in a CV-AUC of 
0.71. These results are further illustrated by the ROC curves shown in 
Fig. 1. 

The median value of the wavelet_LHL_GLDZM_LILDE feature was 
0.035 (inter-quartile range: 0.027 to 0.056). Following the quartile splits 
and visual examination (with distribution shown in supplementary fig. 
S3), risk points were assigned so that patients within the highest quartile 
of wavelet_LHL_GLDZM_LILDE (feature value > 0.056) were considered 
to have a high radiomics risk score, whereas those in the lowest three 
quartiles (≤0.056) were considered low-risk. This resulted in 86 patients 

(75%) classified as low-risk and 28 patients (25%) classified as high-risk, 
with primary tumor segmentations from four example patients pre-
sented in supplementary fig. S4. 

The Kaplan-Meier survival analysis identified a high radiomics risk 
score, age >65 years and HPV p16-negative disease to be associated with 
worse PFS, as illustrated in Fig. 2. Multivariable Cox proportional haz-
ards regression identified age > 65 years (HR = 2.64 (95% CI: 1.36, 5.2), 
p = 0.004) and HPV p16 negative disease (HR = 3.38 (95% CI: 1.72, 
6.66), p < 0.001) as significant predictors of poor PFS, while a high 
radiomics risk score was borderline significantly associated with PFS on 
multivariable analysis (HR = 1.79 (95% CI 0.93, 3.45), p = 0.081). 

Analyzing the association of low vs. high radiomics risk score with 
the risk of local recurrence and DM separately showed that while a high 
radiomics risk score was not associated with local control (multivariable 
HR = 1.19 (95% CI: 0.27, 5.23), p = 0.81), it was strongly associated 
with increased risk of DM (multivariable HR = 3.27 (95% CI: 1.15, 
9.31), p = 0.027). Importantly, a high radiomics risk score was associ-
ated with significantly increased risk of DM for patients with HPV p16- 
negative disease, but not for patients with HPV p16-positive disease 
(Fig. 3). 

For patients with HPV p16-negative disease we found that the 2-year 
DM-free survival was 83% for patients with a low radiomics risk score, 
compared to 38% for high-risk patients (p = 0.004). Conversely, for 
patients with HPV p16-positive disease there was no significant differ-
ence between patients with low vs. high radiomics risk score with 2-year 
DM-free survival of 95% vs. 90%, respectively (p = 0.19). 

In general, there was good reproducibility of this radiomic feature 
based on the blinded re-contouring, with little variation in the data 
between the two observers as shown in Fig. 4. The exception was two 
patient cases where the wavelet_LHL_GLDZM_LILDE feature showed some 
considerable differences, with higher values estimated from the contour 
generated by observer 2. The comparison of MTV for the contours of the 
different observers showed that the general contouring variability was 
low. 

4. Discussion 

In this analysis of 114 patients treated for oropharyngeal cancer we 
identified a radiomics risk signature based on the wave-
let_LHL_GLDZM_LILDE image feature that was strongly associated with 
the risk of developing DM, specifically for patients with HPV p16- 
negative disease. As patients with HPV p16-negative disease are 
known to have a poor prognosis, further stratification of this group 

Table 1 
Patient and treatment characteristics.   

All patients 
(n = 114) 

Age (y), median (range) 62 (45, 88) 
Gender, n (%)  

Male 86 (75) 
Female 28 (25) 

Stage, n (%)  
II 14 (12) 
III 19 (17) 
IV 81 (71) 

Smoking*, n (%)  
Yes 82 (73) 
No 31 (27) 

Chemotherapy, n (%)  
Yes 99 (87) 
No 15 (13) 

HPV p16 status**  
Positive 56 (56) 
Negative 44 (44) 

Gross tumor volume (cm3), median (IQR) 34.1 (23.9, 64.8) 
Metabolic tumor volume (cm3), median (IQR) 16.1 (10.7, 29.1) 
SUVmean, median (IQR) 6.6 (4.9, 8.6) 
SUVmax, median (IQR) 11.2 (8.5, 15.1) 

*Smoking status unavailable for 1 patient. 
**HPV p16 status unavailable for 14 patients. 
IQR – inter-quartile range. 

Table 2 
Area under the receiver operating characteristics curves based on logistic 
regression models evaluating the classification performance of the different 
models to predict progression-free survival.  

Model Apparent AUC 
(95% CI) 

5-fold cross-validated AUC (bootstrap 
bias corrected 95% CI) 

Clinical features* 0.76 (0.66, 0.85) 0.71 (0.57, 0.80) 
SUV metrics** 0.62 (0.51, 0.72) 0.57 (0.43, 0.67) 
Radiomic feature 0.66 (0.55, 0.77) 0.67 (0.49, 0.73) 
Clinical + SUV 

metrics 
0.78 (0.69, 0.88) 0.71 (0.57, 0.80) 

Clinical + Radiomic 
feature 

0.78 (0.70, 0.87) 0.73 (0.59, 0.81) 

*HPV p16 status, Age, Smoking, Disease stage. 
**Metabolic tumor volume, SUVmean, SUVmax. 

Fig. 1. Receiver operating characteristics curves comparing the classification 
performance of different logistic regression models predicting progression- 
free survival. 
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based on the risk of DM could provide an important avenue towards 
treatment adaptation with systemic options such as adjuvant immuno-
therapy for high-risk patients. 

The radiomic image feature identified in this study was based on 
wavelet decomposition. In short, a wavelet transform decouples textural 
information in a manner akin to Fourier transforms, using low- and high- 
pass filtering. The nomenclature of e.g. “LHL” in a wavelet feature 
represents low-pass filtering in the x-direction, high-pass filtering in the 
y-direction and low-pass filtering in the z-direction. The wave-
let_LHL_GLDZM_LILDE feature was generated based on the low-intensity 
large distance emphasis (LILDE) of the gray-level distance zone matrix 
(GLDZM), which describes the amount of homogeneous connected areas 
of low-intensity far from the edges of a volume [16]. This means that 

large connected areas of low values within the center of the tumor 
volume in the wavelet-transformed image would result in high values of 
the wavelet_LHL_GLDZM_LILDE feature. A potential correlate of a sce-
nario with areas of low uptake towards the center could be hypoxia 
within a tumor volume, which has previously been shown to be asso-
ciated with poor outcome [17]. It is important to note, however, that 
these characteristics of the identified radiomic feature refer to the 
wavelet-transformed image, and interpreting them in terms of the 
original PET image is not straightforward. 

Identifying new biomarkers for patients with HPV p16-negative 
disease is especially important since much of the focus regarding 
treatment adaptation has been on treatment de-intensification for pa-
tients with HPV p16-positive disease, expected to have better treatment 
outcome. The need for novel treatment stratification options for patients 
with p16-negative disease is further exemplified in a recent study that 
found standard SUV metrics, specifically TLG, to be associated with 
disease-free survival only in patients with HPV-positive disease [12]. 

Previous studies have found radiomic features from PET and CT 
scans to be predictive of outcome for patients with OPC, with one study 
of 190 patients identifying shape, volume and textural features from the 
two modalities combined to be significant predictors of loco-regional 
progression in patients with HPV-associated OPC [18]. Another study 
of 174 patients with stage III-IV OPC found that MTV and tumor ho-
mogeneity were significantly associated with local failure, with features 
representing MTV, tumor solidity and kurtosis of the image intensity 
being associated with distant metastases, albeit borderline significant on 
independent validation [19]. However, that study did not have infor-
mation about the HPV status of the patients’ tumors. We did not find 
considerable improvement in predicting PFS when adding the radiomic 
feature to already established clinical predictors, and we also did not 
find any association with local failure based on our radiomics risk score 
stratification. The promising potential of the identified radiomics 
signature lies in the ability to stratify patients with HPV p16-negative 
disease into low- and high-risk of DM. This would nicely complement 
current clinical biomarkers for OPC as it would allow for further treat-
ment individualization, for example by identifying patients most likely 
to benefit from novel systemic therapy strategies. 

Limitations of our study include a relatively limited sample size of 
114 patients from a single institution and the need for external valida-
tion to assess the generalizability to other patient cohorts. We used a 
random forest classification model to reduce the risk of potential over-
fitting, and also provided 5-fold cross-validated ROC AUCs with boot-
strap bias-corrected confidence intervals to further mitigate this 
limitation. The z-score normalization and isotropic resampling of the 
PET data prior to analysis should also make the results less sensitive to 
variations in PET scanner and scanning protocol. The analysis based on a 
second observer redoing the semi-automatic tumor segmentations on 
the PET scans of a sub-group of 30 patients showed good reproducibility 
of the identified radiomic feature. We also did not perform HPV DNA 
testing since at our institution, p16 expression is routinely used as a 
surrogate for HPV status which is in line with most recent National 
Comprehensive Cancer Center guidelines, with HPV testing reserved for 
cases with equivocal or inconclusive findings. 

In conclusion, we identified a radiomics risk signature strongly 
associated with the risk of distant metastases for patients with HPV p16- 
negative OPC. This could provide a promising avenue towards improved 
treatment stratification for these patients and the next important step 
would be to independently validate these results. This should ideally be 
done using a patient cohort from a different institution with varying 
treatment and diagnostic protocols, to ensure generalizability of the 
results. 
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Fig. 2. Kaplan-Meier survival curves showing the association between 
progression-free survival and HPV p16 status (a), age (b) and radiomics risk 
score (c). 
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Fig. 3. Kaplan-Meier survival curves showing the difference between patients with low vs. high radiomics risk score for local control (a) and distant control (b). A 
sub-group analysis showing the comparison between low vs. high radiomics risk score for patients with HPV p16-positive disease (a) and those with HPV p16- 
negative disease (b). 

Fig. 4. The reproducibility of the tumor contours (metabolic tumor volume) and the wavelet_LHL_GLDZM_LILDE image feature is shown by comparing data from two 
different observers for a subset of 30 patients. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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