
https://doi.org/10.1177/1176934318758650

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–8
© The Author(s) 2018
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318758650

Introduction
DNA sequencing has revolutionized the current advancements
in the field of science and technology. It has been widely used in
applied field of medicine, genetic engineering, food science, etc.1
In current era, next-generation sequencing (NGS) is the most
advanced technology of DNA sequencing, which provides more
accuracy and speed than previously known Sanger sequencing.2
Paired-end sequencing in NGS, which involves the sequencing
of both forward and reverse fragments of DNA, has further
increased the accuracy and ability to detect indels which other-
wise was not possible in single-end sequencing.3

Next-generation sequencing technique produces millions of
short sequence reads and assembling these short sequence reads
without a reference genome is one of the challenging task for de
novo assemblers.4 In the past few years, several de novo sequence
assembling algorithms have been developed to handle and assem-
ble the large amount of short sequence reads to form longer frag-
ments called contigs but choosing the appropriate assembler for
paired-end or single-end data is still a challenging job.5

The currently available assembling algorithms include de
Bruijn graph (DBG), overlap layout consensus (OLC), string
graph, greedy, and hybrid algorithm.6

De Bruijn graph is the graph algorithm based on k-mers
approach, which splits the short reads into smaller k-mers, and
these k-mers overlap by k − 1 which is the next k-mer. Dividing
the sequences into smaller sizes also helps improving the crisis
of different initial read lengths, whereas OLC is also the graph-
based algorithm which builds overlap graph by overlapping the
similar sequences.7

Finding overlapping sequences is usually the slowest part of
the assembly and these overlapped sequences then pack frag-
ments of the overlap graph into contigs. The DBG algorithm
is faster and OLC algorithm executes better for longer sequence
reads. String graph algorithm is the variant of OLC algorithm,
which performs global overlap graph by eliminating unneces-
sary sequences.8

Greedy algorithms start by joining the short sequence
reads that are best overlapped to produce contigs.
Most greedy assemblers use heuristic techniques that
are designed to eliminate misassembling of recurring
sequences.9

Hybrid assembling algorithm refers to the mixing various
assembling algorithms. It is used to reduce the number of con-
tigs and errors produced by other algorithms.10

A Comprehensive Study of De Novo Genome
Assemblers: Current Challenges and Future Prospective

Abdul Rafay Khan1, Muhammad Tariq Pervez1, Masroor Ellahi Babar2,
Nasir Naveed3 and Muhammad Shoaib4

1Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore,
Pakistan. 2Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan.
3Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan.
4Department of Computer Science and Engineering, University of Engineering and Technology,
Lahore, Pakistan.

ABSTRACT

BACkGRouND: Current advancements in next-generation sequencing technology have made possible to sequence whole genome but
assembling a large number of short sequence reads is still a big challenge. In this article, we present the comparative study of seven assem-
blers, namely, ABySS, Velvet, Edena, SGA, Ray, SSAKE, and Perga, using prokaryotic and eukaryotic paired-end as well as single-end data
sets from Illumina platform.

ReSulTS: Results showed that in case of single-end data sets, Velvet and ABySS outperformed in all the seven assemblers with compara-
tively low assembling time and high genome fraction. Velvet consumed the least amount of memory than any other assembler. In case of
paired-end data sets, Velvet consumed least amount of time and produced high genome fraction after ABySS and Ray. In terms of low mem-
ory usage, SGA and Edena outperformed in all the assemblers. Ray also showed good genome fraction; however, extremely high assem-
bling time consumed by the Ray might make it prohibitively slow on larger data sets of single and paired-end data.

CoNCluSioNS: Our comparison study will provide assistance to the scientists for selecting the suitable assembler according to their data
sets and will also assist the developers to upgrade or develop a new assembler for de novo assembling.

keywoRDS: NGS (next-generation sequencing), DBG (de Bruijn graph), OLC (overlap layout consensus), ENA (European Nucleotide
Archive), bps (base pairs)

ReCeiVeD: August 2, 2017. ACCePTeD: January 19, 2018.

TyPe: Original Research

FuNDiNG: The author(s) received no financial support for the research, authorship, and/or
publication of this article.

DeClARATioN oF CoNFliCTiNG iNTeReSTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRReSPoNDiNG AuTHoR: Muhammad Tariq Pervez, Department of Bioinformatics
and Computational Biology, Virtual University of Pakistan, Defence Road, Off Raiwind
Road, Lahore 5400, Pakistan. Email: m.tariq@vu.edu.pk

758650 EVB0010.1177/1176934318758650Evolutionary BioinformaticsKhan et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:m.tariq@vu.edu.pk

2 Evolutionary Bioinformatics

There are many de novo assemblers available online which
have been developed by applying one of these five assembling
algorithms. Our study evaluated the de novo sequence assem-
blers for Illumina-based paired-end and single-end short reads
data sets. This study provides guidance to the biologists and
bioinformaticians in selecting the appropriate assembler
according to their data sets and it also assists developers to
upgrade or develop a new assembler for de novo assembling.

Materials and Methods
Data sets

To compare the performance of each assembler, Illumina HiSeq
2000–based short sequence reads were downloaded from pub-
licly available database European Nucleotide Archive (ENA)11
(Tables 1 and 2). For the estimation of genome fraction, all the
reference genomes were downloaded from National Center for
Biotechnology Information (NCBI) genome database. Short
sequence reads included 7 paired-end and 8 single-end prokary-
otic data sets and also 5 paired-end and 5 single-end eukaryotic
data sets. All the data sets have maximum read length of 100 bps.

Genome assemblers

Seven assemblers (Table 3), which represent 5 different assem-
bly algorithm strategies, were selected to assemble paired-end
and single-end data sets.

All the selected assemblers were executed on the virtual
machine, which was designed using Oracle VM VirtualBox

with 2 VCPU, 4 GB of RAM memory and 64-bit Linux
Ubuntu Server 14.04 operating system (supplementary file 1).

Efficiency evaluation

The efficiency of each assembler was evaluated using various
parameters, which include assembling total time, maximum
memory usage, and maximum CPU usage.

Accuracy evaluation

The output of assemblers was decomposed into contigs. All
these contig information were stored in contig files which were
produced as an end result of assembling by an assembler. Contig
files were used for the accuracy evaluation of each assembler
using different parameters including the total number of contigs
and N50 contig length. These parameters were collected using
Assemblathon 2 script12 which is written in Perl language to cal-
culate the metrics of each contig file. Genome fraction was cal-
culated using QUAST tool13 to find the similarity between the
contig sequences and the reference genome.

Statistical analyses

For data analysis, R (version 3.3.2) was used. The data were tested
using Shapiro-Wilk normality to find whether data are normally
distributed or not. To determine statistical significance, paramet-
ric and nonparametric tests were used according to the data. A
2-tailed P values less than .05 were considered as significant.

Table 1. Prokaryotic data sets used in this study.

S. NO. DATA SET ENA RUN ACCESSiON DATA SET TyPE NO. Of READS

1 Staphylococcus aureus ERR353143 Paired-end 137 022

2 Streptococcus pneumoniae ERR490828 Paired-end 321 004

3 Escherichia coli ERR490638 Paired-end 737 008

4 Mycobacterium tuberculosis ERR495003 Paired-end 770 994

5 Neisseria flava DRR015798 Paired-end 1 218 573

6 Aeromonas salmonicida DRR015726 Paired-end 2 267 875

7 Rothia mucilaginosa DRR015851 Paired-end 4 098 002

8 Streptococcus suis DRR015872 Single-end 113 512

9 Streptococcus pyogenes SRR1148216 Single-end 724 546

10 Salmonella enterica ERR233905 Single-end 1 490 584

11 Neisseria gonorrhoeae SRR969383 Single-end 1 840 438

12 Chlamydia muridarum SRR1736648 Single-end 3 099 636

13 Clostridioides difficile ERR465798 Single-end 5 094 314

14 Bacillus anthracis ERR1596542 Single-end 7 466 661

15 Chlamydia trachomatis SRR1038047 Single-end 9 129 274

http://journals.sagepub.com/doi/suppl/10.1177/1176934318758650

Khan et al 3

Results
Efficiency, as well as the accuracy of each assembler, was ana-
lyzed by generated contig files using various evaluation tech-
niques. Our study involved evaluation of 7 different assemblers
with alternative assembly algorithms such as ABySS and
Velvet, the DBG-based assemblers; Edena which is an OLC-
based assembler; SGA which uses string graph algorithm;
SSAKE and Perga, the greedy-based assembler; and Ray which
worked on hybrid algorithm (Table 3).

Total assembling time

The total assembling time in minutes was calculated using Linux
time command, and median of each assembler was compared
using Mann-Whitney test. The results showed that Ray, the
hybrid assembler, consumed more time on paired-end data sets
with a median time of 553.95 minutes and single-end data sets
with a median time of 373.15 minutes than any other assembler
and reached very high level of significance with P < .05 in prokar-
yotic data sets, whereas in eukaryotic data set, SSAKE, the
greedy assembler, consumed more time on single-end data sets

with a median time of 223.10 minutes and lowest in paired-end
data sets with a median time of 13.85 minutes.

Velvet, the DBG assembler, consumed lowest median time of
1.49 minutes on paired-end data sets and 1.26 minutes on single-
end data sets, whereas in eukaryotic data sets, Velvet showed low-
est time of 1.26 minutes on single-end data sets with median of
4.90 minutes. ABySS, which is also the DBG assembler, was sec-
ond in consuming the lowest median time of 1.93 minutes on
single-end prokaryotic and eukaryotic data sets. SSAKE was sec-
ond lowest time-consuming tool (on paired-end prokaryotic data
sets) with median time of 1.93 minutes (Figure 1).

Memory and CPU usage

The maximum assembling memory usage in megabytes (MBs)
and CPU usage in percentage (%) were also calculated using
Linux command and the assemblers were compared using
independent samples test. On prokaryotic paired-end data sets,
the results showed that ABySS, the DBG assembler, and Perga,
the greedy assembler, consumed the highest amount of mem-
ory than any other assembler with a significance of P < .05,

Table 2. Eukaryotic data sets used in this study.

S. NO. DATA SET ENA RUN ACCESSiON DATA SET TyPE NO. Of READS

1 Homo sapiens DRR002191 Paired-end 126 605 856

2 Drosophila melanogaster DRR016722 Paired-end 95 461 377

3 Arabidopsis thaliana ERR1224454 Paired-end 30 841 688

4 Saccharomyces cerevisiae ERR052652 Paired-end 17 584 902

5 fungi SRR1614243 Paired-end 22 344 195

6 Homo sapiens DRR002191 Single-end 126 605 856

7 Drosophila melanogaster DRR002191 Single-end 95 461 377

8 Arabidopsis thaliana ERR1224454 Single-end 30 841 688

9 Saccharomyces cerevisiae ERR052652 Single-end 17 584 902

10 fungi SRR1614243 Single-end 22 344 195

Table 3. De novo assemblers selected for this study.

S. NO. ASSEMBLER PROgRAMMiNg
LANgUAgE

ALgORiTHM iNPUT READS

1 ABySS14 C++ De Bruijn graph (DBg) Paired-end and single-end

2 Velvet15 C De Bruijn graph (DBg) Paired-end and single-end

3 Edena16 C++ Overlap/layout/consensus (OLC) Paired-end and single-end

4 SgA17 C++ String graph Paired-end

5 Ray18 C++ Hybrid Paired-end and single-end

6 SSAKE19 Perl greedy Paired-end and single-end

7 Perga20 C greedy Paired-end and single-end

4 Evolutionary Bioinformatics

whereas SGA, the string graph assembler, and Edena, the
OLC assembler, used the least amount of memory than other
assemblers. On eukaryotic paired-end data sets, ABySS and
Velvet consumed the highest amount of memory, whereas
SSAKE used the least amount of memory.

On prokaryotic single-end data sets, SSAKE and Perge, the
greedy assemblers, consumed the highest amount of memory,
whereas Edena consumed the lowest memory among all.

On eukaryotic single-end data sets, Velvet and Edena con-
sumed the lowest memory among all assembler, whereas
Perga and SSAKE consumed the highest amount of memory
(Figure 2).

In terms of CPU usage, ABySS, Velvet, and SGA, the graph-
based assemblers, consumed a huge amount of CPU, whereas
Edena and SSAKE consumed least amount of CPU on

prokaryotic paired-end data sets, whereas SSAKE also consumed
least amount of CPU on eukaryotic paired-end data sets.

On prokaryotic and eukaryotic single-end data sets, Ray,
Perge, and Velvet consumed huge amount of CPU as compared
with SSAKE and Edena which consumed least amount of
CPU (Figure 2).

Total number of contigs

For further analysis of assembled contigs, the number of contigs
was calculated by running Assemblathon script. In an ideal con-
dition, the minimum number of contigs that matches the whole
genome sequence could be generated from each assembly proce-
dure. The results showed that on prokaryotic and eukaryotic
paired-end data sets, the Velvet, the DBG assembler, assembled

Figure 1. The comparison of total median assembling time of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) paired-end

and single-end eukaryotic data sets.

Figure 2. The mean comparison of memory usage and CPU usage of each assembler for (A) paired-end and single-end prokaryotic data sets and (B)

paired-end and single-end eukaryotic data sets.

Khan et al 5

short reads into relatively short contigs and achieved significance
of P < .05, whereas in case of single-end data sets, ABySS pro-
duced the high number of contigs followed by Velvet and
SSAKE. However, SSAKE and Perga produced the low number
of contigs on paired-end data sets (Figure 3).

N50 contig length

N50 contig length was calculated by running Assemblathon
script on contig files produced by various assemblers. On
prokaryotic and eukaryotic paired-end data sets, ABySS pro-
duced high N50 contig length, whereas Velvet produced low
N50 contig length.

On prokaryotic single-end data sets, Velvet produced high
N50 contig length with a median length of 1530.00 bp followed
by ABySS with a median length of 1054.00 bp, whereas SSAKE
and Perga produced low N50 contig length with a median
length of 260.50 and 348.00 bp. On eukaryotic single-end data
sets, Edena produced high N50 contig length with a median
length of 57 252.00 bp, whereas Perga produced low N50 contig
length with a median length of 12 654.50 bp (Figure 4).

Genome fraction

By mapping all the contigs onto the reference genomes
using QUAST tool, we calculated the genome fraction of all

the contigs generated by each assemblers which showed the
percentage of aligned contig bases in the reference genome
(Table 4). ABySS showed the high number of genome frac-
tion with a mean of 66.3% on paired-end data sets and
69.8% in prokaryotic and eukaryotic single-end data sets.
Ray showed second highest genome fraction with a mean of
58.8% followed by Velvet with third highest genome frac-
tion with a mean of 57.1% on prokaryotic paired-end data
sets, whereas Perga, Edena, and SGA showed average accu-
racy with a mean genome fraction of 51.9%, 51.4%, and
50.4% and SSAKE showed worst accuracy with mean
genome fraction of 13.2%.

On single-end prokaryotic data sets, Velvet showed sec-
ond highest genome fraction with mean of 59.6% followed
by Perga with third highest genome fraction with mean of
57.6%, whereas Ray, SSAKE, and Edena showed average
accuracy with mean genome fraction of 48.7%, 44.3%, and
43.8%. On eukaryotic paired-end data sets, Edena showed
highest genome fraction with a mean of 90.4% and the sec-
ond highest Velvet with a mean of 85.6% whereas SSAKE
showed lowest genome fraction with a mean of 49.2% and
74.0% in single-end and paired-end data sets (Figure 5).
Practically, an assembler which produces the fewer number
of contigs, with high N50 and high genome fraction, is con-
sidered to be ideal.

Figure 3. The comparison of the total number of contigs by median of each assembler for (A) paired-end and single-end prokaryotic data sets and (B)

paired-end and single-end eukaryotic data sets.

Figure 4. The comparison of the N50 contig length by median of each assembler for (A) paired-end and single-end prokaryotic data sets and (B)

paired-end and single-end eukaryotic data sets.

6 Evolutionary Bioinformatics

Discussion
We evaluated the selected assemblers with prokaryotic and
eukaryotic paired-end and single-end Illumina-based short
reads on a Linux-based server. Our results showed that Ray, the
hybrid assembler, takes the highest time to complete the whole
genome assembling on prokaryotic paired-end and single-end
data sets21 but Ray was unable to run on eukaryotic paired-end
and single-end data sets because Ray required huge RAM and
multiple CPUs for assembling large number of reads. However,
the DBG assemblers, Velvet and ABySS, are the best options
for both types of data sets because of tremendous assembling
speed by consuming the lowest assembling time among all
other assemblers, whereas Velvet and ABySS are the best
options only for eukaryotic single-end data sets.22 Edena, the
OLC assembler, consumed lowest memory on both prokary-
otic paired-end and single-end data sets; Velvet and Edena
consumed lowest memory on eukaryotic single-end data sets;
and SSAKE on eukaryotic paired-end data sets. SGA, the
string graph assembler, was also a good choice to assemble
paired-end data sets consuming low memory,23 but in terms of
assembler data transformation, SGA consumed more time in
indexing, correction, duplication removal, and overlapping
steps before assembling that made SGA more complex than
Edena, which needs only overlapping step to be performed
before assembling. Velvet also consumed less memory on sin-
gle-end data sets after Edena. In terms of high memory usage,
ABySS and SSAKE were on the top on paired-end and single-
end data sets, respectively.

In summary, in case of paired-end and single-end prokary-
otic genomes, ABySS efficiently produced genome assembly
and consumed less amount of time but consumed high amount
of memory,24 whereas Velvet proved to be a time-efficient and
memory-efficient program for only single-end data sets. Edena
was a memory-efficient program for both types of data sets,
and SGA was also a memory-efficient program, but it is only
available for paired-end data.

ABySS and Velvet also provided high scalability to handle a
large amount of data than rest of the assemblers.

In terms of total number of contigs, we found that on
paired-end data set, the Velvet, produced the greater number of
contigs but low N50 value, whereas ABySS produced the
greater number of contigs on single-end data sets and showed
high N50 value on both data sets.25 This contrasted with the
contigs produced from Edena, SGA, Ray, SSAKE, and Perga
that produced the low number of contigs and low N50.

Ideally, contigs with high N50 and high genome fraction
were our expectation but Velvet and ABySS worked more con-
servatively than others when it came to merging small contigs
into larger contigs, which gave an assembly with a larger num-
ber of contigs.26 There could be a number of different things
that might have led to this result such as k-mer size for the
assembly, quality of the single-end vs paired-end data, and a
bunch of other parameters that could have been used to build
the assemblies.

To check the accuracy of genome assembly, the contigs were
aligned to their related reference genomes using QUAST tool.
ABySS showed high number of genome fraction on both
paired-end and single-end data sets followed by Ray on paired-
end data sets, and Velvet showed second highest genome frac-
tion on single-end data sets.

Velvet and ABySS could be the best choice for both paired-
end and single-end prokaryotic data sets with highest genome
fraction among all selected assemblers27 but still there are
some improvements needed to be incorporated into ABySS.
There are several ways in which ABySS can be improved.
ABySS consumption of memory and CPU on paired-end data
sets is much higher than single-end data sets. ABySS mostly
relies on mate pairs to assemble their contigs. This approach
may perform poorly in case of lack of coverage and it has a
known issue with deadlocking when using higher k values. So,
tackling these issues and decreasing the memory and CPU
usage make ABySS to be best in all other assemblers. Many
research groups worldwide are working on building better
genome assemblers. A group of researchers at the European
Bioinformatics Institute28 developed the DBG-based genome
assembler Velvet. Canada’s Michael Smith Genome Sciences
Centre29 developed ABySS. These research groups are still
working on improving their assemblers and they periodically
release latest versions of their assemblers. De Bruijn graph–
based genome assemblers are considered as the best genome
assemblers.30

Table 4. List of all assemblers with their mean genome fraction.

ASSEMBLER PROKARyOTiC
SiNgLE-END

PROKARyOTiC
PAiRED-END

ABySS 69.8 66.3

Velvet 59.6 57.1

Edena 43.8 51.4

SgA — 50.4

Ray 48.7 58.8

SSAKE 44.3 13.2

Perga 57.6 51.9

ASSEMBLER EUKARyOTiC
SiNgLE-END

EUKARyOTiC
PAiRED-END

ABySS 85.4 82.4

Velvet 82.6 85.6

Edena 62.2 90.4

Perga 82.0 83.2

SgA — 52.4

SSAKE 49.2 74.0

Khan et al 7

Conclusions
Our study evaluated 7 de novo sequence assemblers in terms
of memory, time, and accuracy. We found that each assembler
is capable of assembling whole prokaryotic or whole eukary-
otic genome but the hybrid assembler Ray is not capable of
assembling whole eukaryotic genome if you have about 4 GB
of RAM or less. The selection of the best assembler is depend-
ent on the uniqueness of the data sets and the user require-
ments. On single-end data sets, Velvet and ABySS, produced
generally the best results among all 7 assemblers with com-
paratively low assembling time and high prokaryotic and
eukaryotic genome fractions. Velvet also consumed the lowest
memory usage on both single-end data sets. Some improve-
ments are needed in ABySS including reduction in memory
and CPU usage. On paired-end data sets, when a large amount
of memory is not available, SGA and Edena might be a good
choice. The hybrid approach, Ray, also showed high genome
fraction; however, extremely high assembling time used by the
Ray might make it prohibitively slow on larger data sets.

Acknowledgements
The authors thank Higher Education Commission and Virtual
University of Pakistan for their generous support for conduct-
ing this research work.

Author Contributions
MTP conceived the idea and guided overall design of experi-
ments and drafting the manuscript. ARK conducted experi-
ments and drafted the manuscript. NN and MEB collected
data and analyzed the results. All authors read and approved
the final manuscript. MS helped in responding peer reviewers’
comments.

Availability of Data and Materials
All the raw data sets can be downloaded from ENA
server; links are available at https://github.com/alrafaykhan/
DeNovoGenome/blob/master/Datasets.md.

All the testing codes are available at https://github.com/
alrafaykhan/DeNovoGenome/blob/master/Commands.md.

RefeRenCes
 1. Sperber GH, Sperber SM. Thompson and Thompson Genetics in Medicine. Balti-

more, MD: Elsevier; 2008.
 2. Buermans HPJ, Den Dunnen JT. Next generation sequencing technology:

advances and applications. Biochimica et Biophysica Acta (BBA).
2014;1842:1932–1941.

 3. Grimm D, Hagmann J, Koenig D, Weigel D, Borgwardt K. Accurate indel pre-
diction using paired-end short reads. BMC Genom. 2013;14:132.

 4. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol.
2008;26:1135–1145.

 5. Baker M. De novo genome assembly: what every biologist should know. Nat
Methods. 2012;9:333.

 6. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequenc-
ing data. Genomics. 2010;95:315–327.

 7. Kang X, Tang S, Ma Y, Liu R, Wang Y. De Bruijn graph-based genomic
sequence assembly algorithms and applications. Paper presented at: Green Com-
puting and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Phys-
ical and Social Computing; August 20-23, 2013; Beijing, China, pp. 2094–2097.
New York, NY: IEEE.

 8. Li Z, Chen Y, Mu D, et al. Comparison of the two major classes of assembly
algorithms: overlap–layout–consensus and de-Bruijn-graph. Brief Func Genom.
2012;11:25–37.

 9. Pop M, Salzberg SL, Shumway M. Genome sequence assembly: algorithms and
issues. Computer. 2002;35:47–54.

 10. Koren S, Schatz MC, Walenz BP, et al. Hybrid error correction and de novo
assembly of single-molecule sequencing reads. Nat Biotechnol.
2012;30:693–700.

 11. Leinonen R, Akhtar R, Birney E, et al. The European Nucleotide Archive. Nuc
Acids Res. 2010;39:D28–D31.

 12. Bradnam KR, Fass JN, Alexandrov A, et al. Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience. 2013;2:10.

 13. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29:1072–1075.

 14. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a paral-
lel assembler for short read sequence data. Genome Res. 2009;19:1117–1123.

 15. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 2008;18:821–829.

 16. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J. De novo bacterial
genome sequencing: millions of very short reads assembled on a desktop com-
puter. Genome Res. 2008;18:802–809.

 17. Simpson JT, Durbin R. Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Res. 2012;22:549–556.

 18. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a
mix of high-throughput sequencing technologies. J Comput Biol.
2010;17:1519–1533.

 19. Warren RL, Sutton GG, Jones SJ, Holt RA. Assembling millions of short DNA
sequences using SSAKE. Bioinformatics. 2007;23:500–501.

 20. Zhu X, Leung HC, Chin FY, et al. PERGA: a paired-end read guided de novo
assembler for extending contigs using SVM and look ahead approach. PLoS
ONE. 2014;9:e114253.

 21. Sato K, Sakakibara Y. SL: an extension of the Velvet assembler to a de novo
metagenomic assembler utilizing supervised learning. DNA Res. 2015;22:69–77.

 22. Liu Y, Schmidt B, Maskell DL. Parallelized short read assembly of large
genomes using de Bruijn graphs. BMC Bioinformatics. 2011;12:354.

Figure 5. The comparison of mean genome fraction of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) paired-end and

single-end eukaryotic data sets.

https://github.com/alrafaykhan/DeNovoGenome/blob/master/Datasets.md
https://github.com/alrafaykhan/DeNovoGenome/blob/master/Datasets.md
https://github.com/alrafaykhan/DeNovoGenome/blob/master/Commands.md
https://github.com/alrafaykhan/DeNovoGenome/blob/master/Commands.md

8 Evolutionary Bioinformatics

 23. Dinh H, Rajasekaran S. A memory-efficient data structure representing exact-
match overlap graphs with application for next-generation DNA assembly. Bio-
informatics. 2011;27:1901–1907.

 24. Haiminen N, Kuhn DN, Parida L, Rigoutsos I. Evaluation of methods for de
novo genome assembly from high-throughput sequencing reads reveals depen-
dencies that affect the quality of the results. PLoS ONE. 2011;6:e24182.

 25. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics. 2011;27:578–579.

 26. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling
metagenome sequence assembly with probabilistic de Bruijn graphs. Proc Nat
Acad Sci. 2012;109:13272–13277.

 27. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA—a practical iterative de Bruijn
graph de novo assembler. Paper presented at: Annual International Confer-
ence on Research in Computational Molecular Biology; April 25-28, 2010;
Lisbon, Portugal, pp. 426–440. Berlin, Germany; Heidelberg, Germany:
Springer.

 28. European Bioinformatics Institute Cambridgeshire UK. http://www.ebi.ac.uk;
September 1994.

 29. Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.
http://www.bcgsc.ca; 1999.

 30. Compeau PE, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome
assembly. Nat Biotechnol. 2011;29:987–991.

http://www.ebi.ac.uk
http://www.bcgsc.ca

