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Introduction
DNA sequencing has revolutionized the current advancements 
in the field of science and technology. It has been widely used in 
applied field of medicine, genetic engineering, food science, etc.1 
In current era, next-generation sequencing (NGS) is the most 
advanced technology of DNA sequencing, which provides more 
accuracy and speed than previously known Sanger sequencing.2 
Paired-end sequencing in NGS, which involves the sequencing 
of both forward and reverse fragments of DNA, has further 
increased the accuracy and ability to detect indels which other-
wise was not possible in single-end sequencing.3

Next-generation sequencing technique produces millions of 
short sequence reads and assembling these short sequence reads 
without a reference genome is one of the challenging task for de 
novo assemblers.4 In the past few years, several de novo sequence 
assembling algorithms have been developed to handle and assem-
ble the large amount of short sequence reads to form longer frag-
ments called contigs but choosing the appropriate assembler for 
paired-end or single-end data is still a challenging job.5

The currently available assembling algorithms include de 
Bruijn graph (DBG), overlap layout consensus (OLC), string 
graph, greedy, and hybrid algorithm.6

De Bruijn graph is the graph algorithm based on k-mers 
approach, which splits the short reads into smaller k-mers, and 
these k-mers overlap by k − 1 which is the next k-mer. Dividing 
the sequences into smaller sizes also helps improving the crisis 
of different initial read lengths, whereas OLC is also the graph-
based algorithm which builds overlap graph by overlapping the 
similar sequences.7

Finding overlapping sequences is usually the slowest part of 
the assembly and these overlapped sequences then pack frag-
ments of the overlap graph into contigs. The DBG algorithm 
is faster and OLC algorithm executes better for longer sequence 
reads. String graph algorithm is the variant of OLC algorithm, 
which performs global overlap graph by eliminating unneces-
sary sequences.8

Greedy algorithms start by joining the short sequence 
reads that are best overlapped to produce contigs.  
Most greedy assemblers use heuristic techniques that  
are designed to eliminate misassembling of recurring 
sequences.9

Hybrid assembling algorithm refers to the mixing various 
assembling algorithms. It is used to reduce the number of con-
tigs and errors produced by other algorithms.10
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There are many de novo assemblers available online which 
have been developed by applying one of these five assembling 
algorithms. Our study evaluated the de novo sequence assem-
blers for Illumina-based paired-end and single-end short reads 
data sets. This study provides guidance to the biologists and 
bioinformaticians in selecting the appropriate assembler 
according to their data sets and it also assists developers to 
upgrade or develop a new assembler for de novo assembling.

Materials and Methods
Data sets

To compare the performance of each assembler, Illumina HiSeq 
2000–based short sequence reads were downloaded from pub-
licly available database European Nucleotide Archive (ENA)11 
(Tables 1 and 2). For the estimation of genome fraction, all the 
reference genomes were downloaded from National Center for 
Biotechnology Information (NCBI) genome database. Short 
sequence reads included 7 paired-end and 8 single-end prokary-
otic data sets and also 5 paired-end and 5 single-end eukaryotic 
data sets. All the data sets have maximum read length of 100 bps.

Genome assemblers

Seven assemblers (Table 3), which represent 5 different assem-
bly algorithm strategies, were selected to assemble paired-end 
and single-end data sets.

All the selected assemblers were executed on the virtual 
machine, which was designed using Oracle VM VirtualBox 

with 2 VCPU, 4 GB of RAM memory and 64-bit Linux 
Ubuntu Server 14.04 operating system (supplementary file 1).

Efficiency evaluation

The efficiency of each assembler was evaluated using various 
parameters, which include assembling total time, maximum 
memory usage, and maximum CPU usage.

Accuracy evaluation

The output of assemblers was decomposed into contigs. All 
these contig information were stored in contig files which were 
produced as an end result of assembling by an assembler. Contig 
files were used for the accuracy evaluation of each assembler 
using different parameters including the total number of contigs 
and N50 contig length. These parameters were collected using 
Assemblathon 2 script12 which is written in Perl language to cal-
culate the metrics of each contig file. Genome fraction was cal-
culated using QUAST tool13 to find the similarity between the 
contig sequences and the reference genome.

Statistical analyses

For data analysis, R (version 3.3.2) was used. The data were tested 
using Shapiro-Wilk normality to find whether data are normally 
distributed or not. To determine statistical significance, paramet-
ric and nonparametric tests were used according to the data. A 
2-tailed P values less than .05 were considered as significant.

Table 1. Prokaryotic data sets used in this study.

S. NO. DATA SET ENA RUN ACCESSiON DATA SET TyPE NO. Of READS

1 Staphylococcus aureus ERR353143 Paired-end 137 022

2 Streptococcus pneumoniae ERR490828 Paired-end 321 004

3 Escherichia coli ERR490638 Paired-end 737 008

4 Mycobacterium tuberculosis ERR495003 Paired-end 770 994

5 Neisseria flava DRR015798 Paired-end 1 218 573

6 Aeromonas salmonicida DRR015726 Paired-end 2 267 875

7 Rothia mucilaginosa DRR015851 Paired-end 4 098 002

8 Streptococcus suis DRR015872 Single-end 113 512

9 Streptococcus pyogenes SRR1148216 Single-end 724 546

10 Salmonella enterica ERR233905 Single-end 1 490 584

11 Neisseria gonorrhoeae SRR969383 Single-end 1 840 438

12 Chlamydia muridarum SRR1736648 Single-end 3 099 636

13 Clostridioides difficile ERR465798 Single-end 5 094 314

14 Bacillus anthracis ERR1596542 Single-end 7 466 661

15 Chlamydia trachomatis SRR1038047 Single-end 9 129 274

http://journals.sagepub.com/doi/suppl/10.1177/1176934318758650
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Results
Efficiency, as well as the accuracy of each assembler, was ana-
lyzed by generated contig files using various evaluation tech-
niques. Our study involved evaluation of 7 different assemblers 
with alternative assembly algorithms such as ABySS and 
Velvet, the DBG-based assemblers; Edena which is an OLC-
based assembler; SGA which uses string graph algorithm; 
SSAKE and Perga, the greedy-based assembler; and Ray which 
worked on hybrid algorithm (Table 3).

Total assembling time

The total assembling time in minutes was calculated using Linux 
time command, and median of each assembler was compared 
using Mann-Whitney test. The results showed that Ray, the 
hybrid assembler, consumed more time on paired-end data sets 
with a median time of 553.95 minutes and single-end data sets 
with a median time of 373.15 minutes than any other assembler 
and reached very high level of significance with P < .05 in prokar-
yotic data sets, whereas in eukaryotic data set, SSAKE, the 
greedy assembler, consumed more time on single-end data sets 

with a median time of 223.10 minutes and lowest in paired-end 
data sets with a median time of 13.85 minutes.

Velvet, the DBG assembler, consumed lowest median time of 
1.49 minutes on paired-end data sets and 1.26 minutes on single-
end data sets, whereas in eukaryotic data sets, Velvet showed low-
est time of 1.26 minutes on single-end data sets with median of 
4.90 minutes. ABySS, which is also the DBG assembler, was sec-
ond in consuming the lowest median time of 1.93 minutes on 
single-end prokaryotic and eukaryotic data sets. SSAKE was sec-
ond lowest time-consuming tool (on paired-end prokaryotic data 
sets) with median time of 1.93 minutes (Figure 1).

Memory and CPU usage

The maximum assembling memory usage in megabytes (MBs) 
and CPU usage in percentage (%) were also calculated using 
Linux command and the assemblers were compared using 
independent samples test. On prokaryotic paired-end data sets, 
the results showed that ABySS, the DBG assembler, and Perga, 
the greedy assembler, consumed the highest amount of mem-
ory than any other assembler with a significance of P < .05, 

Table 2. Eukaryotic data sets used in this study.

S. NO. DATA SET ENA RUN ACCESSiON DATA SET TyPE NO. Of READS

1 Homo sapiens DRR002191 Paired-end 126 605 856

2 Drosophila melanogaster DRR016722 Paired-end 95 461 377

3 Arabidopsis thaliana ERR1224454 Paired-end 30 841 688

4 Saccharomyces cerevisiae ERR052652 Paired-end 17 584 902

5 fungi SRR1614243 Paired-end 22 344 195

6 Homo sapiens DRR002191 Single-end 126 605 856

7 Drosophila melanogaster DRR002191 Single-end 95 461 377

8 Arabidopsis thaliana ERR1224454 Single-end 30 841 688

9 Saccharomyces cerevisiae ERR052652 Single-end 17 584 902

10 fungi SRR1614243 Single-end 22 344 195

Table 3. De novo assemblers selected for this study.

S. NO. ASSEMBLER PROgRAMMiNg 
LANgUAgE

ALgORiTHM iNPUT READS

1 ABySS14 C++ De Bruijn graph (DBg) Paired-end and single-end

2 Velvet15 C De Bruijn graph (DBg) Paired-end and single-end

3 Edena16 C++ Overlap/layout/consensus (OLC) Paired-end and single-end

4 SgA17 C++ String graph Paired-end

5 Ray18 C++ Hybrid Paired-end and single-end

6 SSAKE19 Perl greedy Paired-end and single-end

7 Perga20 C greedy Paired-end and single-end
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whereas SGA, the string graph assembler, and Edena, the 
OLC assembler, used the least amount of memory than other 
assemblers. On eukaryotic paired-end data sets, ABySS and 
Velvet consumed the highest amount of memory, whereas 
SSAKE used the least amount of memory.

On prokaryotic single-end data sets, SSAKE and Perge, the 
greedy assemblers, consumed the highest amount of memory, 
whereas Edena consumed the lowest memory among all.

On eukaryotic single-end data sets, Velvet and Edena con-
sumed the lowest memory among all assembler, whereas 
Perga and SSAKE consumed the highest amount of memory 
(Figure 2).

In terms of CPU usage, ABySS, Velvet, and SGA, the graph-
based assemblers, consumed a huge amount of CPU, whereas 
Edena and SSAKE consumed least amount of CPU on 

prokaryotic paired-end data sets, whereas SSAKE also consumed 
least amount of CPU on eukaryotic paired-end data sets.

On prokaryotic and eukaryotic single-end data sets, Ray, 
Perge, and Velvet consumed huge amount of CPU as compared 
with SSAKE and Edena which consumed least amount of 
CPU (Figure 2).

Total number of contigs

For further analysis of assembled contigs, the number of contigs 
was calculated by running Assemblathon script. In an ideal con-
dition, the minimum number of contigs that matches the whole 
genome sequence could be generated from each assembly proce-
dure. The results showed that on prokaryotic and eukaryotic 
paired-end data sets, the Velvet, the DBG assembler, assembled 

Figure 1. The comparison of total median assembling time of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) paired-end 

and single-end eukaryotic data sets.

Figure 2. The mean comparison of memory usage and CPU usage of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) 

paired-end and single-end eukaryotic data sets.
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short reads into relatively short contigs and achieved significance 
of P < .05, whereas in case of single-end data sets, ABySS pro-
duced the high number of contigs followed by Velvet and 
SSAKE. However, SSAKE and Perga produced the low number 
of contigs on paired-end data sets (Figure 3).

N50 contig length

N50 contig length was calculated by running Assemblathon 
script on contig files produced by various assemblers. On 
prokaryotic and eukaryotic paired-end data sets, ABySS pro-
duced high N50 contig length, whereas Velvet produced low 
N50 contig length.

On prokaryotic single-end data sets, Velvet produced high 
N50 contig length with a median length of 1530.00 bp followed 
by ABySS with a median length of 1054.00 bp, whereas SSAKE 
and Perga produced low N50 contig length with a median 
length of 260.50 and 348.00 bp. On eukaryotic single-end data 
sets, Edena produced high N50 contig length with a median 
length of 57 252.00 bp, whereas Perga produced low N50 contig 
length with a median length of 12 654.50 bp (Figure 4).

Genome fraction

By mapping all the contigs onto the reference genomes 
using QUAST tool, we calculated the genome fraction of all 

the contigs generated by each assemblers which showed the 
percentage of aligned contig bases in the reference genome 
(Table 4). ABySS showed the high number of genome frac-
tion with a mean of 66.3% on paired-end data sets and 
69.8% in prokaryotic and eukaryotic single-end data sets. 
Ray showed second highest genome fraction with a mean of 
58.8% followed by Velvet with third highest genome frac-
tion with a mean of 57.1% on prokaryotic paired-end data 
sets, whereas Perga, Edena, and SGA showed average accu-
racy with a mean genome fraction of 51.9%, 51.4%, and 
50.4% and SSAKE showed worst accuracy with mean 
genome fraction of 13.2%.

On single-end prokaryotic data sets, Velvet showed sec-
ond highest genome fraction with mean of 59.6% followed 
by Perga with third highest genome fraction with mean of 
57.6%, whereas Ray, SSAKE, and Edena showed average 
accuracy with mean genome fraction of 48.7%, 44.3%, and 
43.8%. On eukaryotic paired-end data sets, Edena showed 
highest genome fraction with a mean of 90.4% and the sec-
ond highest Velvet with a mean of 85.6% whereas SSAKE 
showed lowest genome fraction with a mean of 49.2% and 
74.0% in single-end and paired-end data sets (Figure 5). 
Practically, an assembler which produces the fewer number 
of contigs, with high N50 and high genome fraction, is con-
sidered to be ideal.

Figure 3. The comparison of the total number of contigs by median of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) 

paired-end and single-end eukaryotic data sets.

Figure 4. The comparison of the N50 contig length by median of each assembler for (A) paired-end and single-end prokaryotic data sets and (B) 

paired-end and single-end eukaryotic data sets.
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Discussion
We evaluated the selected assemblers with prokaryotic and 
eukaryotic paired-end and single-end Illumina-based short 
reads on a Linux-based server. Our results showed that Ray, the 
hybrid assembler, takes the highest time to complete the whole 
genome assembling on prokaryotic paired-end and single-end 
data sets21 but Ray was unable to run on eukaryotic paired-end 
and single-end data sets because Ray required huge RAM and 
multiple CPUs for assembling large number of reads. However, 
the DBG assemblers, Velvet and ABySS, are the best options 
for both types of data sets because of tremendous assembling 
speed by consuming the lowest assembling time among all 
other assemblers, whereas Velvet and ABySS are the best 
options only for eukaryotic single-end data sets.22 Edena, the 
OLC assembler, consumed lowest memory on both prokary-
otic paired-end and single-end data sets; Velvet and Edena 
consumed lowest memory on eukaryotic single-end data sets; 
and SSAKE on eukaryotic paired-end data sets. SGA, the 
string graph assembler, was also a good choice to assemble 
paired-end data sets consuming low memory,23 but in terms of 
assembler data transformation, SGA consumed more time in 
indexing, correction, duplication removal, and overlapping 
steps before assembling that made SGA more complex than 
Edena, which needs only overlapping step to be performed 
before assembling. Velvet also consumed less memory on sin-
gle-end data sets after Edena. In terms of high memory usage, 
ABySS and SSAKE were on the top on paired-end and single-
end data sets, respectively.

In summary, in case of paired-end and single-end prokary-
otic genomes, ABySS efficiently produced genome assembly 
and consumed less amount of time but consumed high amount 
of memory,24 whereas Velvet proved to be a time-efficient and 
memory-efficient program for only single-end data sets. Edena 
was a memory-efficient program for both types of data sets, 
and SGA was also a memory-efficient program, but it is only 
available for paired-end data.

ABySS and Velvet also provided high scalability to handle a 
large amount of data than rest of the assemblers.

In terms of total number of contigs, we found that on 
paired-end data set, the Velvet, produced the greater number of 
contigs but low N50 value, whereas ABySS produced the 
greater number of contigs on single-end data sets and showed 
high N50 value on both data sets.25 This contrasted with the 
contigs produced from Edena, SGA, Ray, SSAKE, and Perga 
that produced the low number of contigs and low N50.

Ideally, contigs with high N50 and high genome fraction 
were our expectation but Velvet and ABySS worked more con-
servatively than others when it came to merging small contigs 
into larger contigs, which gave an assembly with a larger num-
ber of contigs.26 There could be a number of different things 
that might have led to this result such as k-mer size for the 
assembly, quality of the single-end vs paired-end data, and a 
bunch of other parameters that could have been used to build 
the assemblies.

To check the accuracy of genome assembly, the contigs were 
aligned to their related reference genomes using QUAST tool. 
ABySS showed high number of genome fraction on both 
paired-end and single-end data sets followed by Ray on paired-
end data sets, and Velvet showed second highest genome frac-
tion on single-end data sets.

Velvet and ABySS could be the best choice for both paired-
end and single-end prokaryotic data sets with highest genome 
fraction among all selected assemblers27 but still there are 
some improvements needed to be incorporated into ABySS. 
There are several ways in which ABySS can be improved. 
ABySS consumption of memory and CPU on paired-end data 
sets is much higher than single-end data sets. ABySS mostly 
relies on mate pairs to assemble their contigs. This approach 
may perform poorly in case of lack of coverage and it has a 
known issue with deadlocking when using higher k values. So, 
tackling these issues and decreasing the memory and CPU 
usage make ABySS to be best in all other assemblers. Many 
research groups worldwide are working on building better 
genome assemblers. A group of researchers at the European 
Bioinformatics Institute28 developed the DBG-based genome 
assembler Velvet. Canada’s Michael Smith Genome Sciences 
Centre29 developed ABySS. These research groups are still 
working on improving their assemblers and they periodically 
release latest versions of their assemblers. De Bruijn graph–
based genome assemblers are considered as the best genome 
assemblers.30

Table 4. List of all assemblers with their mean genome fraction.

ASSEMBLER PROKARyOTiC 
SiNgLE-END

PROKARyOTiC 
PAiRED-END

ABySS 69.8 66.3

Velvet 59.6 57.1

Edena 43.8 51.4

SgA — 50.4

Ray 48.7 58.8

SSAKE 44.3 13.2

Perga 57.6 51.9

ASSEMBLER EUKARyOTiC 
SiNgLE-END

EUKARyOTiC 
PAiRED-END

ABySS 85.4 82.4

Velvet 82.6 85.6

Edena 62.2 90.4

Perga 82.0 83.2

SgA — 52.4

SSAKE 49.2 74.0
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Conclusions
Our study evaluated 7 de novo sequence assemblers in terms 
of memory, time, and accuracy. We found that each assembler 
is capable of assembling whole prokaryotic or whole eukary-
otic genome but the hybrid assembler Ray is not capable of 
assembling whole eukaryotic genome if you have about 4 GB 
of RAM or less. The selection of the best assembler is depend-
ent on the uniqueness of the data sets and the user require-
ments. On single-end data sets, Velvet and ABySS, produced 
generally the best results among all 7 assemblers with com-
paratively low assembling time and high prokaryotic and 
eukaryotic genome fractions. Velvet also consumed the lowest 
memory usage on both single-end data sets. Some improve-
ments are needed in ABySS including reduction in memory 
and CPU usage. On paired-end data sets, when a large amount 
of memory is not available, SGA and Edena might be a good 
choice. The hybrid approach, Ray, also showed high genome 
fraction; however, extremely high assembling time used by the 
Ray might make it prohibitively slow on larger data sets.
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