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Abstract: Specific proteins and processes have been identified in post-myocardial infarction (MI)
pathological remodeling, but a comprehensive understanding of the complete molecular evolution is
lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days
after infarction to feed machine-learning algorithms. We cross-validated the results using available
clinical and experimental information. MI progression was accompanied by the regulation of
adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region
was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis
was among the first morphogenic responses detected as being sustained over time, but other processes
suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally,
protein-triggering analysis established the key genes mediating each process at each time point,
as well as the complete adverse remodeling response. We modeled the behaviors of these genes,
generating a description of the integrative mechanism of action for MI progression. This mechanistic
analysis overlapped at different time points; the common pathways between the source proteins
and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus,
our data delineate a structured and comprehensive picture of the molecular remodeling process,
identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during
disease progression.

Keywords: myocardial infarction; deep learning; gene regulation; transcriptomics

1. Introduction

Myocardial infarction (MI) occurs when blood flow suddenly stops due to occlusion
of a coronary artery, leading to local ischemia in the heart [1-3]. This condition triggers an
adverse myocardial remodeling response involving a wide variety of signaling pathways,
potentially including extracellular matrix (ECM) dysregulation, cardiomyocyte apoptosis,
and cardiogenic processes, such as myocyte concentric and eccentric hypertrophy, slippage,
accumulation of interstitial tissue, a molecular shift towards an embryonic pattern, and loss
of cardiac energy reserves [4,5]. Cardiac remodeling secondary to MI is a well-defined pro-
cess that may ultimately lead to heart failure (HF) [6-8], but the specific dynamic molecular
mechanisms underlying this progression have not been fully characterized. This process
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has been examined in several studies using small experimental animal models, mainly pro-
viding data about individual genes or proteins [9-12]. Although these investigations have
provided valuable information regarding cardiac remodeling, they have been insufficient
for capturing this complex process as a whole.

Increasing evidence supports the idea that specific biological processes (e.g., protein—
protein interactions or epigenetic regulation) are likely influenced by the biological context,
such as a specific tissue or a certain disease [13-16]. Compared to small animal models,
large experimental animal models more closely resemble human cardiac physiology, func-
tion, and anatomy; therefore, their use constitutes a key step in translating experimentally
obtained information into clinical use. In addition, vast amounts of data are constantly
being generated, and compiling, analyzing, and interpreting this information as a whole
constitutes an overwhelming task. For this purpose, new technologies are rapidly emerging
that combine different engineering approaches and bioinformatics. Within this context,
systems biology arose as an interdisciplinary field of study with the aim of unravelling the
key interactions within complex biological networks following a holistic approach based
on computational and mathematical models.

Using transcriptomic information from infarcted and remote in vivo swine heart tis-
sues, we extensively analyzed the temporal and region-specific myocardial gene expression
patterns in response to MI [17]. To determine the underlying molecular cause of the ob-
served cardiac remodeling, we incorporated this transcriptomic data into a deep learning
model, the Therapeutic Performance Mapping System (TPMS®) (Figure 1) [18]. TPMS®
applies artificial intelligence and pattern recognition techniques to combine interactomic
data with the molecular and clinical responses observed in patients. First, the interac-
tomic information is used to generate a skeleton for computational models, which act
as a network of potential mechanistic interactions. Second, this network is fitted into
a deep learning model and trained using clinical and molecular responses observed in
patients. This ultimately results in the generation of a mathematical model capable of both
reproducing existing knowledge and discerning the mechanisms of action hidden under
thousands of molecular interactions that are otherwise inaccessible.

In the present study, we incorporated transcriptomic data obtained from infarcted
porcine hearts at different time points into their corresponding mathematical configurations
to gain insights into the molecular evolution of MI over time and its development into HE.
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Figure 1. Schematic representation of the implemented systems biology workflow. (1) First, we characterized myocardial

infarction (MI) at the molecular level via manual curation of the literature and using a compendium of massive public

databases describing the molecular interactions of interest. (2) In parallel, we used experimental transcriptomic data to

define the molecular behavior of MI at each time point. (3) We used the information to generate a map of proteins regulated

by the obtained experimental data. (4) We fed the mathematical models to identify patterns in the data, (5) identify key

regulatory proteins, and (6) predict new mechanisms of action. (7) The final result included a scientific justification of every

prediction. ANN: artificial neural network.

2. Materials and Methods
2.1. Myocardial Infarction Model

Female Landrace x Large White pigs (1 = 9) were premedicated with intramuscular
(IM) azaperone (10 mg/kg) (Stresnil®, Laboratorios Esteve, Barcelona, Spain), and then
administered intravenous (IV) pentobarbital sodium (15 mg/kg) (Tiobarbital® 1 g, B. Braun,
Melsungen, Germany). These pigs underwent endotracheal intubation with 2% inhaled
isoflurane as the anesthesia. During the procedure, IV fentanyl (0.75 mg/kg/45 min)
(Fentanest®, Kern Pharma, Madrid, Spain) was administered as an analgesic, and IV
atracurium besylate (1.5 mg/kg bolus) (Tracrium®, GlaxoSmithKline, Brentford, UK) was
used to induce muscular relaxation. After a left lateral thoracotomy, MI was induced via
permanent ligation of the circumflex artery as described previously [19]. IM tulathromycin
(2.5 mg/kg) (Draxxin®, Pfizer Animal Health, New York, NY, USA) was administered as
an antibiotic prophylactic, and a transdermal fentanyl patch was applied to facilitate post-
operative analgesic care. These surgical interventions were monitored by electrocardiogram
(ECG), capnography, and pulse oximetry, and with noninvasive measurement of arterial
blood pressure and temperature.
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Six days (n = 3), 30 days (n = 3), or 45 days (n = 3) after MI, animals were randomly
sacrificed by an IV overdose of potassium chloride solution. At each temporal stage, we
analyzed three paired myocardial samples from the infarct core and non-infarcted remote
myocardium. As a physiological control, we analyzed myocardial samples from healthy
animals (n = 3).

2.2. Tissue Collection and RNA Extraction

Following sternotomy, hearts were washed in ice-cold buffered saline solution to
remove blood residue. Biopsies were obtained from the infarct core (center of the scar on
the left ventricle), remote myocardium (non-infarcted interventricular septum), and control
myocardium (healthy animals). To ensure RNA stabilization, biopsies were preserved in
Allprotect Tissue Reagent (Qiagen, Hilden, Germany) at room temperature. Total RNA
was isolated using the RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden, Germany). RNA
purity and integrity were assessed by spectrophotometry (NanoDrop ND-1000, NanoDrop
Technologies, Thermo Fisher Scientific, Waltham, MA, USA) and nanoelectrophoresis (2100
Bioanalyzer, Agilent Technologies, Santa Clara, CA, USA).

2.3. Microarray Gene Expression Analysis

We obtained microarray expression profiles using the GeneChip® Porcine Genome
Array (Affymetrix). We processed 200 ng of total RNA from each sample, labeling, frag-
menting, and hybridizing it to the GeneChip® following the manufacturer’s instructions.
Arrays were scanned using an Affymetrix GeneChip® Scanner 3000 7 G. The raw expres-
sion data were preprocessed using the robust multichip average (RMA) normalization
method [20], yielding 24,123 probe sets on a log2 basis.

2.4. Compilation of Transcriptomic Data

First, the data were filtered to discard all entries with contradictory information (i.e.,
two entries for the same gene name with negative and positive ratio values) and to identify
the number of uniquely altered genes. Next, the swine transcriptomics were translated
into their human equivalents via reciprocal best hits (RBHs) with BLAST and Gene Name
Correspondence. Pig-to-human RBHs were identified using the InParanoid database [21].
We only included genes with an associated protein product. Gene information was mapped
one-to-one to its protein product for its introduction into the protein network. For each gene,
the correlation between RNA and protein levels was assessed using an RNA-to-protein
ratio, as described previously [22]. If RBHs were not found for a protein, we used the
reviewed UniProt entry for the human protein with a matching gene name (Supplementary
Table S1). Next, the proteins were labeled according to whether a protein is activated or
inhibited under physiological conditions, and we used this information as a reference for
restricting detection to the variability from these values, as defined by p-values adjusted
using the Benjamini-Hochberg procedure to control the false discovery rate (FDR) at
0.01 [23,24]. Finally, proteins with human UniProt IDs within each cohort were used as
molecular restrictions for our models.

2.5. Molecular Characterization of Pathology

We integrated published data with our results to define a set of molecular profiles
characterizing MI and adverse myocardial remodeling, which were used to build the
protein network and mathematical model.

We carefully and extensively reviewed articles in the PubMed database (abstract or full-
text depending on the inclusion of information on the molecular definition of disease) that
included the following search strings: myocardial infarction—"“myocardial infarction”[title]
AND (“pathology”[All Fields] OR “physiology”[All Fields] OR “pathophysiology”[All
Fields]) AND “molecular”[All Fields] AND (Review[ptyp] AND English[lang]); cardiac
remodeling—(“cardiac remodeling”[title] OR “cardiac remodelling”[title]) AND (“pathol-
ogy”[All Fields] OR “physiology”[All Fields] OR “pathophysiology”[All Fields]) AND
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“molecular”[All Fields] AND English[lang]). If the evidence for candidate proteins was
not enough to include them on the effector list, specific searches for the protein were
performed to assess its validity. We further characterized the pathophysiological processes
at the protein level using a set of 202 unique proteins (121 related to MI and 136 to cardiac
remodeling, with some overlap) that centered our analysis on the pathological conditions
of interest in the human biological network.

2.6. Therapeutic Performance Mapping System (TPMS) Generation of Mathematical Models

We studied the pathology at 6, 30, and 45 days of evolution in samples from the infarct
core (C6, C30, and C45, respectively), which included 4737, 4730, and 4203 differentially
expressed proteins, respectively. We also studied samples from the remote area surrounding
the infarct localization at the same time points (R6, R30, and R45, respectively), which
included 122, 117, and 21 differentially expressed proteins, respectively. Using these
data, we identified the main pathophysiological processes that were altered in MI and
cardiac remodeling.

We trained the mathematical models using a large collection of well-established
pathophysiological signals and clinical information relevant to the examined pathologies.
Molecular descriptions of these input-output signals were obtained primarily via manual
literature mining and from a compendium of massive databases that accumulate biological
and clinical knowledge (e.g., KEGG, MINT, REACTOME, BIOGRID, and DrugBank). The
model inputs included information on drugs, pathologies, and protein/gene relationships
that could inhibit or activate one or more nodes of the protein network (their targets),
triggering a perturbation through the system. The model outputs were experimental
microarray data regarding upregulated or downregulated genes/proteins and clinical
information. Using the model’s input and output data, mathematical algorithms were
generated to trace a change or perturbation from one to another, elucidating the mechanism
of action explaining this connection.

The generated collection of known input-output physiological signals can be envi-
sioned as a list of physiological principles that are representative of all humans or of
particular pathophysiological conditions. These sets of rules are collated to form a “truth
table” that every constructed mathematical model must satisfy. Transcriptomic infor-
mation was compiled, analyzed, and included in the models when it met the reliability
requirements described above.

The constructed models were used to determine the weight of the relative value of
each protein (node) relationship. However, the very high number of links exponentially
increased the number of parameters to solve. To optimize the system, we used two different
approaches: one based on randomized systems (Monte Carlo-based system) [25], and the
other based on information derived from the network topology [26].

2.7. Analyzing and Solving the Mathematical Models

The TPMS technology employs two different but complementary strategies to solve
mathematical models. The artificial neural network (ANN) strategy can identify relation-
ships among regions of the network (generalization). This strategy provides a predictive
value that infers the probability that a specific relationship exists between two or more
sets of proteins. In this case, we tested each differential protein against the described
cardiac remodeling signature. Next, the model’s predictive capacity is cross-validated
using different sets of data towards what is described in the literature and databases.

The second strategy is the sampling method, which allows the observed effects to be
traced back to specific molecules or drugs. Sampling methods are only applied once a key
region of the protein map has been identified using ANNSs or is suggested by experimental
work. Once a response (indication, adverse effects, specific clinical improvements, etc.) has
been identified and linked to a specific stimulus (compound, pathology, protein expression
alteration, etc.) using ANNSs, sampling methods enable analysis of the mechanism of action
and elucidation of the hidden relationships between them.
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2.8. Biomarker Identification

Using the characterization of MI, we performed multivariate analysis to evaluate com-
binations of two, three, or five proteins and identify the combinations that best classified
either the solutions of the models or the microarray experiments. To assess the probability
of correctly predicting and classifying the set of samples of high-throughput data, we used
a “leave one out” strategy, which involved analyzing a subset of samples that were not
previously included in the models.

The combinations were obtained via four strategies. To classify the solutions of the
models, we used a model-based strategy and a model/HT-based strategy. Both strategies
identified the protein combinations that better classified the solutions of the models to
their corresponding cohort. The model/HT-based strategy additionally filtered the protein
combinations using the high-throughput data (i.e., what was measured in the microarray),
reducing the number of proteins and facilitating the identification of a combination with a
higher generalization capability.

To classify the microarray experiments, we used an HT-based strategy and an HT/
model-based strategy. Both strategies identified the combinations of proteins that better
classified the microarray experiments to their corresponding cohort. The HT-based strategy
did not use the information from the disease models, whereas the HT /model-based strategy
filtered the combinations by the proteins found to be relevant in the models.

Using these strategies, we generated a list of 106 individual proteins that represent po-
tential biomarkers of the description of the pathology at a given time point (Supplementary
Table S2).

2.9. Generating A Molecular Model of Cardiac Remodeling

Starting from the differential proteins for each cohort, we performed a relationship
analysis with ANNSs to identify proteins mechanistically related to cardiac remodeling.
Proteins having a predictive value > 50% (corresponding to ~20% probability of accepting
false positives) were included for further evaluation (Table 1). Upon identifying the differ-
ential proteins more closely related to cardiac remodeling, two analyses were performed.
A gene set enrichment analysis (GSEA) based on functional annotation of the differentially
expressed genes was used to identify relevant biological processes (KEGG pathways, Gene
Ontology (GO) function, and GO process terms; Supplementary Table S3) [27,28]. We
also applied triggering-protein analysis to identify the key proteins in a network that
strongly affect the rest of the dataset (i.e., the proteins triggering the observed output).
These proteins were further investigated and sampling methods used to explore their exact
relationship to cardiac remodeling.

Table 1. Number of proteins mechanistically related to cardiac remodeling.

Protein Localization Ce C30 C45 R6 R30 R45

# of proteins mechanistically

related to cardiac remodeling 3302 3267 2930 83 77 13

C: infarct core area; R: remote area; 6: 6 days after infarction; 30: 30 days after infarction; 45: 45 days after infarction.

2.10. Data Integration

We integrated the in silico analysis of the microarray gene expression data to identify
relationships across signature datasets, providing an independent assessment and func-
tional validation. To cross-validate our findings, we used several complementary methods
for complex data integration. The Metascape bioinformatics tool [29] was used for pathway
analyses, the Perseus software platform (V1.6.5.0) [30] for high-dimensional omics data
analysis, and the STRING [31] online tool to explore relevant protein—protein interactions
(PPI) at 0.9 confidence.
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3. Results
3.1. High-Dimensional Data Integration of Microarray Gene Expression during 6 Weeks of
MI Progression

Each distinct tissue dataset (C6, C30, C45, R6, R30, and R45) revealed substantial
changes over 6 weeks of MI progression. To determine whether these changes were
consistent across data types and to validate their time-dependent evolution in functional
pathways, we adopted three independent strategies.

First, we sought to assess the internal structure of the data in a way that best explained
its variance. Due to the high complexity of the datasets, we used the Perseus platform
to perform principal component analysis (PCA) for the reduction of dimensionality. This
approach clearly separated the core infarcted area from the remote area and the control
group, which clustered together (Figure 2).
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[o] >
o -
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Figure 2. Principal component analysis. The visual output showing perfect separation of the six
groups and the two different regions (upper left plot).

Second, we employed Metascape algorithms to sort out the most affected pathways in
the gene set according to their GO terms (Figure 3A). We were able to further cluster them
according to their biological significance and associated p-values (Figure 3B,C). These data
suggested that MI progression was accompanied by a great alteration in mitochondrial
metabolism, as well as in the regulation of adipogenesis, fatty acid metabolism, and
epithelial-mesenchymal transition processes.

Finally, GSEA and overlapping tests allowed the contextualization of this informa-
tion and distribution of the GO terms across core vs. control, and remote vs. control
datasets. This revealed intrinsic differences between the core and remote regions of the
heart after MI (Figure 4A—C). Specifically, the core region exhibited greater deterioration of
cardiac contraction, depolarization during action potentials, and of heart rate regulation
(Figure 4A, upper panels), whereas the remote region exhibited a heavy enrichment of
cellular respiration processes (Figure 4A, lower panels).

3.2. Time-Dependent Identification of MI-Derived Biomarkers Strongly Related to
Cardiac Remodeling

To specifically investigate the adverse cardiac remodeling processes that occur after MI,
we integrated the high-throughput microarray data with molecular information available
in the literature. Analysis of all tissues (infarcted core and remote) and time points (6,
30, and 45 days) identified 105 proteins (Figure 5B; Supplementary Table S2). Of these,
42 (40%) were previously described in the literature as being related to MI and showed
associations with adverse remodeling (DPP4, TNR1A, and IRAK4), apoptosis and survival
(IQGA1, RICTR, p38, JNK, FADD, FOXO1, CASP8, ACINU, and CSN3), inflammation and
anti-inflammatory processes (LYAM2, TCAM2, AKT3, CCL5, C3, NFKB1, TF65, TNR1A,
CXCL7, IRAK4, FOXO4, TLR4, S10A2, and LSTS8), fibrosis (ERK, PGS2, SMAD6, SMAD2,
and LST8), impaired contractility (ML12A), regeneration and cell proliferation (HMMR,
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KI67, SMADI1, and CSN3), heart development (SMAD6 and PRDM1), metabolism shift
(AAPK2), and cardiac hypertrophy (CATB, IQGA1, and CSN3).

Notably, seven proteins overlapped between the different time points regardless of
the myocardial region (Table 2). Of the 105 proteins, 52 (49.5%) were recognized by both
the models and the transcriptomic data analysis (model/HT or HT/model identification
method). As these proteins were identified in models of both the pathology and the ex-
perimental data, they were considered more robust. Moreover, we found two distinct
combinations of proteins from the infarct core data at each time point, which had general-
ization capabilities and accuracies of 100% (p < 0.05; Table 3). No reliable combinations
were found using remote myocardium data.
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Figure 3. Functional validation of the integration of gene expression data over 6 weeks after myocardial infarction. Using
Metascape algorithms, we identified the most affected biological processes according to their GO terminology (A). These
processes were then clearly clustered using a network analysis based on their biological significance (B) and p-values (C).
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Figure 4. Enrichment and overlap analyses and heatmap clustering. (A) Results of the enrichment and overlap analyses.

Upper panels: infarct core region. Lower panels: remote myocardium region. The enrichment score (ES) reflects the degree

to which a gene set is over-represented at the top or bottom of a ranked list of genes, with a positive or negative ES indicating

gene set enrichment at the top or bottom of the list, respectively. ES is calculated by walking down the ranked list of genes,

increasing a running-sum statistic when a gene is in the gene set and decreasing it when it is absent. The magnitude of

the increment depends on the correlation of the gene with the phenotype. The ES is the maximum deviation from zero

encountered in walking the list. (B,C) Heatmap clustering. (B) The clustered genes in the leading-edge subsets in the upper
panels in (A) (core region). (C) The clustered genes in the leading-edge subsets in the lower panels in (a) (remote region).
Expression values are represented by colors, with red, pink, light blue, and dark blue indicating high, moderate, low, and

lowest expression, respectively.
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Figure 5. Protein—protein interaction network analysis. (A) Venn diagram depicting the common enriched pathways

between the three different time points. (B) Network analysis using STRING software, including the 105 protein candidates
identified by artificial intelligence analysis techniques. Left: the cloud of interactions at 0.9 evidence. Right: the same
interactions clustered by k-means for vector quantization at K = 6. Number of nodes: 105; number of edges: 128; average

node degree: 2.44; average local clustering coefficient: 0.469; expected number of edges: 62; PPI enrichment p-value:
132 x 1077

Table 2. Proteins that overlap between time points regardless of the myocardial region.

Protein Information e Identified as Classifier
- - Identification Secreted Related to MI
UniProt Protein Name Method Cé C30 C45 R6 R30 R45
P27487 DPP4 Models, models/HT 1 1 1 — 1 1 1 1
Q6R327 RICTR Models 1 1 1 — — 1 0 1
Q15759 MK11 Models 1 1 1 - — — 1 1
Models, models/HT,
P53778 MK12 HT/models 1 — 1 1 1 — 1 1
P07585 PGS2 Models — 1 1 — 1 1 1
075676 KS6A4 Models — 1 1 1 - — 1 0
Q9UKLO RCOR1 Models — — 1 1 1 — 1 0

Models: the combinations of proteins that better classify the solution of the model to the corresponding cohort; models/HT: the combinations
of proteins that better classify the solution of the model to the corresponding cohort filtered by the proteins acting according to the high-
throughput (HT) data; HT/models: the combinations of proteins that better classify the microarray experiments to the corresponding
cohort filtered by the proteins relevant in the models; 1: detected /positive; 0: negative; —: not detected.
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Table 3. Best combinations differentiating infarcted and non-infarcted hearts using data from C6, C30, and C45.
Cé6 Uniprot Protein Name GeCnerali.z .ation Accuracy Type of Secreted ? Related to MI P
apability Results
P19838 NFKB1 v v
014641 DVL2 v X
Combination 1 Q06187 BTK 100% 100% Models/HT v X
P01100 FOS v v
P61981 1433G v X
P53778 MAPK12 v v
Q9Y243 AKT3 v v
Combination 2 P28482 MAPKO1 100% 100% Models/HT v v
P19838 NFKB1 v v
P45984 MAPKO09 v v
C30
P62942 FKB1A v v
Combination 1 Q14790 CASES 100% 100% Models/HT », »
P62942 FKB1A v v
Combination 2 P30559 OXYR 100% 100% Models/HT », »
C45
P27487 DPP4 v v
075330 HMMR v v
Combination 1 P03952 KLKB1 100% 100% Models/HT
P07203 GPX1
P31645 SLC6A4
P62942 FKB1A v v
Combination 2 03952 KLKB1 100% 100% Models/HT % Y

2 Indicates whether the protein is secreted and/or has been detected in plasma. ? Indicates if there is a previously known relationship
between the protein and MI. Models/HT: the combinations of proteins that better classify the solution of the model to the corresponding
cohort filtered by the proteins according to the high-throughput (HT) data; MI: myocardial infarction; C6: infarct core area 6 days after
infarction; C30: infarct core area 30 days after infarction; C45: infarct core area 45 days after infarction.

3.3. Description of the Molecular Mechanistic Relationships Defining MI Evolution

Using the differentially expressed proteins found to be related to cardiac remodeling
in the ANN analysis, we performed enrichment analysis to identify and understand the
mechanism of action of cardiac remodeling in the infarct core at each time point. We
identified a total of 355 processes that were altered in the infarct core region for at least one
time point (221 upregulated and 134 downregulated). As shown in Figure 5A and Sup-
plementary Table S3, there was a substantial overlap between the processes altered in the
infarct core region at all three time points (C6, C30, and C45), including 8 KEGG pathways,
21 GO function terms, and 72 GO process terms. Other processes were specifically altered
at one time point or two time points—mainly during the C6-C30 and C30-C45 transitions,
although six GO process terms overlapped between C6 and C45.

Importantly, we found that 101 processes were altered in the infarct core through-
out the progression to 45 days postinfarction. Most of the upregulated processes were
related to ECM formation (organization, assembly, and adhesion) and to ECM components
(hyaluronic, heparin, collagen, and glycosaminoglycan-related processes). We also detected
alterations in processes related to muscle contraction, with an upregulation of actin- and
calcium-related processes and downregulation of cardiac muscle contraction. Most of the
downregulated processes were related to metabolism.

Some of the altered processes exhibited time-dependent behavior. Inflammation
clearly appeared to be upregulated 6 days post-MI and decreased in later stages. Processes
related to angiogenesis, cell proliferation, and morphogenesis started to increase 30 days
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post-MI and become more relevant by 45 days post-MI. Apoptosis also appeared to gain
importance in the late stages. The upregulated pathways at 45 days suggested some
normalization of metabolism, though several processes remained altered (Figure 6).
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Figure 6. Graphic representation of the evolution of affected processes throughout the progression of myocardial infarction.

Values on the X-axis show time evolution. Values on the Y-axis indicate upregulation (v > 0), downregulation (v < 0), or a

lack of differential expression (v = 0 and matching the X-axis).

3.4. Identification of Key Proteins Driving Post-MI Alterations

After the mechanistically affected pathways were identified, triggering-protein analy-
sis allowed us to determine the mechanistic relationship between paired sets of proteins.
Each analyzed time point presented a list of particular source proteins (Table 4) with some
degree of overlap between the different cohorts. Overall, the transcriptomic experiments in
the infarct core region identified 20 proteins (primarily involved in growth factor signaling)
as the main drivers, or source proteins, of post-MI alterations. KPCA, PTN11, JAK2, 1433B,
ERBB2, VEGFA, JUN, RAF], and IGF1R were identified as source proteins at all three time
points. MAPKO3, SRC, STAT1, NGF, RAC1, and TF65 were identified as common source
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proteins in C6 and C30. CBLB was common to C6 and C45, though its activity changed
from day 6 (activated) to day 45 (inhibited). GCR, CDC42, and GRB2 were identified as
source proteins only in C30, whereas MAPKO01 was found specifically in C45.

Table 4. Identification of time-dependent source proteins that explain the molecular mechanism of
action in myocardial infarction.

Time-Points of Protein Expression in the Core MI Area C6 C30 C45

Proteins available for analysis @ 1182 1150 1033

Maximum % of proteins explained by other differential proteins ® 49% 48% 48%
Number of source proteins © 16 18 11

% of explainable proteins explained by triggering proteins 4 92% 93% 89%

Proteins were identified by triggering-protein analysis. ® The number of differential proteins related to cardiac
remodeling available to be analyzed for each time point. ® The percentage of evaluable proteins that were linked
to another of the evaluated proteins (i.e., explainable by other proteins). ¢ The number of source proteins selected.
d The percentage of explainable proteins (i.e., proteins in the second row) that are explained by or linked to the
selected source proteins. C: infarcted core region.

3.5. Unraveling the Molecular Mechanism of Action Relating the Source Proteins to
Cardiac Remodeling

Mechanistic analysis of the relationship between the identified source proteins and
cardiac remodeling revealed an overlap between the different time points. The common
pathways between the source proteins and cardiac remodeling (Figure 7) involved IGFIR,
RAF1, KPCA, JUN, and PTN11. Analysis of the downstream signaling revealed a mecha-
nism of action potentially involving 18 proteins, 15 of which were differentially expressed
during at least one time point (Table 5). The ERK kinases MAPKO01 and MAPKO03 were
apparently activated by PTPN11 and PKCA, respectively, and both were upregulated
at all three time points. The other upstream proteins (IGF1R and RAF1) were inhibited.
In addition, PTPN11 was functionally inhibited by MAPKO3, resulting in a reduction in
MAPKO1 activity.

With regard to cellular proliferation, survival, and differentiation, we found that TSC2
was upregulated in C45. We also detected heavy upregulation of the ECM remodeling
protein MMP14 and of BAD and P53, which are key components of apoptosis and sur-
vival. Accordingly, at all three time points, we detected downregulation of MTOR, SL9A1
(hypertrophy-related), and THB (impaired myocyte contractility).



Cells 2021, 10, 3268 15 of 19

€6 and €30 Common sources
A [ common sources | B c

RAF1 IGF1R
R
A st

/ ; e [ s;c '| [ MA‘PK; | [ I;A'PK‘E) | I‘TF‘SS |
‘‘‘‘‘ s
‘ | e \ - BAD
JUN |« [ \
v

=
[on ] [ww] [wws]  [#]

A vV
Adverse Cardiac Remodeling
| TNFa l

A 4 A
Ps3 [[hs | [ Ressxa1-3

; P ""A
g Adverse Cardiac Remodeling |<

X y v ¥
| Adverse Cardiac Remodeling I

Figure 7. Mechanisms of action determined by artificial neural network (ANN) analysis. (A) Common mechanistic relationship between cardiac remodeling and the common source
proteins (in grey: IGFIR, RAF1, KPCA, JUN, and PTN11) identified at all three analyzed time points in the infarct core region. (B—D) Mechanistic representation of (B) C6~C30 common
source proteins (SRC, STAT1, MK03, RAC1, and TF65), (C) C30 source proteins (GRB2 and CDC42), and (D) C45 source proteins (MKO01). Continuous colored lines depict links present only
in one cohort. Discontinued lines depict links present in two cohorts. Continuous grey lines depict links present at all time points. C6: infarct core area 6 days after infarction; C30: infarct
core area 30 days after infarction; C45: infarct core area 45 days after infarction.
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Table 5. Proteins involved in the common mechanism of action between time points for the infarct
core region and their log ratios at each time point.

Entry Name UniProt Code Log Ratio C6 Log Ratio C30 Log Ratio C45
TNFA P01375 - - -
RAF1 P04049 —0.69 —0.90 —0.71

P53 P04637 0.82 0.84 -
JUN P05412 —1.49 —1.46 —1.36
IGFIR P08069 —1.61 —0.993 —1.54
THB P10828 —1.59 —2.30 —1.44
KPCA9 P17252 2.61 2.30 1.79
SLCY9A1 P19634 - —0.56 -
MAPKO03 P27361 0.60 0.84 -
MAPKO1 P28482 - - —0.78
MTOR P42345 —0.57 —0.7 —0.59
TSC2 P49815 - - 0.75
MMP14 P50281 1.32 1.74 1.40
RPS6KA3 P51812 - - —0.49
PTNP11 Q06124 0.86 0.58 0.64
RPS6KA2 Q15349 - - -
RPS6KA1 Q15418 - - -
BAD Q92934 0.90 1.07 0.81

Cé6: infarct core area 6 days after infarction; C30: infarct core area 30 days after infarction; C45: infarct core area

45 days after infarction.

4. Discussion

Our first goal was to assess the data structure of the transcriptomic information ob-
tained in vivo. We integrated this highly dimensional data and analyzed its composition,
revealing that MI progression was accompanied by a regulation of adipogenesis, fatty acid
metabolism, and epithelial-mesenchymal transition processes. Moreover, this analysis
uncovered robust segregation between the infarct core samples versus the remote my-
ocardium and controls, indicating major differences between these areas at the regulatory
level. We specifically investigated the biological significance underlying these structural
variations, and found that the infarct core region of the heart was enriched in affected
processes relating to heart muscle contraction and membrane depolarization. In contrast,
the remote myocardium was heavily affected by respiratory metabolism deficiencies. These
results helped contextualize the MI.

Adverse ventricular remodeling is a hallmark of MI evolution and progression to-
wards HF [32-34]; therefore, we investigated which of the identified mechanisms were
related to adverse cardiac remodeling. Using machine learning techniques to analyze all
tissues and time points, we identified 105 altered genes that are most likely related to
cardiac remodeling in MI. This provided a list of potential biomarkers that may indicate
the pathological evolution according to each time point. Further analysis revealed two
distinct combinations of genes from the infarct core data at each time point, that exhibited
generalization capabilities and accuracies of 100%, suggesting that these genes are of great
importance in describing the whole progression.

With this information, we performed enrichment analyses to examine the mechanism
of action of cardiac remodeling in the infarct core at each time point. A total of 355 processes
were altered in the infarct core for at least one time point, and 101 were altered at all time
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points (i.e., 6, 30, and 45 days after infarction). The high number of upregulated ECM-
related processes was consistent with previous reports that glycosaminoglycan mediates
cardiac remodeling by facilitating the inflammatory response [35]. In addition to its
role in remodeling, the ECM also plays an important role in cell communication [36]
and contributes to helping damaged cardiac tissue. To avoid ischemic conditions, the
organism will attempt to revascularize and repair the affected area, promoting angiogenesis.
Accordingly, angiogenesis was among the first morphogenic responses that we detected as
being sustained over time. We also detected the apparent upregulation of other processes
related to the morphogenesis of different organs, suggesting that postischemic cells present
in the heart could be trying to recapitulate embryogenic processes and bolster regeneration.

Upon identification of the altered processes, we performed a protein-triggering analy-
sis to establish the key genes mediating the adverse remodeling response. We then modeled
the behaviors of these genes, generating the first description of an integrative mechanism
of action for MI progression. This mechanistic analysis overlapped at different time points,
and the pathways that were common between the source proteins and cardiac remodeling
involved IGF1IR, RAF1, KPCA, JUN, and PTN11 as modulators. The downstream signaling
of these proteins produces a mechanism of action potentially involving 18 proteins, 15 of
which were differentially expressed in at least one cohort.

The present study is the first to perform an in-depth analysis of the molecular changes
characterizing the progression of MIL. Our results contain a large amount of intricate
information. As expected, MI evolution encompasses a myriad of altered processes and
specific proteins that regulate time-dependent stages and determine the final extent of
the pathology.

5. Conclusions

We have integrated dynamic transcriptomic regulation and all available information
on MI and cardiac remodeling to delineate a clear, structured, and simplified picture of
the complete post-MI remodeling process. Furthermore, our study also elucidates new
potential targets and therapeutic windows for the treatment of MI complications and novel
avenues for MI research, with the ultimate goal of fully unravelling the whole pathology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123268/s1, Table S1: Initial protein filtering process to generate the truth table, Table S2:
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