
A
rticle

Fast
T

rack

CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation
under Codon Substitution Models
Manuel Gil,*,y,1,2,3 Marcelo Serrano Zanetti,y,1,4 Stefan Zoller,1,2 and Maria Anisimova*,1,2

1Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
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Abstract

Markov models of codon substitution naturally incorporate the structure of the genetic code and the selection intensity
at the protein level, providing a more realistic representation of protein-coding sequences compared with nucleotide or
amino acid models. Thus, for protein-coding genes, phylogenetic inference is expected to be more accurate under codon
models. So far, phylogeny reconstruction under codon models has been elusive due to computational difficulties of
dealing with high dimension matrices. Here, we present a fast maximum likelihood (ML) package for phylogenetic
inference, CodonPhyML offering hundreds of different codon models, the largest variety to date, for phylogeny inference
by ML. CodonPhyML is tested on simulated and real data and is shown to offer excellent speed and convergence
properties. In addition, CodonPhyML includes most recent fast methods for estimating phylogenetic branch supports
and provides an integral framework for models selection, including amino acid and DNA models.
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Introduction
The desire to understand how molecular changes affect
organism’s fitness and phenotype explains the growing
number of phylogenetic studies of genomic sequences, parti-
cularly protein-coding genes. Indeed, protein-coding genes
are transcribed and translated into proteins, which are ulti-
mately responsible for the inner workings of biological cells.
The evolution of protein-coding genes can be studied at the
level of DNA or amino acids. However, because the transcrip-
tion–translation machinery reads nucleotide sequences in
triplets, known as codons, modeling the substitution process
at the level of codons should provide the most realistic
description of protein-coding sequence evolution. Past years
have seen dramatic developments in modeling evolution of
protein-coding genes using Markov codon models
(Anisimova and Kosiol 2009). Unlike their DNA and amino
acid counterparts, codon models naturally incorporate the
structure of the genetic code and can distinguish between
synonymous and nonsynonymous substitutions. This means
that codon models explicitly include natural selection pres-
sure acting on proteins, typically through the nonsynony-
mous to synonymous substitution rate ratio (!= dN/dS).

Certainly, Markov codon models proved indispensible for
studies of selective pressures at the protein level, and recent
methodological developments further widened the spectrum
of their usage to include applications to sequence alignment,
studies of codon bias, and dating divergence events. Using

codon models for phylogeny reconstruction is the next logical
development. In most protein-coding genes, synonymous
substitutions should be informative about recent divergences,
whereas nonsynonymous substitutions occur at low rates and
contribute to resolving deeper divergences. Ren et al. (2005)
suggested that potential benefits of phylogeny inference
under codon models may indeed include recovering both
recent and deep nodes. Despite the common belief that syn-
onymous substitutions quickly reach saturation, recent stud-
ies showed that synonymous substitutions often carry
valuable signal even at deep divergences (Seo and Kishino
2008, 2009).

Using codon models for fast phylogeny inference is
computationally challenging as the search algorithm relies
on manipulation with much higher dimension matrices com-
pared with DNA and amino acid models: For the standard
genetic code with 61 sense codons, a Markov codon model is
defined by a 61� 61 instantaneous rate matrix. This may
explain why phylogeny inference under codon models re-
mains elusive to date. Although several implementations of
codon models exist (for a comprehensive list see Anisimova
2012), none of them specifically caters for phylogeny infer-
ence. The only implementations offering a limited number of
simple codon models for phylogeny estimation include
MrBayes (Ronquist et al. 2012) and Beast (Drummond and
Rambaut 2007), which allow Bayesian estimation, and GARLI
(Zwickl 2006) and IQPNNI (Minh et al. 2005; Schmidt and von
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Haeseler 2009), which perform tree estimation by the maxi-
mum likelihood (ML) criterion. However, the performance of
tree inference under codon models (in terms of accuracy and
speed) has not been documented for any of these programs.
Thus, phylogeny inference under codon models is currently
an uncharted territory in the field of computational molecu-
lar evolution.

New Approach
Here, for the first time, we present CodonPhyML—a compu-
tationally tractable implementation of codon models for phy-
logeny estimation using ML. CodonPhyML capitalizes on the
fast ML heuristic search algorithms implemented in PhyML
3.0 (Guindon et al. 2010). Our new package boasts the
largest number of codon models implemented in any package
to date. CodonPhyML implements a variety of time-
homogeneous and time-reversible codon models (for review
on codon models see Anisimova and Kosiol 2009). These can
be subdivided into parametric, empirical, and semiparametric
(including models based on principal component analysis
[PCA]). Most of the models can be combined with heteroge-
neity of evolutionary rates and selective pressures, and differ-
ent ways of defining instantaneous rate matrix entries (MG-,
GY-, and Yap-type) and estimating codon frequencies
(e.g., F3x4, CF3x4, and by ML)—for full details see the
Materials and Methods section.

We scrutinize the accuracy of our implementation with
rigorous tests on simulated and real data and optimize
implementation speed by adding high-performance comput-
ing and additional heuristics. In particular, we include the de
facto standard libraries (BLAS/LAPACK) for linear algebra op-
erations and exploit loop-level parallelism using OpenMP on
multicore processors. Please refer to the Materials and
Methods section for a detailed description of all available
features.

Several fast branch support methods (Anisimova et al.
2011) are available within CodonPhyML. In addition,
CodonPhyML allows a direct comparison of codon models
to DNA and amino acid models by providing adjusted log
likelihoods under DNA and amino acid models that are di-
rectly comparable to the log likelihoods obtained under
codon models (Seo and Kishino 2008, 2009).

Results and Discussion

Verification of Correctness
Exhaustive Evaluation and Comparison on Quintet Topologies
To ensure the correctness of the log-likelihood calculation
and optimization, we compared the results of optimization
obtained from CodonPhyML and CodeML on simulated
quintet alignments (table 1, data set S1). The observed differ-
ences between optimized log likelihoods, total tree lengths,
and model parameters were very small (supplementary table
S1, Supplementary Material online), often nearly identical or
differing only at the third decimal. Even the highest observed
difference was less than 1 (for the log likelihood under model
M5, tree 10 in supplementary table S1, Supplementary

Material online). Log likelihoods obtained by CodonPhyML
were always at least as good as values obtained by Codeml.

Statistical Consistency Property
One of the advantages of the ML estimation is the statistical
consistency, that is, under the true model, the ML estimates
converge to their true values with increased amount of data
(Rogers 1997). To test for this property, we applied
CodonPhyML with either nearest neighbor interchange
(NNI) or subtree pruning and regrafting (SPR) heuristic
searches under the true model (M0 or M3) to infer phylog-
enies for simulated 25- and 100-taxon data sets of increasing
sequence length (table 1, data set S2). The following param-
eters were monitored: total tree length (sum of branch
lengths), ! (nonsynonymous to synonymous substitution
rate ratio), � (transition to transversion rate ratio), and the
topology. Figure 1 summarizes the convergence properties for
large 100-taxon data sets (see supplementary fig. S1,
Supplementary Material online, for results with 25 taxa). In
all cases, the ML estimates moved closer to their true values
with the increase of sequence length. As expected, the esti-
mation was more precise on average when the simpler model
M0 was used for both simulation and analysis. Regardless the
number of taxa or applied model, with 10,000 codons, the
absolute error was typically � 0.1 for all parameters
(with some small exceptions for tree length because of com-
pounding of multiple errors for branches). For example, for
model M3 with an NNI search, with the increase from 100 to
1,000 and to 10,000 codons, the normalized Robinson–Foulds
(RF) distance between the estimated and the true tree de-
creased from 0.22 to 0.02 and to 0.00, respectively (see yellow
bars in fig. 1C and D). Remarkably, for large 100-taxa data sets,
even with 100 codons, the ML estimates were already close to
their true values. These results are very encouraging and sug-
gest that codon models possess the expected statistical prop-
erties for their further use in phylogenetic reconstruction
from protein-coding DNA.

Evaluation of Options and Heuristics

To test the correctness of our implementation and to evalu-
ate the performance of various heuristics—all described in
detail in the Materials and Methods section—we analyzed
simulated data of increasing number of taxa (data set S3 in

Table 1. Characterization of Simulated Data Sets.

ID No. Taxa Seq. Length
(Codons)

Kappa Omega

M0 M3

S1 5 500 2 1.5 {1.50, 0.01, 0.80}
{0.1, 0.5, 0.4}

S2 {25,100} {100,1,000,10,000} 2 1.5 {1.50, 0.01, 0.50}
{0.3, 0.6, 0.1}

S3 {60,120,240, 480} 500 2 1.5 {1.50, 0.01, 0.50}
{0.3, 0.6, 0.1}

NOTE.—Sequences were simulated using the program evolver from the PAML pack-
age, five replicates, once under M0 and once under M3, in both cases on trees
obtained with birth rate 0.2, death rate 0.05, sampling fraction 0.5, mutation rate 0.5,
and branch lengths drawn from an exponential distribution with a mean of 0.1
substitutions per branch.
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table 1, 60–480 sequences of length 500 codons) under the
correct models M0 and M3. Additionally to the log likelihood,
we examined the parameters listed in the previous section
and recorded the running times of selected combinations of
heuristics. Supplementary table S2, Supplementary Material
online, provides the specifications of the machines used for
the computations.

The inclusion of the BLAS/LAPACK libraries and the
parallelization with OpenMP were tested together. The like-
lihoods obtained by the combination were never significantly
worse than the original implementation (supplementary figs.
S2 and S5, Supplementary Material online). We achieved
better speedups (execution time of the original implementa-
tion divided by the execution time when BLAS/LAPACK is

used) for model M3 (2.07 with NNI and 1.77 with SPR tree
rearrangement moves) compared with M0 (1.15 for NNI and
1.17 for SPR, see also supplementary fig. S3, Supplementary
Material online). This was expected and is explained by the
parallelization of the three rate categories of the general dis-
crete distribution for !. Better speedups have been observed
with similar parallelization approaches when the input se-
quences were much longer as, for instance, in multigene align-
ment (Bader et al. 2006).

We devised two approximations to the ML tree. The first,
referred to as +BioNJM, fully optimizes the branch lengths
and substitution model parameters of the selected substitu-
tion model on a fixed BioNJ tree, without any further
topology search. The second approximation, referred to as

FIG. 1. Statistical consistency: asymptotic convergence of topology and parameter estimates for simulated 100-taxon data sets. With increasing
sequence length, the estimates of model parameters and topology (under true model) become closer to the true values: Shown are the absolute
differences between the estimates and the truth (as known from simulated data with 100 taxa, data set S2) under true models M0 or M3 and with
search heuristics NNI and SPR.
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+fixQ, performs only a rough optimization on the BioNJ tree
and adds a tree search, without any further substitution
model parameter optimization.

To evaluate the ability of tree search heuristics to obtain
higher log likelihoods, we compared log-likelihood ranks, as in
Guindon et al. (2010): For each data set, the log likelihoods
obtained by different methods are sorted to determine their
rank. The methods are then compared based on their average
rank. Furthermore, for each data set, we picked the tree and
parameter estimates from the method ranking first, that is,
the best ML tree found (denoted “BestML”). BestML was used
as a baseline to compare the tree and parameter estimates of
the various heuristics. Because they performed differently
under M0 and M3, we discuss the two separately.

Under M0, the SPR heuristic found trees with consistently
but not significantly higher log likelihoods than NNI by at
most 50 log-likelihood points (supplementary fig. S4,
Supplementary Material online). The +Taylor option, which
approximates the transition probability matrix by a second
order Taylor series (but see Materials and Methods for a dis-
cussion), was tested in conjunction with NNI and performed
significantly worse (at most 1,064 points on average) than the
default implementation, whereas the option +fixQ, tested
with NNI and SPR, leads to consistently but not significantly
higher likelihoods than default by at most 12 and 1 points,
respectively (supplementary fig. S2, Supplementary Material
online). Accordingly, the model parameters estimated under
various heuristics shows a similar difference to the ones esti-
mated on BestML, with the exception of +Taylor (supple-
mentary fig. S4, Supplementary Material online). As a
consequence of the numerical problems (discussed earlier),
its estimates of ! and � clearly differed from the rest. For
example, for the large data sets (240, 460 taxa), there were
pathological cases, where � was estimated to be 0.
Surprisingly, the numerical instabilities did not affect the
average topological distance. In contrast, +BioNJML leads
to reasonable model parameter estimates but clearly different
topologies than the ones obtained by search heuristics (sup-
plementary fig. S4, Supplementary Material online). The like-
lihoods were as expected the worst but only by up to 117
points from the tree search heuristics. It is worth noting that
the +BioNJML trees were on average longer than the other
trees (supplementary fig. S4, Supplementary Material online).
This observation is consistent with the known correlation
between tree length and likelihood (Hordijk and Gascuel
2005).

Under M3, NNI and SPR converged on trees with similar
log likelihoods. (supplementary fig. S5, Supplementary
Material online). The +fixQ and +Taylor options often lead
to lower log likelihoods compared with the original imple-
mentation (supplementary figs. S2 and S5, Supplementary
Material online). Furthermore, both heuristics tended to pro-
duce biased estimates of ! and � (compared with the esti-
mates from BestML). In spite of the biases and similar to
+Taylor under M0, these heuristics had a comparable topo-
logical distance to BestML as the trees obtained by the default
settings (supplementary fig. S4, Supplementary Material
online). As expected, +BioNJML was again clearly

topologically different from the tree search heuristics.
At the same time, it often led to higher log likelihoods and
less biased estimates of ! and � than +fixQ and +Taylor
(supplementary fig. S4, Supplementary Material online). At
first, this might look paradoxical; it is, however, explained by
the fact that PhyML spends longer time (i.e., tries harder)
optimizing substitution model parameters when tree search
is disabled. The observation strongly suggests that the +fixQ
heuristic could substantially be improved by a more thorough
optimization of substitution model parameters before topol-
ogy search.

The NNI heuristic was generally approximately 2–5 times
faster than SPR under both substitution models. Under M0,
NNI + Taylor and SPR + fixQ were slightly faster compared
with the original implementation, whereas NNI + fixQ was
slower, especially for large data sets (but in this case, it
achieved consistently higher likelihoods). Under M3,
+Taylor and +fixQ improved the running times of the orig-
inal code, at times quite dramatically, but at the cost of less
precise parameter estimates (as discussed above).

Performance on Real Data Examples

For real data (described in table 2), we observed that the
algorithm typically converged faster under empirical codon
models compared with either parametric or semiparametric
models (e.g., see fig. 2). This trend was especially prominent
for large and diverged data sets (e.g., R10–R11), where in
addition, semiparametric models had much faster conver-
gence compared with their parametric equivalents (e.g., see
fig. 3). One reason why empirical and semiparametric models
tend to converge faster compared with equivalent parametric
models may be due to the improved model fit facilitated by
their empirical elements inferred from large amounts of data.
As these estimates capture some global patterns present in
real data, the consequent improved model fit may be also
reflected in the properties of the corresponding log-likelihood
landscape.

As expected, convergence of phylogenetic search was
achieved much faster for models with constant selection pres-
sure or constant evolutionary rates over sites. On average,
models with constant selection but variable rates (e.g.,
ECMK07 + F + �, M0 + �, and ECMK07 + �) took the lon-
gest to converge, with models of variable selective pressure
(M3 and M5 variants) requiring less time (fig. 2). According to
the AICc, the best-fitting models were often M3 and M5.
Good convergence properties and model fit provided by
M5 variants demonstrate clear potential of modeling variable
selection using the � distribution compared with the general
discrete distribution as in M3.

For each data set in table 2, we also compared the model
fit for a set of DNA, amino acid, and codon models using the
AICc scores based on the comparable log likelihoods (Seo and
Kishino 2008, 2009) as computed by CodonPhyML. The phy-
logenies inferred under different models were compared
using the RF distance.

For all data sets, using codon models instead of DNA or
amino acid models resulted in topologically different
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phylogenies as measured by RF distance (e.g., fig. 3 and
table 2). Reconstructed phylogenies also varied when different
codon models were used for tree inference but to a lesser
extent. However, because for a real data set the true phylo-
genetic relationship is typically unknown, we can judge the
performance of a model only by its fit to data, for example, as
measured by the AICc score (but see Dessimoz and Gil [2010]
for new ideas). For many data sets, codon models provided
much better fit to data compared with amino acid or DNA
models (data sets R7–8, R13–23 in table 2; e.g., see fig. 3B and
C). For highly divergent data sets (where synonymous substi-
tutions already reached saturation), most of the time, there
was no advantage using codon models (fig. 3A). Data sets R7
and R8 in table 2 appear to be exceptions to this rule,
although this may also be due to estimation artifacts.

In addition, we recorded a log-likelihood improvement
given by the codon model M3 with respect to trees estimated
using either the amino acid model LG + � or DNA model
HKY + � (supplementary table S3, Supplementary Material
online). To do this, we evaluated the log likelihoods using M3:
first on the fixed trees obtained by LG + � and HKY + � and
then with a tree search. In most cases, a substantial improve-
ment was observed (supplementary table S3, Supplementary
Material online). This shows that candidate trees obtained by
amino acid and DNA models cannot replace a tree search
under a codon model.

CodonPhyML includes fast and accurate branch support
methods, aLRT, SH-aLRT, and aBayes, shown to be a fast and
accurate alternative for ML bootstrap (Anisimova et al. 2011).
Here, we compared aLRT values (Anisimova and Gascuel
2006) for internal branches (i.e., nontrivial tree splits) inferred

with codon, amino acid, and DNA models: M3, LG + �, and
HKY + �. On average, branch supports computed with M3
were slightly higher compared with those computed under
LG + � and HKY + � (supplementary fig. S6, Supplementary
Material online). For “non-common” branches (inferred with
one model but not another), the supports were low: none of
aLRT values showed significant support. Correlation between
pairs of models (M3 vs. HKY + � and M3 vs. LG + �) was
strong, particularly for common splits (inferred with both
models), see supplementary figure S6, Supplementary
Material online.

Finally, we investigated how the choice of the starting tree
affects the initial values of the log likelihood on the initial
stage of the optimization. Presumably, starting trees leading
to higher initial likelihoods should be more successful at nav-
igating the search into a “good” parameter space (e.g.,
Stamatakis et al. 2005). For each real data set R1–23, we
compared four ways of building initial tree from codon align-
ments: by maximum parsimony (MP); by the BioNJ algorithm
based on the equal rate (Jukes–Cantor-like) codon model
(N61) (Neyman 1971); or based on the empirical models
ECMS05 or ECMK07. Once a starting tree was produced,
we performed a full optimization of branch lengths and
model parameters on this fixed starting tree under models
GYM0 and under GYECMK07 +!+ �+ F. Using empirical
models, ECMS05 and ECMK07 most often resulted in the
best starting tree with respect to its optimized log likelihood
(supplementary tables S4 and S5, Supplementary Material
online). MP and N61 result in the best starting tree only
rarely. We, therefore, recommend using the empirical
models for the search of a starting tree.

Conclusions and Future Perspectives

We have presented CodonPhyML, which implements the
largest variety of codon models available in any published
package for ML tree inference today. It extends the estab-
lished code of PhyML 3.0 (Guindon et al. 2010), supports
multicore processors through OpenMP, allows model selec-
tion across the amino acid, nucleotide, or codon data abstrac-
tion, and offers new heuristics for further exploration.

The correctness of likelihood calculations and the perfor-
mance of the program have been assessed on simulated and
diverse real data sets. On real data, we found that codon
models often provide a better fit than amino acid and nucle-
otide models and, particularly important, that they generate a
qualitatively different class of tree topologies. Indeed, because
selection on proteins (negative or positive) is a major force
shaping protein-coding DNA, codon models that explicitly
include selection pressure should provide qualitatively differ-
ent trees in their distribution of topological shapes and
branch lengths. CodonPhyML should enable us to test this
premise. More generally, the availability of CodonPhyML
paves the way for many other phylogenetic studies, such as
exploring the utility codon models for topology inference in a
systematic way.

Future work will include the development of heuristics
tailored to particularities of codon models, for instance, by

FIG. 2. Speed ranks between empirical, semiparametric, and parametric
models on real data. Ranks are computed as an average over 23 real data
sets (table 2). Model notations: ECM, empirical codon model of Kosiol
et al. (2007); +F, frequencies are estimated empirically from data at
hand; +�, with among-site rate variation; M0, one !-ratio parametric
model (Goldman and Yang 1994; Nielsen and Yang 1998); M3, para-
metric model with variable selection over sites modeled by general
discrete distribution with three classes (Yang et al. 2000); M5, parametric
model with variable selection over sites modeled by the discretized �

distribution (Yang et al. 2000); ECM MX (where X = 0, 3, or 5), semiem-
pirical model with additional parameters as in model MX.
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economizing the number of reoptimizations and exponenti-
ations of the rate matrix during tree search (taken to the
extreme by the +fixQ option presented here). Further, the
evaluation of heuristics by simulations can only be regarded a
first sanity check and is not necessarily generalizable to real
data. Indeed, it has been observed that their behavior may be
different under the two types of data, owing to the rougher
log-likelihood landscapes implied by real sequences
(Stamatakis et al. 2005; Guindon et al. 2010). In the future
releases of CodonPhyML, we intend to include additional
options: 1) to automate model selection across the three
levels of data abstraction (amino acids, DNA, and codons)
and 2) to facilitate a statistical comparison and ranking of
candidate phylogenies obtained after different heuristic
searches or under different models (e.g., the SH test,
Shimodaira and Hasegawa 1999). Finally, we are currently in-
vestigating a new heuristic for topology search, based on

information theoretic concepts that have been successfully
used to unveil evolving topological patterns in arbitrary graph
structures (Pfitzner et al. 2012).

Materials and Methods

Implemented Substitution Models
Modeling Stationary Frequencies
A Markov model of substitution is defined by a generator
matrix Q describing the instantaneous substitution rates be-
tween all possible codon pairs. For a time-reversible homog-
enous model, each instantaneous rate of change between
codons i and j can be written as a product of an exchange-
ability rate sij and a stationary frequency of a target codon �j

(e.g., Yang 2006, p. 33–34, 41). “GY-type” models explicitly
define an instantaneous substitution rate as proportional to a
target codon frequency, based on the model introduced by
Goldman and Yang (1994). “MG-type” models define an

A B C

FIG. 3. Comparison of running time, tree topology, and model fit (AICc) between various empirical, semiparametric, and parametric models on three
real data sets. Seven-transmembrane receptor from the rhodopsin family of metazoa (A), the mammalian EPH receptor A4 (B), and the mammalian
Integrin b1 binding protein 1 (C). The top part of each subfigure provides the CPU time till convergence for each of the evaluated models using
CodonPhyML with default parameters, in particular, without multicore support. The lower part of each subfigure shows a color-coded similarity matrix
representing the normalized AICc score differences (in the upper triangle) and the normalized RF distance (lower triangle) between any pair of models
tested. Both top and lower parts of subfigures utilize the same model order and exact mapping of model locations to the matrix. For readability, gray
lines define partitions between different types of models: P, parametric; E, empirical; and SP, semiparametric. The comparison of models is performed
from the model on the vertical scale to the model on the horizontal scale. In the upper triangle: For AICc differences, color ranges from blue (<0 or
“better fit”) to green (=0 or “same fit”) and to red (>0 or “worse fit”). For example, amino acid models fit data better than codon models for data in (A)
but worse for data in (B) and (C). For RF distance, because truth is unknown, the notions of “better” or “worse” cannot be defined. Thus, only the extent
of differences in RF distance is shown in the lower triangle: color ranges from green (=0 or “same topology”) to red (>0 or “very different topology”). For
example, the choice of a codon or an amino acid model leads to significant differences in the inferred ML topology.
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instantaneous substitution rate as proportional to the fre-
quency of a target nucleotide, based on the model introduced
by Muse and Gaut (1994). Recently, Yap et al. (2010) sug-
gested that a better way might be modeling instantaneous
frequencies proportional to the target nucleotide frequencies
conditional on nucleotides observed within a codon
(“Yap-type” models). This may help to partially account for
context-dependent biases such as CpG bias. MG- and
Yap-type models imply that a frequency of a codon can be
estimated as a product of frequencies of its composing nu-
cleotides. Moreover, it has been shown that for MG- and
Yap-type models, the codon frequencies defined in this way
describe the stationary distribution under the model (Lindsay
et al. 2008; Rodrigue et al. 2008).

Estimating Codon Frequencies
To save the optimization time, codon frequencies are often
estimated empirically from data rather than by ML.
CodonPhyML provides all standard and more recent options
for estimating the codon frequencies:

FxCODONS: One frequency for each codon as observed in
data.
F1x4: Equal nucleotide frequencies at all codon positions.
F3x4: Individual nucleotide frequencies for three codon
positions.
CF3x4: Corrected version of F3x4 to account for absence
of stop codons (Kosakovsky Pond et al. 2010), because by
F3x4 definition equal nucleotide frequencies do not
induce equal codon frequencies and vice versa.
USR: User defined (equal frequencies can be enforced
with this option).
ML: By ML.

Types of Codon Models
“Parametric models” are described by a Q-matrix whose
entries are fully defined by a set of parameters each repre-
senting certain biases of molecular sequences. For example,
for a reversible codon model, the typical parameters would be
codon or nucleotide frequencies and the exchangeabilities
between different codons or nucleotides, described as a prod-
uct of various relative rates such as transition and transversion
rates, and synonymous and nonsynonymous substitution
rates (dS and dN, respectively). One common parameter
included in all current parametric codon models is the
!= dN/dS ratio, which is the measure of selective pressure
at the protein level. Estimates !> 1 are suggestive of positive
selection, whereas estimates !< 1 suggest negative (or puri-
fying) selection. In addition to model M0, which assumes
constant ! over sites, CodonPhyML implements models of
variable selective pressure (Yang et al. 2000): 1) model M3
with the general discrete distribution for ! and 2) model M5
that describes !-variation over sites using the � distribution
with two parameters � and �.

In contrast, purely “empirical” models are described by
Q-matrices whose entries were estimated from large amounts
of data, with no free parameters. CodonPhyML implements
empirical models ECMS05 based on pairwise analysis
(Schneider et al. 2005) and ECMK07 based on multiple

sequence alignments and optimization by expectation max-
imization (Kosiol et al. 2007). A user-defined empirical model
can be specified using an additional input file.

Empirical models are designed to reflect the global pat-
terns but are incapable of capturing biases specific to individ-
ual genes. CodonPhyML implements the “+F” option to
account for gene-specific content bias by using character fre-
quencies as observed in a gene under scrutiny (first proposed
for empirical amino acid models by Goldman and Whelan
2002). In addition, “semiempirical” models enable estimation
of important parameters, such as ! and �, while increasing
model fit through combining free parameters with empiri-
cally estimated elements, typically the empirical codon
exchangeability values (Doron-Faigenboim and Pupko 2007;
Kosiol et al. 2007). CodonPhyML includes semiempirical
models with ! and the transition/transversion ratio �(i, j)
as a function of counts of transitions i, and transversions j
(Kosiol et al. 2007), because multiple nucleotide substitutions
within one codon are allowed in empirical and semiempirical
models. Note also that selective pressure estimates of the !
ratio from parametric models is not directly comparable to
the! estimates in semiparametric models. This is because the
empirical exchangeabilities already take into account the
global selection pressure present in the training data set. A
correction is necessary to obtain a comparable estimate of
selection pressure at the protein from a semiempirical model
(Kosiol et al. 2007). Thus, for semiparametric models, both
uncorrected and corrected estimates of the ! ratio are pro-
vided in the CodonPhyML output.

Finally, models based on PCA are also available in the cur-
rent implementation (Zoller and Schneider 2010).

Site-Rate Variation
Similar to DNA and amino acid models, site-rate variation is
modeled using the � distribution with parameters �=�, so
that the mean rate is 1 expected substitution per site. In the
current implementation, the two options of using the � dis-
tribution to model selective pressure and the variation of
rates over sites cannot be combined and can only be used
separately due to this model being too complex for the pur-
poses of phylogeny inference—the primary goal of this
package.

Implementation Details of Tree Search and Parameter
Optimization

CodonPhyML is based on the original source code of PhyML
3.0 (Guindon et al. 2010). The PhyML algorithm starts from a
BioNJ (Gascuel 1997) or an MP tree and improves it using the
tree rearrangement moves simultaneous NNI or/and SPR.
Branch lengths are optimized locally in conjunction with
the topological rearrangements. In the SPR variant, addition-
ally, all the branch lengths are adjusted after each round of
rearrangements. Periodically, the free parameters of the sub-
stitution model (defining the relative substitution rates of the
Markov model and the shape parameter of the � distribu-
tion) are reoptimized.

The optimizations are carried out one parameter at a time,
with all the others fixed, using an iterative line search
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algorithm—specifically, methods based on the Brent and
golden section search algorithm.

During the optimizations, the likelihood function is repeat-
edly evaluated, requiring the computation of the transition
probability matrix P(t) for different values of Q and divergence
time t. PhyML computes P(t) numerically from the eigen-
values and the eigenvectors of Q:

P tð Þ ¼ exp Qtð Þ ¼ U expð�tÞU�1 ¼ U diagfexpðl1tÞ,

expðl2tÞ, . . . , expðlCtÞgU�1,

where � ¼ diagfl1, l2, . . . , lCg is a diagonal matrix of the
eigenvalues li of Q, and U is made of its eigenvectors. The
decomposition is carried out with an O(n3) algorithm de-
scribed in (Wilkinson and Reinsch 1971, p. 197). It is applied
whenever Q is updated and reused during tree optimization
for the computation of P(t), which for each branch length t is
roughly as expensive as one matrix–matrix multiplication.
The computation of partial likelihoods, ancestral states, and
the decomposition of Q is the most time-consuming parts of
the PhyML algorithm (supplementary table S7, Supple-
mentary Material online).

The main objective of CodonPhyML is to offer a variety of
state of the art codon models for tree search, thereby relying
on PhyML’s heuristics. Opting for faster running times, how-
ever, we have extended the original code by a number of
options:

� +BLAS: In PhyML, the linear algebra operations rely on
the standard libraries of the C programming language.
We have benchmarked their running times against the
corresponding routines from the de facto standard li-
braries BLAS (Blackford et al. 2002) and LAPACK
(Anderson et al. 1990) (supplementary table S8,
Supplementary Material online). When the code was
compiled without any optimization, the BLAS/LAPACK
routines were considerably faster than original PhyML
routines. When CodonPhyML was compiled at the high-
est optimization level (–O3, supplementary table S8,
Supplementary Material online), only three out of
seven routines were faster. Compiling with –O3 never
lead to slower code than with no optimization.
Consequently, we have integrated the three BLAS/
LAPACK routines that were found to be faster with
–O3. We advise users compiling CodonPhyML with
–O3 and BLAS/LAPACK.
� +OMP: PhyML spends a considerable time in for-loops

over the length of the multiple sequence input alignment
to assemble the likelihood function (supplementary table
S7, Supplementary Material online). The loops do not have
dependencies between iterations, due to the assump-
tion—inherent in all implemented models—that substitu-
tions are independent among codon sites. We have
exploited such loop-level parallelism with OpenMP
(Dagum and Menon 1998), taking advantage of today’s
multicore computers. Furthermore, we have parallelized
the optimization of substitution model parameters in

presence of multiple discrete ! or � rate categories
(for a similar approach see Bader et al. 2006).
� +BFGS: PhyML’s strategy to optimize one parameter at the

time is inefficient for strongly correlated parameters (e.g.,
Yang 2006, p. 134–136) such as the ! categories in model
M3. We have added the multidimensional optimization
algorithm BFGS (a quasi-Newton method, e.g., see Gill
et al. [1981]) reusing the implementation from PAML
(Yang 2007) and following the recommendation by Yang
(2000) to optimize Q by BFGS and the branch lengths by a
line search algorithm.
� +Taylor: With this option, the transition probability matrix

is approximated by the second order Taylor series
P(t)& I + Qt + (Qt)2/2, where I denotes the identity
matrix. This option can be used during the adjustments
of the rate-matrix Q, so to avoid the repeated diagonaliza-
tion of Q in favor of one matrix–matrix multiplication and
two additions. For the tree search step, we still use diago-
nalization because computing P(t) by U exp(�t) U�1 for
each branch-length t is roughly equally time efficient but
more precise than the second order Taylor series, which
introduces numerical instability leading to the loss of
precision (e.g., Yang 2006, p. 68–69). This problem could
be avoided by the scaling and squaring method, which
reduces the norm of Q by exploiting the relation
exp(Qt) = (exp(Qt/m))m, where m = 2k is set to a power
of two, such that the mth power can be computed by
squaring exp(Qt/m) for k times. Yang (2006, p. 68) recom-
mended to set k to a value between 5 and 10 for small
distances (and to even bigger numbers for large distances).
However, k squarings are considerably slower than
diagonalization.
� +Pade: This option triggers a Pade approximation with

scaling and squaring for the exponentiation of the rate
matrix (Higham 2005) recommended by Schranz et al.
(2008) for nonreversible dinucleotide and codon models.
The O(n3) algorithm implemented here corresponds to
MATLAB’s function expm (Moler and Van Loan 2003).
Analogous to the +Taylor option, the Pade approximation
is only triggered during the adjustments of the rate matrix.
� +FixQ: This option follows the rule-of-thumb “estimating

using a reasonably good topology leads to reasonable
parameter estimates” (Yang 1995). All the substitution
model parameters are fitted once on the fixed initial
topology and then kept constant during tree search.
Upon convergence of the topology search, all parameters
are reoptimized on the final topology. A similar approach is
provided in other ML packages, for instance, RAxML
(Stamatakis et al. 2005) or GARLI (Zwickl 2006). In contrast
to these implementations, however, +FixQ only carries out
a rough optimization.
� +CST: By default, the initial topology in PhyML is recon-

structed with BioNJ, which uses a matrix of pairwise evo-
lutionary distances. The matrix is estimated based on a
nucleotide or amino acid substitution model, depending
on the model selected for tree search. With the +CST
option, the starting tree can be computed by either MP
at the codon level or using BioNJ on distances estimated by
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ML under one of three codon models: ECMS05, ECMK07,
and N61 (all instantaneous rates equal).
� +BioNJML: As a baseline, we devised a very rough approx-

imation to the ML tree as follows. A BioNJ tree based on
pairwise ML distances under ECM07 is reconstructed.
Then, on the resulting topology, parameters of a selected
substitution model and branch lengths are fully optimized.
Note that this approach differs from +fixQ in two ways: 1)
the parameter optimization is carried out more thoroughly
and 2) no topological search is performed.

Simulated Data Sets

To examine the performance of CodonPhyML, sequence data
were generated using the program Evolver from the PAML
package (Yang 2007) under M0, M3, or M5 and analyzed with
the correct model. The simulation scenarios are listed in
table 1. We designed three types of data sets. Simulated
data of type 1 (S1) consisted of quintets of sequences and
were used to compare parameter estimates obtained with
CodonPhyML and Codeml of PAML on all the 15 possible
topologies relating five sequences. Data set S2 had very long
sequences (up to 10,000 codons) and was generated to test
the correctness of CodonPhyML through verifying the
consistency of ML estimators. The third data set (S3) was
simulated to explore the provided options with respect to
the number of sequences, ranging from 60 to 480.

Real Data Sets

We selected 23 highly diverse real data sets (table 2) and
analyzed them with 2 amino acid, 2 nucleotide, and 16
codon models. The purpose of these analyses was to compare
the fit of various models and the topological agreement or
disagreement of the resulting trees. Model fit was assessed
with the AIC (Akaike 1973, 1974) and BIC (Schwarz 1978)
after casting the log likelihood of the nucleotide and amino
acid models to a codon model (Seo and Kishino 2008, 2009).
Topological disagreement between two trees was measured
by the Robinson–Foulds distance (Robinson and Foulds
1981).

Availability
CodonPhyML is an open source project, written in C. The
source code and executables for Linux, Mac OS X, and
Windows (compiled with –O3 and BLAS/LAPACK) can be
downloaded together with a user manual and data examples
from: http://sourceforge.net/projects/codonphyml (last
accessed March 13, 2013). We encourage user feedback to
help us to improve the software.

Supplementary Material
Supplementary tables S1–S8 and figures S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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