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B cell receptor sequences evolve during affinity maturation according to a Darwinian

process of mutation and selection. Phylogenetic tools are used extensively to reconstruct

ancestral sequences and phylogenetic trees from affinity-matured sequences. In addition

to using general-purpose phylogenetic methods, researchers have developed new

tools to accommodate the special features of B cell sequence evolution. However,

the performance of classical phylogenetic techniques in the presence of B cell-specific

features is not well understood, nor how much the newer generation of B cell specific

tools represent an improvement over classical methods. In this paper we benchmark

the performance of classical phylogenetic and new B cell-specific tools when applied

to B cell receptor sequences simulated from a forward-time model of B cell receptor

affinity maturation toward a mature receptor. We show that the currently used tools

vary substantially in terms of tree structure and ancestral sequence inference accuracy.

Furthermore, we show that there are still large performance gains to be achieved by

modeling the special mutation process of B cell receptors. These conclusions are further

strengthened with real data using the rules of isotype switching to count possible

violations within each inferred phylogeny.

Keywords: ancestral sequence reconstruction, B cell receptor repertoire, phylogeny, benchmarking, antibodies

INTRODUCTION

B cells play a key role in adaptive immunity. After successful VDJ gene recombination of the
variable part of the B cell receptor (BCR), and various selection steps, mature B cells are exported
from the bone marrow. At this stage the mature B cells have not yet bound antigen and they
are therefore referred to as naive. Upon infection some cells from this repertoire of naive BCRs
will bind the infectious agent, initializing a cascade of events called affinity maturation leading to
pathogen neutralization.

Affinity maturation is a micro-evolutionary process consisting of coupled mutation and
selection. This essential process takes place in specialized anatomic compartments called germinal
centers (GCs), with the objective of improving antigen binding of the BCR (1). Affinity maturation
results in “clonal families” of thousands of B cells for each of the naive ancestors. Sequences in a
family are related to a common naive B cell but with higher affinity BCRs and accumulation of
mutations in their sequences.

The study of B cell evolution in the GCs is an important and active field of research including
response to infections, mechanisms of vaccines (2) and immunological memory (3). Furthermore,
the field has experienced a boost of interest and capability in recent years due to the advancements

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02451
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02451&domain=pdf&date_stamp=2018-10-31
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matsen@fredhutch.org
https://doi.org/10.3389/fimmu.2018.02451
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02451/full
http://loop.frontiersin.org/people/555135/overview
http://loop.frontiersin.org/people/420095/overview


Davidsen and Matsen IV Benchmarking BCR Trees and Ancestral Sequences

of high-throughput sequencing of BCR repertoires (Rep-Seq)
(4). Rep-Seq now enables sequencing of BCRs on massive scale
(millions of cells) and is being increasingly applied in different
areas from vaccine studies (5, 6) to antibody engineering (7, 8).
Following Rep-Seq, computational methods can be used to group
the BCRs into clonal families, each consisting of the descendants
of a single naive cell (9).

The events of the affinity maturation process can be
interrogated by inferring the phylogenies of sequences within
each such clonal family, as well as inferring ancestral sequences
on the phylogenies. Phylogenetic methods have given great
insight into the long and complex development process of
broadly-neutralizing antibodies (10, 11). Phylogenetic methods
are equally important for shorter-time-scale investigations of
affinity maturation, such as of the response to vaccination (12).
One may also use trees equipped with ancestral sequences to
make statements about the strength of natural selection (13).

Given the importance of these methods to understanding
affinity maturation, there has been surprisingly little validation of
their performance in the parameter regime relevant to the study
of affinity maturation. Although dozens of studies benchmarking
phylogenetic methods via simulation in the general phylogenetic
case have appeared since (14), methods for BCR sequences
deserve special treatment because of special aspects of the
evolutionary process of affinity maturation. These include:

1. The somatic hypermutation (SHM) process in affinity
maturation is driven by purpose-built molecular machinery
(15) that results in a highly context-dependent process with
local sequence contexts that either favor (“hotspots”) or
disfavor (“coldspots”) mutation (16, 17). The complexity of
this process is at odds with both the usual phylogenetic
assumption of independent and identical processes between
sites and with the assumptions of commonly-used sequence
simulators (18, 19) used for benchmarking.

2. Sampling and sequencing, especially for direct sequencing of
GCs (20), is dense compared to divergence between sequences.
Because the resulting sequences will have limited divergence
between them, it raises the possibility that simpler methods
with fewer free parameters such as parsimony would be
an appropriate choice (21). Also, because of the resulting
distribution of short branch lengths, zero-length branches
and multifurcations representing simultaneous divergence are
common. When these zero-length branches lead to a leaf, they
represent a “sampled ancestor” – a sequence with an identical
genotype to an ancestral cell. Because of these differences,
previous conclusions about performance of phylogenetic
estimators in the classical regime of millions of years of
divergence need not hold here.

3. Rep-Seq typically sequences the coding sequence of
antibodies, which are under very strong selective constraint
in GCs. This contrasts strongly with the neutral evolution
assumptions of most phylogenetic algorithms, as well as the
neutral assumptions of the most common software used for
phylogenetics benchmarks (18, 19).

4. In contrast to typical phylogenetic problems where the root
sequence is unknown, one has significant information about

the root sequence for BCR sequences. Even our current
imperfect knowledge of germline genes greatly constrains the
space of possible ancestral sequences compared to the typical
phylogenetic case where the ancestor is completely unknown.
Evolution of BCR sequences happens in a directed fashion
from this ancestral sequence.

For these reasons, we believe that BCR-specific validation of
phylogenetic tools is an essential prerequisite to their use.

Practitioners frequently use standard phylogenetic tools
for BCR sequences. Many studies performing phylogenetic
reconstruction on BCR sequences have used the PHYLIP package
(22) such as the maximum likelihood (ML) tool dnaml (11, 23–
25) or the maximum parsimony (MP) implementation dnapars
(26–28). For general phylogenetics use, PHYLIP’s dnaml is now
less frequently used compared to faster or more feature-rich
programs such as RAxML (29), PhyML (30), FastTree2 (31), and
the most recent popular ML program, IQ-TREE (32). However,
not all of these programs return ancestral sequence estimates so
are less interesting for antibody researchers.

Four tools have been developed specifically for inferring
BCR phylogenies: IgTree (33), ARPP (34), IgPhyML (35), and
GCtree (36). IgTree aims to find the minimal sequence of
events that could have led to the observed sequences (i.e., a
maximum parsimony criterion), allowing a known root and
sampled ancestors. ARPP is an implementation of a BCR specific
ML model to infer ancestral sequences on trees produced
by PHYLIP’s dnaml. Both IgTree and ARPP have limited
availability: IgTree is not available for download at all, while
ARPP is only available for Windows. ARPP cannot be run
from a script, thus we could not include it in this large-
scale benchmark. IgPhyML adapts the Goldman-Yang (GY94)
codon substitution model (37) by adding parameters to model
the motif dependent mutation rate. However, to achieve a
tractable likelihood the motif contribution is marginalized
across codons to achieve a independent-across-codon likelihood
function that works well with the usual ML setup. IgPhyML
is built on codonPhyML (38) which is used for tree inference
and likelihood calculations; ancestral sequence reconstruction
can be done in a post processing step using an auxiliary script
(provided in the supplement of (35)). GCtree ranks equally
parsimonious trees found by PHYLIP’s dnapars according to a
likelihood function derived from a Galton-Watson branching
process (39). In this branching process, the cellular abundance
of a given genotype is used and therefore single cell data
is a necessary requirement for optimal ranking with GCtree.
Both IgPhyML and GCtree are freely available through
GitHub. Additionally, we have implemented an alternative
method, called SAMM v0.2, for ranking equally parsimonious
trees based on the sum of log likelihoods of the observed
mutations between nodes on a tree given a substitution model
based on SHM motifs. This ranking is implemented using
the SAMM package (40) and described in more detail in
Methods.

To benchmark phylogenetic methods for BCRs, we desired a
simulator for full-length BCR sequences that modeled context-
sensitive mutation, natural selection on amino acids, and had
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publicly available source code. Many interesting simulators have
different goals. Detailed mechanistic models have been proposed
to model all cells and all interactions in a GC using first principles
from biophysics (41–43). Others have suggested probabilistic
frameworks modeling summary statistics of SHM (44, 45) and,
as a middle ground between ultra fine grained models and plain
summary statistics, models attempting to explain population
level trends using systems of differential equations have been
suggested (46). Even simulators that use a notion of sequence
don’t necessarily use nucleotides or model mutation in an
accurate way. For example, (41) uses a reduced-size alphabet to
obtain an appropriately rugged fitness landscape, while (47) use
uniform per-site nucleotide mutation in the complementarity
determining region and selection based on a subset of key
residues.

No existing simulator fit our needs and so we
designed a simple model of affinity maturation of BCR
sequences in a clonal family. In this model, sequence fitness is
solely a function of the amount of antigen bound by the BCR
at equilibrium. Antigen binding is calculated using standard
binding kinetics applied to a GC with B cells carrying BCRs
with different sequences and affinities, competing to bind a
limited amount of antigen. Our simple design is motivated by
the observation that antigen binding is the main driver and
limiting factor of affinity maturation (48). By modularizing
the simulation code we have one module preforming mutation
and proliferation as a neutral branching process and an
optional module to change the birth/death rate through affinity
selection.

This simulator has enabled a primary goal of our work: to
benchmark methods for ancestral sequence reconstruction. Such
methods infer sequences at ancestral nodes of a phylogenetic
tree according to some optimality criterion. Ancestral sequence
reconstruction is heavily used in BCR sequence analysis, in which
it is common to synthesize and test ancestral sequences in order
to understand the impact of historical substitutions on binding
(49, 50).

A recent and independent effort by Yermanos et al. (51) did
a benchmarking study using simulated BCR sequences without
selection and compared phylogenetic method performance,
including ML and MP tools. Our study has the following
differences with this previous work:

• we simulate sequences under selection using an affinity-
based model, which we show makes the inferential problem
significantly more difficult,

• we compare accuracy of ancestral sequence inference,
• we include additional software tools, several of which are

BCR-specific,
• we provide evidence that our simulations have similar

characteristics to real data,
• and we use isotype data as a further non-simulation means of

benchmarking methods.

This previous work also worked to understand the results of
phylogenetic inference using a “toy” clonal family inference
method with necessarily bad performance, whereas here we
assume that clonal families have been properly inferred.

In this paper we attempt to answer some of the unresolved
questions about BCR phylogenetic inference, including a
benchmark of the performance of relevant phylogenetic
tools (dnaml, dnapars, IgPhyML, IQ-TREE, GCtree and an
undescribed SHM motif based tree ranking method), an
investigation of the influence of SHM motifs; and a comparison
between simulations with neutral or selection-based evolution
(Figure 1). We apply our proposed sequence simulation
framework to simulate under different realistic models that
include SHM motifs and affinity selection. Finally, we show how
the biological mechanism of isotype switching can be used to
empirically test phylogenetic inference.

All simulation code is open source and can be found
on our GitHub repository together with sequence data for
the isotype validation (https://github.com/matsengrp/bcr-phylo-
benchmark). All simulation data is organized to reproduce
figures and is available for download on Zenodo (https://doi.org/
10.5281/zenodo.1306301).

METHODS

Although statisticians have made substantial strides in
proving identifiability (52, 53) of phylogenetic models and
consistency (54) of inferential procedures, proving consistency
of phylogenetic methods under context-sensitive BCR evolution
models with selection is out of reach because no likelihood
function is available. Therefore, we chose the general approach
of simulating phylogenies, and benchmark tools based on their
inference on samples from these known trees. As ancestral
sequence reconstruction is of special interest among the users
of BCR phylogenetics (11, 50, 55) we developed a metric to
measure ancestral sequence reconstruction performance. In
the following subsections we present these simulations and
performance metrics, as well as a method to use empirical data to
assess performance via the principle of irreversibility of isotype
switching.

Simulation
We devised two simulation strategies for BCR evolution: (1) a
neutrally evolving branching process, and (2) a branching process
with a birth/death rate controlled by BCR antigen binding. Both
simulations start with a single naive sequence as a starting point
for the tree simulation; this is evolved a number of generations
to a population of BCR sequences from which a sample is drawn
and used for inference. To get realistic starting sequences for the
simulations we created a set of 288 naive sequences inferred by
partis (56) from the healthy donor human single cell dataset in
Briggs et al. (57). These sequences were selected because they
have many unique unique molecular identifier (UMI) tagged
reads, which gives a high confidence consensus over the full VDJ
region. When a simulation run is initialized a naive sequence is
drawn randomly from this set.

Our neutral model is controlled by two parameters which
are used to control two Poisson distributions determining the
simulation: the progeny distribution (λ) and the mutation
generating distribution (λmut). Each evolving sequence has its
own λwhich expresses the fitness of that sequence in comparison
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FIGURE 1 | Graphical abstract summarizing the work presented in this paper. We use sequence simulation to establish a ground truth phylogeny from which a

sample of sequences is used to infer the phylogeny using different inference methods. The inferred tree is then compared to the simulated true tree to measure

inference performance. Lastly, the different inference methods are compared.

to the other sequences in the population (details below). All
sequences have the same mutation probability i.e., λmut is the
same for all sequences and constant throughout the simulation.
The simulation starts with a single cell carrying the naive
sequence; a draw from Pois(λ) will yield the number of progeny
cells in the first generation. If a zero is drawn the cell dies, if
one is drawn it propagates without division, if two is drawn it
splits into two cells, etc. Next, for each progeny cell a draw from
Pois(λmut) will determine how many mutations to introduce
into its sequence. Mutations are drawn either from a uniform
distribution over both sites and substitutions, or using a context
sensitive motif model (e.g., S5F (16)). Multiple mutations are
introduced stepwise, one at a time, and if a context sensitive
mutation model is chosen the sequence context is updated
between each introduced mutation. The simulation process can
be terminated in three ways: (1) when all cells have died, (2) at
fixed time point T, or (3) when a fixed number of cells, N, has
been reached.

As mentioned above, birth and death rates are controlled
through the Poisson rate λ. One can think of this as measuring
the level of T helper cell signal, in which lots of signal promotes
proliferation while insufficient signal leads to death (1). In our
neutral simulations, λ is held constant and is the same for all cells.
For simulations with selection we use a very simplistic view of
the maturation process, in which selection is purely driven by T
helper cell signal which is strong for BCRs binding a lot of antigen
and weak for BCRs binding little antigen. To translate this into
selection in our simulation framework we devise a simple model

to transform a BCR sequence into an affinity value, solve for its
antigen binding and then use this to control λ, thus making it
sequence dependent. In essence, this “affinity selection” is just
a mapping between a BCR sequence and a λ; this enables us to
use the same simulation framework for both neutral and affinity
simulations. We emphasize that cells with a small λ will tend to
draw a 0 from the Poisson distribution and die, so this framework
incorporates cell death in addition to division and persistence.

Here we review the basics of fitness assignment; a detailed
description of the model as well as model choices can be found
in the Supplementary Material. For any BCR sequence indexed
by i, its fitness is λ(i) = Y(x), where Y is a transformation of
some information, x, specified in the simulation. For a neutral
simulation Y(x) is constant and independent of x, while for the
affinity simulation Y is variable with respect to x. To model
BCR sequence affinity we introduce the concept of a “mature
sequence” which is the sequence with the highest attainable
fitness in the simulation run. Once the simulation starts the
mature sequence acts as an attractor to which evolution tends
to converge by rewarding amino acid sequences closer to the
attractor with higher λ. The choice of mature sequence is
arbitrary so we chose to simulate it by randomly mutating the
naive sequence until it accumulates a predefined number of
amino acid substitutions. Next, the naive and mature sequence
are assigned their own affinity values and the span between
these define the affinity gain during affinity maturation. To
calculate the affinity of a BCR sequence we calculate its amino
acid Hamming distance to the mature sequence and transform
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FIGURE 2 | Time series of the distribution of cells at different distances from

the mature sequence (Dist 1, 2, ..., 8) as it appears in a typical affinity

simulation (corresponding tree shown in Figure 3). The simulation is started

from a single naive sequence, five amino acid substitutions away from the

mature sequence (Dist 5), and simulated sequences converge toward the

mature sequence as generations progress.

this into an affinity value using an appropriate power function
calibrated on the naive and mature sequences. We then model
the BCR binding kinetics by defining a total GC volume with
a constant concentration of antigen and solve for the B cells’
antigen occupancy at equilibrium. Antigen occupancy is mapped
to B cell fitness (λ(i)) using a logistic function returning a value
between 0 and 2. These steps describe the general setup of
calculating Y(x) for the affinity simulation.

Inspection of the simulation runs confirm that affinity
simulation recapitulate a number of desired properties
(Figures 2, 3): (1) sequence evolution is converging toward
the mature sequence, (2) cells are competing for the limited
supply of antigen establishing a “carrying capacity,” and (3)
favorable mutations are rapidly fixed through selective sweeps
(59) analogous to clonal bursts (1, 20).

We set the expected number of mutations, introduced into
the sequence at each mutation step, to be approximately 0.365.
This corresponds to the frequently cited SHM rate at around
10−3 (60) given the average length of our naive BCR sequences
of 365 nucleotides. We define λmut = 0.365 as the “normal”
mutation rate, but because the estimates of SHM rate vary
in the literature we also include half and double of this rate
(λmut ∈ {0.1825, 0.365, 0.73}) in all our simulations. We observe
high correlation between the method performance across all
three λmut (Figures S2, S3), showing that our conclusions are
robust to differences in mutation rate. For neutral simulations
the branching parameter (λ) and the population size termination
criterion (N) are adjusted (λ = 1.5 and N = 75) to
recapitulate summary statistics of the single cell GC experiment
in Tas et al. (20) (Figure S25), following a similar procedure as
DeWitt et al. (36). For the affinity simulations the branching
parameter is cell-specific and adjusts dynamically, in the range
between 0 and 2, according to antigen competition. Each affinity
simulation uses 100 “mature” sequences, which act as a collection

of targets for the convergent evolutionary process. These mature
sequences are generated by randomly introducing 5 amino acid
substitutions to the naive sequence (in depth description in
Supplementary Material). Affinity simulations are run with an
antigen concentration sufficient to maintain a cell population of
approximately 1,000 cells, and after 35 generations a random
sample of 60 cells is recovered for inference, again, roughly
recapitulating summary statistics of the single cell GC experiment
(Figure S26). We also performed intermediate sampling for
the affinity simulation: in such cases 30 cells are sampled at
generation 15, 30 and 45 and pooled to a total of 90 cells.
Neutral simulations were run with 1,000 replicates and affinity
simulations were run with 500.

Inference Methods
From each simulation run a subset of sequences was sampled
and used for phylogenetic inference along with the correct naive
sequence which was used as an outgroup. We tested a number
of relevant tools either previously used in the context of BCR
phylogenetic inference or with potential use in this field:

• dnaml v3.696: PHYLIP’s implementation of ML using the F84
model (22)

• dnapars v3.696: PHYLIP’s implementation of MP (22)
• GCtree v1.0: Branching process likelihood ranking of MP trees

(36)
• SAMM v0.2: Mutation motif based likelihood ranking of MP

trees (40)
• IgPhyML v0.99: GY94 codon model with hot/cold spot motif

parameters (35)
• IQ-TREE v1.6.beta5 (IQT): Fast ML inference with many

substitution models (32)

For all methods the naive sequence was used as an outgroup,
furthermore, the naive sequence was used to reroot the tree
after inference. For all methods no sequence partitioning
was used. IQ-TREE was run using either JC, HKY or GTR
nucleotide substitution models and using the “ASR” flag, but
otherwise with default settings. IgPhyML was run as described
in Hoehn et al. (35) and using the “-o tlr -motifs

WRC_2:0,GYW_0:1,WA_1:2,TW_0:3,SYC_2:4,

GRS_0:5 -hotness e,e,e,e,e,e” flags to optimize
branch lengths and topology with NNI moves under the full
HLP17 model containing a free parameter for all six degenerate
hot/coldspots. dnaml was run using gamma distributed rates,
a coefficient of variation of substitution rate among sites of
1.41, four rate categories and otherwise default parameters.
dnapars was run using default settings. In the case of dnapars
it is common to observe many equally parsimonious trees, and
in those cases a random tree was drawn. GCtree was run as
described in DeWitt et al. (36), passing both sequences and their
abundances to the program. Both GCtree and SAMM use the
equally parsimonious trees generated with dnapars for likelihood
ranking, hence in the case when only a single MP tree is found,
dnapars, GCtree and SAMM will by definition yield the same
result.

The use of all the above methods has been described
previously, except SAMM which is part of a statical framework
to infer DNA mutation motifs using survival analysis (40). As
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FIGURE 3 | A collapsed tree made from 60 sequences sampled from GC generation 35 of the simulated population. Nodes are labeled with numbers indicating the

number of collapsed tips (genotype abundance) and node size is proportional to this number. Branch lengths are Hamming distance between nucleotide sequences

with dashed lines indicating purely synonymous mutations and solid lines indicating one or more non-synonymous mutations. Branch thickness is proportional to the

number of non-synonymous mutations. The tree was rendered with ETE3 (58) and colored according to distance from the mature sequence with the same colors as

Figure 2.

it is well known that SHM is context sensitive (16, 17, 61)
we ranked equally parsimonious trees according to their SHM
motif likelihood, inspired by the branching process ranking of
DeWitt et al. (36). Using SAMM we calculate the likelihood of
the observed mutations given a tree equipped with ancestral
sequences at the internal nodes (in this application from
parsimony) and a motif model by using Chib’s method (62) to
integrate out event orders on the branches. This likelihood is then
used to rank the equally-parsimonious trees, and the highest-
ranked tree is chosen as the tree returned by SAMM. More
detail on the likelihood calculation used in SAMM can be found
elsewhere (40).

We would like to make it very clear that we use the same motif
model for both simulating mutations and calculating SAMM
likelihoods. This gives SAMM an unfair advantage, however, the
selection process is not modeled as part of the motif model.
We are not formally proposing SAMM ranking as a competing
inference method, but rather as a yardstick with which to
measure howmuch improvement would be possible taking a fully
context-sensitive mutation process into account. On the other
hand, SAMM has no inherent advantage on the isotype scoring
experiment, and it is limited to the MP trees.

Genotype Collapsing
Due to our focus on ancestral sequence inference we have
adopted the use of genotype collapsed trees from DeWitt et al.
(36) throughout this work. Briefly, a genotype collapsed tree
is made by inferring a phylogenetic tree, inferring ancestral
sequences at the internal nodes and recalculating the branch
lengths as Hamming distances between the node sequences. In
the branch length recalculation step nodes are “collapsed” if
their sequences are identical, thereby collapsing tips upwards
and adding observations to internal nodes (Figure 3). Genotype
collapsing deals conveniently with the very short branch lengths,
typically observed in binary trees for BCR sequences, since these
most often collapse into a single node.

Tree and Sequence Reconstruction Metrics
We scored trees both in terms of tree structure and in terms
of ancestral sequence inference. For tree structure, we used the
commonly used Robinson-Foulds (RF) distance (63), which is
half the size of the symmetric difference between the sets of
bipartitions obtained by cutting each edge.We define bipartitions
using both tips and sampled internal nodes, as opposed to
standard RF using only tips. Because we perform RF on
genotype-collapsed trees, this measure in fact combines accuracy
estimation of ancestral sequences and tree topology.

We also used several means to more directly compare
ancestral sequence reconstructions: the “most recent common
ancestor” (MRCA) metric, and the “correctness of ancestral
reconstruction” (COAR) metric. The MRCA metric compares
ancestral sequences on the true vs. the inferred phylogeny in
a way that does not depend on agreement between the two
topologies. Specifically, the MRCA distance is calculated by
iterating through all pairs of leaves. For each such pair there
is a well defined MRCA node on the tree. The MRCA metric
is the average Hamming distance between the inferred and the
true ancestral sequence for these pairs. Using i and j (i 6= j) to
iterate over all combinations of pairs of leaves to find their true
(Ti,j) and inferred (Ii,j) most recent common ancestor, this can be
written as:

N
∑

i=1

N
∑

j=i+1

dH(Ti,j, Ii,j)
/

(N(N − 1)/2)L.

HereN is the number of leaves and L is the length of the sequence.
Thus, MRCA gives an overall view of how ancestral sequence
reconstruction is performing.

There is also a special interest in benchmarking tools to
reconstruct a lineage of ancestral sequences going from the root
(the naive sequence) to a tip of interest (11, 55). Hence, we
developed the COAR metric which is measuring the average
number of sequence mismatches across all true vs. inferred

Frontiers in Immunology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 2451

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Davidsen and Matsen IV Benchmarking BCR Trees and Ancestral Sequences

lineages going from the root to any tip. It is not initially obvious
how to compute such a distance if the true and inferred lineage
contains a different number of nodes. We solve this problem
by finding the node to node comparison that minimizes the
distance while maintaining the root-to-tip order. Please see
the Supplementary Information for details on COAR metric
calculation.

We chose COAR as our principal metric for comparison
because it was well correlated with other metrics (see section
Results) and because it reflects how researchers use ancestral
sequence reconstruction of BCRs.

Isotype Scoring
We used sequences with isotype information as another means of
characterizing phylogenetic accuracy. The isotype-determining
constant region is located downstream of the heavy chain BCR
variable region, and isotype changes through a process called
class-switch recombination. In mice the isotype constant regions
are ordered, from closest to furthest to the J gene: IgM, IgG, IgE,
then IgA. Naive BCRs use IgM, but during affinity maturation
isotype switching can occur by looping out one or more of the
constant regions. For instance if IgM is looped out the resulting
BCR is IgG and if IgM, IgG, and IgE is looped out the resulting
BCR is IgA. Because the isotype is physically removed from the
chromosome this process is irreversible, hence a parent cell with
an IgA BCR can never give rise to a child cell of IgM isotype.

We use the irreversible nature of isotype switching to measure
the performance of tree inference by mapping back isotype labels
to the nodes on the inferred tree and counting the number of
nodes with an edge to a child that violate the rules of isotype
switching. We use the BCR data from Laustsen et al. (64) which
is generated with unique molecular identifier (UMI) technology
and primers targeting the isotype region on splenocyte whole
mRNA from five outbred mice undergoing an immunization
campaign. After extensive quality filtering using pRESTO (65) we
ran partis (9) to partition sequences into clonal families. These
clonal families were filtered based on having minimum 10 and
maximum 200 unique sequences and containing at least two
different isotypes. Furthermore, we discarded all clonal families
where inference exceeded 24 h of compute time for any single
tool on a single core. This left 697 clonal families to do isotype
validation.

We defined an isotype mismatch as an observed violation of
the isotype switching order (namely the order IgM, IgG, IgE,
IgA). That is, an edge connecting a parent and a child node is
an isotype mismatch if the isotype order of the parent is farther
along the order than its child (Figure S18). To calculate the
“isotype score” we iterate over all the tips and use each tip as
a starting point to collect the list of isotypes between this tip
and the root. This list is made by progressing from a tip to the
root and collecting isotypes sequentially, however, unobserved
internal nodes will not have an associated isotype and therefore
they “reverse inherit” the isotype from their child. Once this list
has been filled, each edge is evaluated and if an isotype mismatch
is encountered the parent node is marked as a violator. The
number of isotype switching violations is found by counting all
the violator nodes.

This sum is dependent upon the shape of the inferred tree,
potentially leading to a bias associated with each inference tool.
To address this, for each inferred tree we created 10,000 samples
of trees with the same topology but shuffled labels and from these
we calculated a “baseline” isotype score to be expected given this
topology.We divided the violation count by the baseline to obtain
the final isotype score.

Comparison to Joint Reconstruction
There are two approaches to maximum-likelihood ancestral
sequence reconstruction. For joint reconstruction, one infers
the collection of ancestral sequences that jointly maximize
the likelihood of the sequence data given the tree and a
substitution model (66). For marginal reconstruction, one infers
the maximum likelihood ancestral sequences at each internal
node individually, marginalizing over all the possible states of the
other internal nodes. Under the maximum parsimony objective,
ancestral sequence reconstruction is an inherent part of the tree
construction and thus it is conceptually more similar to a joint
ancestral sequence reconstruction.

All the ML based tools (dnaml, IgPhyML, and IQ-TREE)
we test use marginal reconstruction, raising the question of
whether this could influence the results of our benchmark
and if the relatively good performance of parsimony could be
explained by it being a joint-reconstruction technique. In order
to investigate this question, we applied the FastML tool (66),
capable of doing both joint and marginal ancestral sequence
reconstruction. FastML was run using the HKY model and
neighbor joining to build trees resulting in two reconstructions
with the same tree: one joint and one marginal reconstruction.
One thousand simulations under neutral and affinity simulation
was performed using the previously defined three mutation rates.
Finally, the joint and marginal reconstructions were compared
with IQ-TREE as a visual reference (Figures S13–S17).

Boxplot Layout
Tool performance is plotted in boxplots. Colored boxes cover
from lower to upper quartiles, with the median marked by gray
vertical lines and whiskers extending to 1.5 times the interquartile
range. Points beyond the range of the whiskers (outliers) are
hidden for clarity. Red triangles mark themeanmetric value of all
simulations, with 1,000 replicates for neutral and 500 replicates
for affinity simulations, with an overlapping horizontal red line
showing the 95% confidence interval of the mean. Confidence
intervals on the mean were computed using non-parametric
bootstrapping, using sampling with replacement on the set of
metric values to generate 10,000 bootstrap replicates (67). Tools
are ordered according to their mean metric values.

RESULTS

Metrics Are Correlated
The RF, MRCA, and COAR metrics are highly correlated, with
COAR being the most central metric (Figure 4). We checked
this for both neutral and affinity simulation and over a range
of mutation parameters (Figure S1) and conclude that the high
correlation between metrics is robust over many parameter
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FIGURE 4 | Correlation between metrics for the neutral simulation across the three mutation rates described in section Results. Same trend is true for affinity

simulation (Figure S1). (A) Correlation between COAR and MRCA metrics. (B) Correlation between COAR and RF metrics.

choices. To reduce the number of comparisons we chose COAR
as our principal metric because this was the most central metric
as well as being interpretable as the expected number of per-site
errors per reconstructed lineage. However, all metrics have been
run on all simulations (see Supplementary Figures), except
RF distance which does not deal well with reoccurring
sequences that appear multiple times in the affinity
simulation.

Joint and Marginal Reconstruction
Performs Equally Well
We found that joint reconstruction does not have an advantage
over equivalent methods using marginal reconstruction
according to our criteria. To investigate this question, we
ran default FastML v3.1 (66) with neighbor-joining tree
inference to infer ancestral sequences with both joint and
marginal reconstruction over a range of simulation methods
and parameters. Using our three performance metrics: RF,
MRCA and COAR, the two reconstruction methods performed
essentially identically (Figures S13–S17). Because none of the
ML methods initially tested had available joint reconstruction
implementations, we cannot make specific conclusions about
their performance using joint reconstruction. However, the
fact that between joint and marginal reconstruction perform
essentially identically is suggestive that this may be a general
phenomenon in this parameter regime.

Methods Differ in Performance
Consistently Across Simulations
We observe similar trends across varying simulation methods,
performance metrics, and mutation rates. A higher mutation
burden (λmut) leads to more complex trees resulting in decreased
inference performance, and this is true for all methods and
performance metrics (Figures S4–S10). Tools perform better on

neutral simulation compared to affinity simulations (Figure 5),
which is to be expected due to the added complexity of the
affinity simulation. Overall, the distributions of performance
metrics are heavy tailed with several outliers far outside of
the interquartile range. We have chosen to hide such outliers
for the interpretability of our boxplots but their impact can
be observed in the means (red triangles) and their confidence
intervals.

We find that SAMM and GCtree, which rank equally-
parsimonious trees, perform better than a uniformly-selected
equally parsimonious tree from dnapars. For all 15 tests
across mutation rates, performance metrics and simulation
methods SAMM is better than dnapars while GCtree is
better than dnapars 13/15 times (Figures S4–S10). SAMM
is the best ranked tool 12/15 times and often with a
substantial margin to the second best. Thus the equally-
parsimonious tree set contains better and worse trees, and
the likelihood ranking of these is effective at distinguishing
between them. However, given that SAMM were using the
S5F model for likelihood calculations on simulated mutations
also drawn from an S5F motif model, it should be not
surprise to see that SAMM consistently outperforms all other
tools.

Because SAMM is constrained by dnapars and the criterion
of only ranking equally parsimonious trees, we consider the
performance of SAMM compared to other tools as a conservative
estimate of the potential improvement available when correctly
modeling SHM motif bias. As a control, we note that when
mutations are drawn from a uniform distribution over sites
and substitutions, SAMM is not any better than dnapars
(Figures S11, S12) showing that SAMM’s performance can be
ascribed to the mutational context bias. Thus, we can use the
performance difference between SAMM and dnapars to measure
how much inference performance can improve by incorporating
SHMmotif bias.
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FIGURE 5 | COAR performance for different tools under neutral and affinity simulation using normal SHM rate (λmut = 0.365) and mutations drawn from the S5F motif

model. Colored boxes cover the lower to the upper quartiles, with the median marked by gray vertical lines and whiskers extending to 1.5 times the interquartile range.

Points beyond the whiskers (outliers) are hidden for clarity. Red triangles mark the mean COAR value of all simulations (1,000 replicates for neutral and 500 replicates

for affinity simulations) with the overlying red lines showing the 95% confidence interval found by bootstrapping the mean with 10,000 replicates. Black dashed lines

mark highest and lowest mean COAR values. Tools are ordered according to their mean COAR value.

Simulated datasets include information on sequence
abundance, which enables good performance of the GCtree
method. Normally, phylogenetic trees are made from a set of
unique sequences while the cellular abundance of each sequence,
referred to as genotype abundance, is discarded. GCtree, on
the other hand, utilizes this genotype abundance information
by ranking equally parsimonious trees via a likelihood using
abundances. Our results show that GCtree is the second best
performing tool, and consistently better than picking a random
equally parsimonious tree, indicating that the integration of
genotype abundance information does improve tree inference.
Here GCtree is given the correct abundances, giving an upper
bound on the performance gain obtainable by incorporating
abundance information. In a situation with real data GCtree
would rely on single cell data to gain estimates of genotype
abundances; while single cell data is becoming more widespread
(57, 68–70) the majority of Rep-Seq studies are still based on bulk
RNA sequencing resulting in unknown genotype abundances.

Performing third best after SAMM and GCtree comes dnaml
and dnapars, both with similar performance, after that IgPhyML
and lastly the three mutation models implemented in IQ-TREE
which are all performing very similarly (Figure 5). dnapars
performs slightly better than dnaml in neutral simulations while
the opposite is true in affinity simulations. Practically, the
difference between the two programs is so small that we suggest
users to choose whichever program they find to be fastest or most
convenient to use for their application.

Surprisingly, on simulated sequences IgPhyML performs
consistently worse than the simpler dnaml or dnapars
alternatives. Although, it is clear from the SAMM results
that SHM motifs are present and provide useful information for
inference, it does not seem to improve IgPhyML performance
beyond SHM naive methods such as MP. IgPhyML’s model was
preferred (by likelihood ratio test) in the examples provided in
the paper introducing it, which were large trees of long-term

broadly-neutralizing anti-HIV antibodies (35). We suspect
that IgPhyML’s model is too rich for the less complex data
provided here.

All three IQ-TREEmethods, using different mutation models,
perform consistently worse than any other tool tested in this
study. We find it surprising that IQ-TREE using the HKY
model is so far off dnaml using F84 despite the high similarity
between the two substitution models. We therefore conclude that
implementation differences e.g., tree space search, convergence
criteria etc. must be the reason for this discrepancy, which is in
concordance with our observation that IQ-TREE is much faster
than dnaml.

Isotype Data Confirms That Raw
Parsimony Can Be Improved by Likelihood
Ranking
The results of our investigation using isotype were somewhat
inconclusive. This measure had an extraordinarily large variance
observed in both the confidence intervals and the changed
rankings upon rerunning the analysis (Figure S19). Although
SAMM did perform best among all tools when using a custom
motif model fitted on the whole isotype dataset (using means
for ranking), the difference to other tools was small relative to
the variance, thus we cannot conclude from this comparison that
SAMM is better than the next few tools.

We find that most methods are slightly, but significantly,
better than dnapars (Figure S19). Furthermore, we find that
SAMM improves upon raw parsimony (Figure 6), again
confirming the notion that the SHM mutation process is
important and contains residual information not captured by the
parsimony objective. Notably, the parsimony ranking of GCtree
is also significantly better than dnapars (Figure S19) despite
the fact that this dataset did not contain genotype abundance
information. This indicates that the branching process prior used
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FIGURE 6 | Isotype score differences between dnapars and SAMM for all clonal families with non-zero isotype score. Positive points are clonal families where dnapars

had higher (worse) isotype score than SAMM and vice versa for negative values. The horizontal width of the red rectangle marks the 95% confidence interval of the

mean difference.

by GCtree can also yield useful results using the tree topology
alone. Testing the full potential of GCtree would require a single
cell dataset and this may also result in even better performance.
However, we emphasize that the difference in the isotype score
distribution between dnapars and the other methods is quite
small, especially when compared to the variance. Indeed, there
are many trees for which dnapars performed much better than
SAMM according to this metric (Figure S19, points <0).

DISCUSSION

In this work we have benchmarked the performance of
phylogenetic algorithms for use in B cell sequence analysis, with
a special emphasis on ancestral sequence reconstruction. Our
sequence simulation deviates from the standard independent-
across-nucleotides models, often used in such benchmarking,
by both introducing mutations using a realistic SHM motif
model and rewarding convergent mutations via an affinity model
of the binding equilibrium between BCRs and antigen. To
our knowledge this is the first simulation method to model
affinity maturation using BCRs represented as DNA sequences
such that selection is based on the corresponding amino acid
sequences. Inference based on affinity simulated sequences
is more challenging, resulting in ∼10 fold higher COAR
values (Figure 5), underlining the importance of considering
selection to get realistic error estimates on BCR phylogenetic
reconstruction. Still, the average COAR values for affinity
simulation is 0.0003–0.0005 which translates to an expectation
of 1–2 total nucleotide errors in a lineage with 5 heavy+light
chain BCR sequences reconstructed (∼3,600 nucleotides). With
the added benefit that about 1/3 of these expected mutations
will be silent, reconstruction of BCR affinity matured lineages
using ancestral sequence reconstruction in this parameter regime
appears to be of high fidelity. However, this estimate should
be tempered with the fact that the correct naive sequence

was provided to the algorithm, and the general fact that
complex processes happening in real data can make the problem
significantly harder. In real applications there will be uncertainty
in the inference of the naive sequence. In cases where an
erroneous naive sequence is used in tree reconstruction, such
nucleotide errors are likely to propagate toward the tips of the
tree, increasing the expected number of errors.

Our simulations generally follow same summary statistics as
a single instance of germinal center maturation starting from
an unmutated naive B cell (Figures S25, S26). However, upon
repeated exposures, germinal center maturation is more likely to
be based onmemory recall e.g., chronic or seasonal infections like
HIV and influenza (71). Memory recall will naturally accumulate
more mutations than maturation on a naive B cell and hence
will constitute a more complex reconstruction task. As we do
not simulate the conditions of memory recall our results cannot
be directly applied to such cases, however, we do expect that
in such cases the success of reconstruction is lower and that
the expected number of nucleotide errors in a reconstruction
is substantially higher than the expectations reported above. It
also follows from the simulation summary statistics (Figures S25,
S26) that our simulated trees are quite densely sampled, giving
rise to sampled ancestors and short branch lengths. This stands
in contrast to typical repertoire-wide data where clonal families
are sampledmore sparsely and therefore have longer branches on
their corresponding phylogenetic trees. The short branch lengths
of our simulations may favor simpler reconstruction methods
such as parsimony. Because of these limitations our findings are
not directly applicable to repertoire-wide datasets, although they
do indicate that we cannot assume the results of simulations in
the classical long-branch phylogenetic regime (e.g., (14)) hold for
all cases of B cell lineage evolution.

Looking at the more subtle differences between tools two
observations stand out: first, accounting for SHM motifs is the
biggest contributor to accuracy, and second, implementation
matters. The performance of SAMM on simulations clearly
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shows how SHM motifs leave a useful trace that can be
integrated into an inference method. One such method is
the HLP17 model used by IgPhyML (35), but it may suffer
from noisy parameter estimates in cases with relatively few
sequences per clonal family. An extension to IgPhyML may
alleviate these problems by either fixing the hot/cold spot
parameters with a predetermined motif model, or the means
of combining information across clonal families. Yet, there
are still reasons to attempt other ways of integrating SHM
motifs, as well as other affinity maturation specific information
like genotype abundances, into inference methods in more
principled ways than mean field approximations or likelihood
ranking of MP trees. Our benchmark also gives a reminder that
implementation matters. Under otherwise similar substitution
models two different implementations (dnaml and IQ-TREE)
vary substantially and consistently in performance. We do not
know what causes these differences, but we speculate that tree
space sampling could be a critical point as this appears to be the
most important difference between these two implementations,
and because IQ-TREE experiences the same pathologies with
multiple different substitutionmodels. IQ-TREE’s heuristics were
probably tuned with the traditional phylogenetic case (of deeply
diverging sequences) in mind, which is different from our
use case.

BCR isotype switching is an irreversible event and contains
useful information about the phylogenetic relationship among
BCR sequences in the same clonal family. We observed that
the two MP tree ranking methods (SAMM and GCtree) did
significantly decrease the isotype score compared to picking
a random equally parsimonious tree, thus confirming our
simulations. Despite this it appears to be very difficult to use
the isotype score as an empirical performance metric because of
its high variance. We believe that this is in part due to sparse
sampling of the clonal families (only few tens of sequences out
of the thousands evolved in a GC). In such cases, incomplete
sampling can cause penalization of correct reconstructions
because of missing observations and the isotype score will not
reach zero even with perfect reconstruction. However, on average
the best reconstructions should have lower isotype scores than
the worst reconstructions. With better sampling and more clonal
families we expect the isotype score to be better resolved, with
lower variance, and then it may be a more useful metric for
assessing the performance of BCR phylogenetic inference, or
simply used as a constraint in the inference model itself (72).

In this work we provided phylogenetic algorithms with
the correct naive sequence. The impact of naive sequence
uncertainty was in a way benchmarked by Yermanos et al.

(51), in which they used a coarse method for clonal family
inference and then asked if phylogenetic methods could

later disentangle the families. Both our study and Yermanos
et al. (51) leave open the question of the performance of
phylogenetic methods when supplied with a potentially noisy
estimate of the naive sequence supplied by current clonal family
inference tools. We will perform the appropriate benchmarking
as part of our future development of methods to perform
phylogenetic reconstruction and naive sequence estimation
simultaneously.

In this work we also have not tested the impact of insertion-
deletion (indel) mutations, which do happen in BCR phylogenies
(61, 73, 74). Current tools leave a lot to be desired for ancestral
sequence inference in the presence of indels, as in our experience
they “fill in” nucleotides at every site of an ancestral sequence
inference, even if a gap is clearly the right choice. In addition,
indels are not treated as the informative characters they are
in mainstream phylogenetics software; rather, they are treated
as missing data. Benchmarking phylogenetic tools would also
require benchmarking the alignment step, which has an effect on
ancestral sequence reconstruction accuracy (75). Nevertheless,
this will be another important focus for future tool development
and ancestral sequence reconstruction benchmarking within the
field of BCR phylogenetic reconstruction.
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