
RESEARCH ARTICLE

Accelerating Neuroimage Registration
through Parallel Computation of Similarity
Metric
Yun-gang Luo1*, Ping Liu2, Lin Shi3,4*, Yishan Luo5, Lei Yi6, Ang Li5, Jing Qin2, Pheng-
Ann Heng2,7, DefengWang5,8,9

1 Department of Stomatology, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China,
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
3 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China,
4 Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong
Kong, China, 5 Research Center for Medical Image Computing, Department of Imaging and Interventional
Radiology, The Chinese University of Hong Kong, Hong Kong, China, 6 Department of Radiology, The
Second People's Hospital of Shenzhen, Shenzhen, China, 7 Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong, China, 8 CUHK Shenzhen research
institute, Shenzhen, China, 9 Department of Biomedical Engineering and Shun Hing Institute of Advanced
Engineering, The Chinese University of Hong Kong, Hong Kong, China

* luoyungang@sohu.com (YGL); shilin@cuhk.edu.hk (LS)

Abstract
Neuroimage registration is crucial for brain morphometric analysis and treatment efficacy

evaluation. However, existing advanced registration algorithms such as FLIRT and ANTs are

not efficient enough for clinical use. In this paper, a GPU implementation of FLIRT with the

correlation ratio (CR) as the similarity metric and a GPU accelerated correlation coefficient

(CC) calculation for the symmetric diffeomorphic registration of ANTs have been developed.

The comparison with their corresponding original tools shows that our accelerated algorithms

can greatly outperform the original algorithm in terms of computational efficiency. This paper

demonstrates the great potential of applying these registration tools in clinical applications.

Introduction
Neuroimage registration is useful for many neuroimage applications such as statistical quantifi-
cation of human brain morphometry and computer-aided diagnosis. Neuroimage registration
aims at aligning brain images in such a way that the same anatomical structure can correspond
spatially by finding an optimal spatial mapping. Given two images, a reference image and a
moving image to be registered, the registration problem is to find a transformation that mini-
mizes the disparity by measuring the similarity between the transformed moving image and
the reference image. Registration algorithms can be classified as linear and non-linear registra-
tion according to the type of transformations they permit.

Image registration often requires a long computational time due to the intensive computa-
tion of the transformation and similarity measure, which are considered as the bottleneck of
image registration computational cost. Optimization algorithms in high-dimensional spaces
are usually complex and time-consuming, which prolong data analysis and limit their use in

PLOSONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 1 / 14

OPEN ACCESS

Citation: Luo Y-g, Liu P, Shi L, Luo Y, Yi L, Li A, et al.
(2015) Accelerating Neuroimage Registration through
Parallel Computation of Similarity Metric. PLoS ONE
10(9): e0136718. doi:10.1371/journal.pone.0136718

Editor: Dzung Pham, Henry Jackson Foundation,
UNITED STATES

Received: October 20, 2014

Accepted: August 7, 2015

Published: September 9, 2015

Copyright: © 2015 Luo et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The work described in this paper was
supported by grants from the Research Grants
Council of the Hong Kong Special Administrative
Region, China (Project No.: CUHK 475711, CUHK
416712, CUHK 473012, CUHK 14113214), a grant
from Ministry of Science and Technology of the
People's Republic of China (Project No.:
2013DFG12900), and grants from the National
Natural Science Foundation of China (Project No.
61233012, and 81201157), and grants from The
Science, Technology and Innovation Commission of
Shenzhen Municipality (No.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0136718&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

clinical applications such as image-guided intervention. Using multi-core CPUs is one way to
speed up the registration. On the other hand, GPUs have also been widely used for image pro-
cessing applications including medical registration due to their inherent massive data parallel-
ism [1][2][3][4]. Aiming at solving the computational bottleneck of image registration, some
methods have been proposed to accelerate the similarity metric computation on GPU platform.
Shams [5] accelerated 3D medical images registration by computing mutual information (MI)
as the similarity metric on GPU. For registration algorithm based on MI, histogram computa-
tion is an essential component [6]. There have been several approaches to compute the histo-
gram efficiently on the GPUs. Shams et al. [7] maintained a number of sub-histograms in
global memory (due to shared memory volume restriction) and sum-up afterwards, or fit a few
sub-histograms in shared memory but access the image volumes several times to cover the
entire bins. Vetter et al. [8] presented a pre-processing sort to reduce the usage of shared mem-
ory and to guarantee coalesced write operations at the same time. For introduction of shared
memory please refer [9]. They further facilitated the histogram collisions by allocating more
counters for "fat bin" according to the intensity distribution obtained from a low cost one-
dimensional histogram of the moving image during the pre-processing phase. For nonlinear
registrations, Muyan-Ozcelik implemented a CUDA version of DEMONS registration algo-
rithm [10]. James et al. introduced some GPU implementations of nonlinear registration such
as the B-spline method [11]. And Mark et al. developed a open-source software tool NiftyReg
for registration on GPU, which implemented a parallel version of the well-known free-form
deformation algorithm using CUDA[12].

GPUs also bring opportunities for existing neuroimage registration tools such as FLIRT
(FMRIB's Linear Image Registration Tool) [13][14][15]in FMRIB Software Library (FSL),
which may be redeveloped and redesigned for a massive multi-processing architecture.
FLIRT is demonstrated to be one of the highest robust and widely used linear image registra-
tion tools [15]. However, performing FLIRT on single CPU is time consuming. It took about
one hour to register two brain volumetric images when it was first proposed in 2001 [14],
and now, it still took a few minutes to perform affine registration based on our tests with
workstations (2.53G Xeon processor 4GB RAM). To improve the efficiency, Chen [16]
implemented the FLIRT algorithm with MI as the similarity metric on GPU. Since correla-
tion ratio (CR) is a more widely used similarity metric in many applications [14], Li pre-
sented an accelerated FLIRT for volume image registration with CR as the similarity metric
on GPUs [17].

Because linear registration algorithms are still inadequate to align brain structures perfectly,
numerous nonlinear registration tools have been proposed, such as FNIRT (FMRIB’s nonlinear
image registration tool) [15], SPM[18] and ANTs (Advanced Normalization Tools) [19][20]
[21]. Built on ITK framework, the ANTs open-source library provides a suite of tools on diffeo-
morphic normalization, image segmentation and template building, and it is commonly used
in the medical image analysis field. According to a review paper [22], ANTs is one of the non-
linear registration methods with top performance. However, computational speed is still an
issue for ANTs. It took about one and half hour to perform diffeomorphic registration for two
3D images (voxel resolutions: 256×256×128) on our tests with the workstation (2.53G Xeon
processor, 4GB RAM). Because ANTs is rather complex, there is no hardware acceleration for
it to the best of our knowledge.

The main contribution of this paper is to achieve fast implementation of the popularly used
linear and non-linear image registration tools on the GPU platform. For FLIRT acceleration,
the method was proposed in[17] is adopted, which just focused on the accelerating scheme on
the linear registration tool FLIRT with CR as the similarity measure. This paper extends it with
more experiments about neuroimage registration and further analysis about the accelerated

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 2 / 14

CXZZ20140606164105361,
JCYJZ20130401112102666), a grant of Shenzhen
Basic Research Project (No.
CYJ20130402113127511), a grant from Natural
Science Foundation of Guangdong (No.
S2013010014973) and by project BME-p2-13/BME-
CUHK of the Shun Hing Institute of Advanced
Engineering, The Chinese University of Hong Kong.

Competing Interests: The authors have declared
that no competing interests exist.

algorithm. For accelerating CR calculation, an array for the reference image is first constructed,
which is pre-sorted according to its intensity once on the GPU. Then CR is computed effi-
ciently on the GPU kernel. In addition, we also implement a fast calculation of correlation coef-
ficient (CC) on the GPU for the symmetric diffeomorphic registration of ANTs for non-linear
neuroimage registration. For CC calculation on the GPU, 3D volume filtering with surface and
texture memory is used. Finally the GPU implementations of both FLIRT and ANTs are exten-
sively evaluated with datasets from public neuroimage databases. Our accelerated algorithms
are compared with their original implementations in terms of both registration accuracy and
computation efficiency.

Preliminaries

The FLIRT algorithm and Correlation ratio
FLIRT is a linear image registration tool freely available for precompiled binaries for non-com-
mercial use [13]. Given a reference image I, and a moving image J, it uses a multistart, multire-
solution global optimization method to find the affine transformation that minimizes the
disparity between the reference image and the moving image [14]. It divides the process of
searching for the best transformation at four different resolution levels: 8, 4, 2, 1mm. In prac-
tice, as in the original FLIRT, images are sub-sampled such that the voxel side-length becomes
1 mm according to their original physical dimensions of each voxel. The 2-, 4- and 8-mm sub-
sampled volumes are obtained according to the isotropic 1-mm resolution volume.

For each search in each stage of the FLIRT algorithm, the transformed image JT (JT = J � T)
is obtained, and then the similarity metric between JT and I is calculated for all the candidate
transformations in the search space, which means that the computation of JT and similarity
metric is carried out iteratively.

The CR of two variables P and Q is defined as [23]:

ZðPjQÞ ¼ Var½EðQjPÞ�
VarðQÞ ¼ 1� Var½Q� EðQjPÞ�

VarðQÞ ð1Þ

where Var[E(Q | P)] is the part of Q predicted by P, and Var(Q) is the total "energy" of Q. CR
measures the functional dependence between P and Q. It takes on values between 0 (no func-
tional dependence) and 1 (purely deterministic dependence).

Given a reference image I, and a transformed image JT, they may be seen as two discrete ran-
dom variables, and their CR is computed as [23]:

ZðJT jIÞ ¼ 1� 1

Ns2

X
i
Nis

2
i ð2Þ

s2 ¼ 1

N

X
o2OJTðoÞ

2 �m2; m ¼ 1

N

X
o2OJTðoÞ; ð3Þ

si
2 ¼ 1

Ni

X
o2Oi

JTðoÞ2 �mi
2; mi ¼

1

Ni

X
o2Oi

JTðoÞ ð4Þ

where σ2 andm are the variance and mean of voxels within O in JT, respectively. O denotes the
overlapping region between the two images, and N is the number of voxels in O. Oi = {ω 2 O, I
(ω) = i} is the isointensity set of I and Ni is the number of voxels in Oi. For image registration,
the isointensity set of I is computed by the histogram bins of I, Oi = {ω 2 Bin[i]}, in which i

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 3 / 14

represents a gray-level of I. Compared with MI, the computation of CR does not require com-
puting 2D-histograms of the images. The computational complexity of CR is O(X) O(nx)
instead of O(nxny) for a conventional algorithm for computing MI, X and Y being the number
of gray levels in I and JT. Image registration with CR as the similarity metric is able to generate
comparably accurate results and shows better robustness at low resolutions, compared with MI
as similarity metric [14]. These advantages make CR especially useful for multi-resolution
methods such as the FLIRT algorithm.

Symmetric diffeomorphic image registration in ANTs with cross-
correlation
The ANTs toolkit provides a hierarchy of transformations with adjustable levels of complexity,
regularization, degrees of freedom and behavior as optimizers. Symmetric diffeomorphic
image registration in ANTs is based on optimizing and integrating a time-varying velocity
field. The map ϕ, over time, denotes a family of diffeomorphisms, ϕ(x,t): O×t! O, generated
by integrating a time-dependent, smooth velocity field, u : O� t ! R

d, through the ordinary

differential equation(o.d.e.): d�ðx;tÞ
dt

¼ vð�ðx; tÞ; tÞ; �ðx; 0Þ ¼ x:O is the image domain. To con-

struct a symmetric implementation, the diffeomorphism, ϕ, in ANTs is decomposed into two
components ϕ1 and ϕ2, according to composition property of diffeomorphisms, and the first
integral is split into two time intervals reflecting the underlying optimized components of the
velocity field. Avants et al define the variational optimization problem driven by CC based on
the generalized standard Large Deformation Diffeomorphic Metric Matching (LDDMM) equa-
tion[21],

ECCðI; JÞ ¼ inf
�1

inf
�2

Z t¼0:5

t¼0

ðjv1ðx; tÞk2L þ kv2ðx; tÞk2LÞdt þ
Z

O

CCðI; J; xÞdO ð5Þ

where v(x, t) = v1(x, t) in t 2 [0, 0.5],and v(x, t) = v2(x, 1 − t) in t 2 [0.5, 1], and

CCðIT ; JT ; xÞ ¼
X

i
ððITðxiÞ �mIT

ðxÞðJTðxiÞ �mJT
ðxÞÞ2X

i
ðITðxiÞ �mIT

ðxÞ2ðJTðxiÞ �mJT
ðxÞÞ2 ð6Þ

in which IT = I � ϕ1(x, 0.5), JT = J � ϕ2(x, 0.5) andmIT
ðxÞ is mean value computed over a local

(2×r+1)D window centered at each position x in IT, where r, is the neighborhood radius and D
is the image dimension.

Calculation of CC is time consuming when done natively, especially for 3D images. To gen-
erate CC(IT, JT, x) for each pixel, the following three intermediate values need to be calculated:

AðxÞ ¼
X

i
ITðxiÞ

2 � ð2�mIT
ðxÞ �

X
i
ITðxiÞÞ þ n�mIT

ðxÞ2 ð7Þ

BðxÞ ¼
X

i
JTðxiÞ

2 � ð2�mJT
ðxÞ �

X
i
JTðxiÞÞ þ n�mJT

ðxÞ2 ð8Þ

CðxÞ ¼
X

i
I1ðxiÞJ1ðxiÞ �mIT

ðxÞ �
X

i
ITðxiÞ�mJT

ðxÞ �
X

i
JTðxiÞ þ n�mIT

ðxÞ �mJT
ðxÞð9Þ

where n = (2×r+1)3, is the number of voxels in the local window.
To get the above values, ∑ IT(xi), ∑ JT(xi), ∑ IT(xi)

2, ∑ JT(xi)
2, ∑ IT(xi)JT(xi) are calculated.

When iterating through an image volume voxel by voxel, only a few of the voxels that are used
to calculate these five values change, i.e. the voxels in the boundaries of the local window. The
sum of most voxel in the local window can be reused to speed up the calculation.

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 4 / 14

The Proposed Method

GPU accelerated FLIRT with CR as similarity metric
An implementation of the original FLIRT framework specialized for GPUs was designed as in
[17]. The sequential search was performed on the CPU, while all the computation-intensive
processes such as re-sampling, transformation, interpolation of J and the computation of CR
were performed on the GPU. An overview of the GPU implementation is shown in Fig 1. The
process started with reading I and J to the global memory in the GPU, as well as binding J to
the texture memory. I and J were re-sampled (if of sufficient quality) to an isotropic grid with
voxel size 1-mm cubed in the GPU. The re-sampled 1-mm images were down-sampled three
times to get the 2-, 4- and 8-mm images successively on the GPU. For each stage, by construct-
ing an array, the subsampled reference image I' was sorted according to its intensity, and then a
fast local optimization [5] was done to find the candidate transformations.

A pre-sorting of I' was required as a preprocessing step in each stage. An array L was con-
structed, each element of which contained a voxel’s coordinate and intensity. A CUDA-based
sorting process [24][25] was applied to L with the intensity value as the key, guaranteeing that
all the voxels belonging to the same histogram bin were distributed continuously.

L ¼ fðx; y; z; IÞjI ¼ Iðx; y; zÞ; ðx; y; zÞ 2 Org ð10Þ

The sorted array L was then passed to the CPU and a small routine was employed to mark
the starting (and ending) index of each bin. The starting (and ending) index of each bin was
kept in a marked array and transferred to the GPU’s global memory. The preprocessing step
was executed once for each stage while the result might be used iteratively during the stage.

When the sorted array L was available and the array saving the starting (and ending) index
of each bin was transferred to the GPU, the CR computation kernel was called. Taking the for-

mulas (2) to (3),
X

o2Oi
ITðoÞ2,

X
o2Oi

ITðoÞ (ω 2 Bin[i]) and number of voxels within the

mapped Oi were calculated to obtain s2
i andmi of those mapped voxels for this bin. The same

number of thread blocks as that of the histogram bins was allocated so that each block would
traverse the voxels from the start index to the end index for the bin on the sorted data, as
shown in Fig 2 as in [17]. The pseudocode of the CR computation kernel is listed in algorithm
in S1 Appendix. K (K =WARP_SIZE×WARP_COUNT) threads were allocated in each block,
so the blocks need to execute (The end index of Bin[i]–the start index of Bin[i])/K or ((The end
index of Bin[i]–the start index of Bin[i])/K + 1) times to process all the voxels from the start
index to the end index for the corresponding histogram Bin[i].

Fig 1. Flowchart of the GPU implementation for a stage of FLIRT.

doi:10.1371/journal.pone.0136718.g001

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 5 / 14

After the number of voxels within Oi,
X

o2Oi
ITðoÞ2 and

X
o2Oi

ITðoÞ for each bin were

obtained, a CR sum kernel based on the reduction algorithm in CUDA was called for summing
those results of each bin to get CR.

GPU-accelerated CC calculation in ANTs
Symmetric diffeomorphic image registration in ANTs was implemented based on ITK frame-
work, which provides lots of iterators to traverse an image. The iterator operator sequentially
traverses an image volume, leading to a long calculation time. To explore the possibility of its
hardware acceleration, the time consuming calculation of CC was done in parallel according to
Eq 6, i. e., each voxel is calculated separately and independently, therefore great time saving is
expected.

Based on the source code of ANTs, IT and JT were obtained from ITK image classes for the
reference image and the moving image, respectively, transferred to the GPU global memory,
and bound to two 3D texture memories. Five 3D surface memories were defined andmIT

,mJT
,

A, B and C were bound to them for calculating CC, respectively, as surface memories in CUDA
program environment can both read and write. Once the five values were calculated in the
GPU, they were copied to the corresponding CPU memory allocated to store them for the sub-
sequent calculation of ANTs.

mIT
, andmJT

were obtained by mean filter of IT and JT, respectively. They were implemented

by volume filtering. The offsets of voxels in the local window respect to the center voxel were
obtained in the CPU and copied to constant memory of the GPU.mIT

,mJT
, A, B and C were

computed according to Eqs 7–9 in a GPU kernel. Each voxel was assigned to one thread, as the
calculation is independent. Full description of the kernel is given in algorithm in S2 Appendix.

Experimental Results and Discussion

Datasets
For repeatable comparison, all datasets were downloaded from public databases. 4 datasets
(NewHaven_b: Dataset 1, Bangor: Dataset 2, Oxford: Dataset 3, PaloAlto: Dataset 4) were
downloaded from [26], and 10 subjects were chosen randomly in each datasets. In addition,
the dataset including 18 subjects from IBSR (Dataset 5) with labeled data was also used [27].
For each dataset, a randomly selected image was chosen as the reference image, and the other
images were considered as moving images and registered to the reference image.

Fig 2. Sketchmap of a block execution for computation of Bin[i].

doi:10.1371/journal.pone.0136718.g002

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 6 / 14

Implementation environment
A GPU version of FLIRT with CR as the cost function was implemented based on NVIDIA’s
GPGPU programming environment, CUDA v6.5. The accelerated FLIRT runs on a worksta-
tion with Intel(R) Xeon(R) CPUW3505 @2.53GHz (RAM 4.00GB) and GTX 680 (Worksta-
tion 1). The detailed configuration of GTX 680 is listed in Table 1. The original FLIRT in FSL
run with CentOS 7 installed on the same workstation.

The original ANTs and the accelerated ANTs with CC calculation on GPU also run on
(Workstation 1). To exam the impact of hardware configuration, the original ANTs and the
accelerated ANTs with CC calculation on GPU run on another workstation with Intel(R) Core
(TM) i5-3470S CPU @2.90GHz (Memory 8.00GB) and GTX 660 (Workstation 2) as well. The
software can be downloaded through the website: http://figshare.com/articles/GPU_
accelerated_FLIRT_and_ANTs_zip/1501449.

Registration with FLIRT and the accelerated one
For visual comparison, the slices of the registered results of the 5 datasets by original FLIRT
and the accelerated FLIRT with CR as similarity measure are given in Fig 3. The slices with dis-
tinct features are displayed for easy visual comparison. Images in the first row are the reference
images, images in the middle row are the results obtained by the accelerated FLIRT with CR as
similarity measure, while those in the third row are results obtained from the original FLIRT.
Fig 3 shows registered results of the accelerated FLIRT appear the same as those of the original
tool.

The total runtimes of the accelerated FLIRT and original FLIRT for the 5 datasets are listed
in Table 2. Each subject in each dataset was registered to the reference image 3 times. The
mean runtime of the subjects in the same dataset is considered as the runtime of that dataset.
OnWorkstation 1, the accelerated FLIRT took less than 30 seconds for all datasets, while the
original FLIRT took about 1–2 minutes and scaled linearly with the number of voxels. Table 2
shows that the runtime of our accelerated FLIRT doesn’t increase clearly as the number of vox-
els of images increase. We get 4 times speedup with the accelerated FLIRT, while 18 times is
achieved in [17]. This is because not only the hardware configurations of our workstation is

Table 1. The hardware specification of theworkstastions with GTX680 and GTX 660, respectively.

Device specification (GPU) GTX680 GTX660

Number of multiprocessors 8 2

Number of cores per multi-
processor

192 192

Total amount of global
memory

4096 MBytes 512 MBytes

Total number of registers
available per block

65536 bytes 65536 bytes

Total amount of shared
memory per block

49152 bytes 49152 bytes

Total amount of constant
memory

65536 bytes 65536 bytes

Maximum number of threads
per block

1024 1024

Warp size 32 32

CPU specification Intel(R) Xeon(R) CPU W3505
@2.53GHz (RAM 4.00GB)

Intel(R) Core(TM) i5-3470S CPU
@2.90GHz (RAM 8.00GB)

doi:10.1371/journal.pone.0136718.t001

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 7 / 14

http://figshare.com/articles/GPU_accelerated_FLIRT_and_ANTs_zip/1501449
http://figshare.com/articles/GPU_accelerated_FLIRT_and_ANTs_zip/1501449

different from that in [17], but also the operating system. They used Nvidia Tesla C2075,
which is better than our GTX 680. On the other hand, as original FLIRT can only run in a vir-
tual machine in windows system as in our case, it would take more time than in a linux system
as in [17].

The overall performance of a registration algorithm depends on the efficiency of the optimi-
zation strategy decided by the iterations required by the algorithm to converge. If a single com-
putation of the similarity metric is considered in one iteration, the total runtime depends on
the number of iterations and effectiveness in computing the similarity metric. For FLIRT, it
uses a multistart, multiresolution global optimization method to eliminate the occurrence of
gross misalignments in affine image registration. Its search space is relatively stable, then the
key factor of running time of FLIRT is the time each iteration takes. As CR is calculated in each
iteration, the runtime scales with the image sizes when it is calculated in the original FLIRT on

Table 2. Mean runtimes for registration of images from the 5 datasets of the original FLIRT and the accelerated FLIRT with Workstation 1. (Time:
seconds).

Dataset time (s) 1 2 3 4 5

Dimensions (Width*Height*Depth) 131×179×137 162×215×157 176×192×192 256×124×256 256×256×128

Size of voxels 3212513 5468310 6488064 8126464 8088608

Original FLIRT 46.9 63.74 75.66 95.51 118.29

Accelerated FLIRT 13.72 23.17 25.05 25.54 24.56

Total speedup 3.4 2.8 3 3.7 4.8

doi:10.1371/journal.pone.0136718.t002

Fig 3. Registered results obtained by the accelerated FLIRT with CR as similarity metric and original
FLIRT with CR as similarity metric.

doi:10.1371/journal.pone.0136718.g003

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 8 / 14

CPU. While for the accelerated FLIRT with CR as similarity metric, the total runtime mainly
depends on runtime of the sorting process and the time of CR calculation. When calculating
CR on GPU, the voxels are grouped according to histogram bin, voxels in the same bin are

calculated in parallel, i.e. voxels within the mapped Oi,
X

o2Oi
ITðoÞ2,

X
o2Oi

ITðoÞ (ω 2
Bin[i]) for each bin are calculated in a CR computation kernel at the same time to obtain s 2

i

andmi for that bin. Then another CR sum kernel is called to sum the above
X

o2Oi
ITðoÞ2,X

o2Oi
ITðoÞ (ω 2 Bin[i]) of all bins to get CR. Due to the above parallel computation of CR,

CR calculation consume just increases slightly as the sizes of images increase. Meanwhile, the
sorting time is random according to the reference image. Because the time increase due to the
reference image size is not very obvious, in addition to the affection of sorting, the total runtime
doesn’t scale with the image size clearly.

For GPU kernels, when called, they are executed N times in parallel by N different CUDA
threads. And the threads schedule is according to the kernel parameters: grid size, block size
and shared memory size. The block size of the CR computation kernel was set to WARP_SI-
ZE�WARP_COUNT according to the configuration of the GPU used, being 32�8 for GTX 680.
The grid size was set to the number of bins, which was 256/n used at resolution n (n = 8, 4, 2,
1). Because the number of bins for each stage of the native FLIRT algorithm is fixed, the run-
time of CR computation kernel depends on the time required for traversing voxels in each bin,
which is decided by the size of the reference image. The shared memory size for each block,
local registers for each thread took by the GPU kernels were fixed and far less than the
resources GTX 680 may afford, so the limitation of the GPU implementation comes from the
global memory size and texture memory size. The original and the 1-, 2-, 4- and 8-mmmoving
and reference images were all kept in the global memory, as well as the sorted array L.

Registration with ANTs and the accelerated one
The slices of the registered results of the original ANTs and the accelerated ANTs with CC cal-
culation on GPU are displayed in Fig 4. The images in the second row look almost the same as
those in the third row, showing the accuracy of the acceleration algorithm. Figs 3 and 4 also
show ANTs, as nonlinear registration tools, performs better than the linear FLIRT, as images
registered with ANTs are more similar to the reference images than those with FLIRT.

To qualitatively evaluate the nonlinear registration accuracy, for the first four datasets with-
out ground truth label images, mean absolute difference (MAD) between the registered results
obtained by the original tools and the reference images, and MAD between the results achieved
by the accelerated implementations and the same reference images were calculated and com-
pared in Fig 5. The red bars show the MADs between the registered results using original tools
and the reference image, while the blue bars are the MADs between the registered results using
the accelerated implementations and the reference image. For the dataset IBSR, for each pair of
registration, the resulting transformation was also applied to transform the brain structure
label images provided by IBSR. The transformed label images were compared with the ground
truth labels of the reference image in terms of structure volume overlap [28]. The structure vol-
ume overlap is measured with the Jaccard index:

JA;B ¼
jA \ Bj
jA [Bj ð11Þ

The Jaccard indice are almost the same between accelerated ANTs and original ANTs. Figs
5 and 6 also shows that the accelerated ANTs with CC calculation on GPU is nearly as accurate

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 9 / 14

as the original ANTs. The results are slightly different because NVIDIA GPUs differ from the
x86 architecture in that rounding modes are encoded within each floating point instruction
instead of dynamically using a floating point control word. And sometimes the results by the
accelerated ANTs are even slightly more accurate thanks to the fused multiply-add operator on
GPU.

For the symmetric diffeomorphic image registration in ANTs, the total runtimes of
original ANTs and that with GPU accelerated CC calculation are compared and given in

Fig 4. Registered results obtained by the GPU accelerated CC calculation for the symmetric
diffeomorphic registration of ANTs and the original ANTs.

doi:10.1371/journal.pone.0136718.g004

Fig 5. Registered results of region labeled images provided by the IBSR by the GPU accelerated CC
calculation for the symmetric diffeomorphic registration of ANTs and the original ANTs.

doi:10.1371/journal.pone.0136718.g005

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 10 / 14

Tables 3 and 4. From Table 3, it can be seen that the accelerated implementation achieved
about 113.7 times speed up for CC calculation, and about 2 times speed up in total for all the
datasets on Workstation 1. OnWorkstation 2, the accelerated implementation achieved about
16.7 times speed up for CC calculation, and about 2.2 times speed up in total, as listed in
Table 4. Tables 3 and 4 shows the better the graphic card the faster CC calculation is, as the
mean speed up times for CC calculation on GTX 680 is about 6.8 of that on GTX 660. GTX
680 has 8 multiprocessors, while GTX 660 only has 2 multiprocessors. However, Workstation
2 is equipment with a more powerful CPU thanWorkstation 1, so there is not much difference
in the overall speed ups.

For the two graphic cards, the detailed configurations of the CC computation kernel are the
same. The block size was set to (8, 8, 1), with each thread calculating a voxel, while the grid size
is set according to the image volume size and the block size, as that in the example of volume
filtering in the CUDA SDK. As listed in algorithm in S2 Appendix, IT and JT are bound to tex-
ture memory, andmIT

,mJT
, A, B and C are bound to surface memory, so the limitation of

Fig 6. Mean absolute differences between the registered results obtained by original ANTs and the
reference image, and those between the reference and the results obtained by the accelerated ANTs
with CC calculation on GPU.

doi:10.1371/journal.pone.0136718.g006

Table 3. Mean runtimes and speedups for registration of images from the 5 datasets of the original ANTs and the accelerated ANTs with Worksta-
tion 1 (Time: seconds).

Dataset time (s) 1 2 3 4 5

Dimensions (Width*Height*Depth) 131×179×137 162×215×157 176×192×192 256×124×256 256×256×128

Size 3212513 5468310 6488064 8126464 8088608

Time for CC in Original ANTs 1050.79 1699.62 2002.19 3170.54 3461.48

Total time for Original ANTs 1972.19 3062.61 3526.72 5023.48 6197.47

Percent of time for CC 53% 55% 57% 63% 56%

Time for CC in Accelerated ANTs 11.46 17.45 19.79 28.87 29.27

Total time for Accelerated ANTs 934.81 1398.15 1566.96 3713.58 3452

Speedup of CC 91.69 97.4 101.17 109.82 118.26

Total Speedup 2.11 2.19 2.25 1.35 1.81

doi:10.1371/journal.pone.0136718.t003

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 11 / 14

implementation is the texture memory size GTX 680 and GTX 660 may afford. The offsets of
voxels in the local window respect to the center voxel are kept in the GPU constant memory.
The size of the offsets depends on the neighborhood radius r set for CC calculation, now r can
be set to a maximum 8 as the constant memory sizes of GTX 680 and 660 are both 65536 bytes,
while r is usually set 5 according to [20]. In the above experiments, all r are set to 5.

Conclusions
A GPU implementation of FLIRT with CR as the similarity metric is developed. On the GPU
device a pre-sorting on the reference image is computed once. Then CR, the default cost func-
tion of FLIRT, is calculated efficiently on the GPU without read-write conflict. A GPU acceler-
ated CC calculation for the symmetric diffeomorphic registration of ANTs is also
implemented. Comparisons with the corresponding original tools have shown the advantages
of the proposed methods in terms of computational efficiency and accuracy. The proposed
method improved the usefulness of the original tools for clinical applications. Our future work
includes further accelerating deformable registration algorithms, such as the whole algorithms
in the ANTs based on the proposed method.

Supporting Information
S1 Appendix.
(DOCX)

S2 Appendix.
(DOCX)

Author Contributions
Conceived and designed the experiments: PL YGL LY AL PH. Performed the experiments: PL
AL. Analyzed the data: YGL LS JQ. Contributed reagents/materials/analysis tools: LS DW.
Wrote the paper: YGL PL LS YSL DW.

References
1. Shams R, Sadeghi P, Kennedy RA, Hartley RI (2010) A Survey of Medical Image Registration on Multi-

core and the GPU, IEEE Signal Processing Mag., Mar. 2010. pp. 50–60.

Table 4. Mean runtimes and speedups for registration of images from the 5 datasets of the original ANTs and the accelerated ANTs with Worksta-
tion 2. (Time: seconds).

Dataset time (s) 1 2 3 4 5

Dimensions (Width*Height*Depth) 131×179×137 162×215×157 176×192×192 256×124×256 256×256×128

Size (voxels) 3212513 5468310 6488064 8126464 8088608

Time for CC in Original ANTs 591.31 966.86 1126.05 1742.72 1982.59

Total time for Original ANTs 996.81 1616.6 1838.79 2627.15 3039.34

Percent of time for CC 59% 60% 61% 66% 62%

Time for CC in Accelerated ANTs 39.37 60.83 72.76 109.88 107.26

Total time for Accelerated ANTs 443.37 676.57 781.64 1011.11 1108.66

Speedup of CC 15.02 15.9 15.48 15.86 18.48

Total Speedup 2.25 2.38 2.35 2.6 2.74

doi:10.1371/journal.pone.0136718.t004

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136718.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136718.s002

2. Shi L, Liu W, Zhang H, Xie Y, Wang D (2012) A survey of GPU-based medical image computing tech-
niques. Quant Imaging Med Surg. 2(3): 188–206. doi: 10.3978/j.issn.2223-4292.2012.08.02 PMID:
23256080

3. Chou C-Y, Dong Y, Hung Y, Kao Y-J, WangW, Kao C-M, et al. (2012) Accelerating Image Reconstruc-
tion in Dual-Head PET System by GPU and Symmetry Properties. PLoS ONE 7(12): e50540. doi: 10.
1371/journal.pone.0050540 PMID: 23300527

4. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU-Past, pres-
ent and future, Medical image analysis 17(8):1073–1094. doi: 10.1016/j.media.2013.05.008 PMID:
23906631

5. Shams R, Sadeghi P, Kennedy R, Hartley R (2010) Parallel computation of mutual information on the
GPU with application to real-time registration of 3D medical images, Computer methods and programs
in biomedicine 99:133–146. doi: 10.1016/j.cmpb.2009.11.004 PMID: 20004493

6. Podlozhnyuk V., 64-bin histogram, Technical Report, NVIDIA, 2007.

7. Shams R, Kennedy RA Efficient histogram algorithms for NVIDIA CUDA compatible devices. In: Proc.
Int. Conf. on Signal Processing and Communications Systems (ICSPCS), Gold Coast, Australia,
2007. pp. 418–422.

8. Vetter C, Westermann R (2011) Optimized GPU histograms for multi-modal registration, In IEEE Inter-
national Symposium on Biomedical Imaging, pp. 1227–1230.

9. Available: www.bu.edu/pasi/files/2011/07/Lecture31.pdf

10. Muyan-Ozcelik P, Owens J D, Xia J, Samant SS. Fast deformable registration on the GPU: A CUDA
implementation of demons. Computational Sciences and Its Applications, 2008. ICCSA'08. Interna-
tional Conference on. IEEE, 2008: 223–233.

11. Shackleford J, Kandasamy N, Sharp G. High Performance Deformable Image Registration Algorithms
for Manycore Processors, 1ST EDITION- ELSEVIER, 2013.

12. Available: https://www.nitrc.org/projects/niftyreg/

13. Available: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT

14. Jenkinson M, Smith S (2001) A global optimization method for robust affine registration of brain images.
Med Image Anal. 5(2): 143–56. PMID: 11516708

15. Jenkinson M, Bannister PR, Brady JM, Smith S (2002) Improved optimization for the robust and accu-
rate linear registration and motion correction of brain images. NeuroImage. 17 (2): 825–841. PMID:
12377157

16. Chen S, Qin J, Xie Y, PangWM, Heng P-A CUDA-based Acceleration and Algorithm Refinement for
Volume Image Registration, International Conference on Future BioMedical Information Engineering.
2009. pp. 544–547.

17. Ang L, Akash K. Accelerating Volume Image Registration through Correlation Ratio based Methods on
GPUs. Digital System Design (DSD), 2014 17th Euromicro Conference on. pp. 82–89.

18. Available: http://www.fil.ion.ucl.ac.uk/spm/

19. Avants B, Tustison NJ, Song G, Advanced normalization tools (ANTS), Insight J, 2009.

20. Avants B, Epstein CL,Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with
cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image
Anal., 12(1): 26–41. PMID: 17659998

21. Avants B, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs
similarity metric performance in brain image registration. NeuroImage 54: 2033–2044. doi: 10.1016/j.
neuroimage.2010.09.025 PMID: 20851191

22. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. (2008) Evaluation of 14
nonlinear deformation algorithms applied to human brain mri registration, NeuroImage 46 (3): 786–
802.

23. Roche A, Malandain G, Pennec X, Ayache N (1998) The Correlation Ratio as a New Similarity Measure
for Multimodal Image Registration, Medical Image Computing and Computer-Assisted Interventation-
MICCAI’98 LNCS, 1496: 1115–1124.

24. Satish N, Harris M, Garland M (2009) Designing efficient sorting algorithms for many core GPUs, In
Parallel Distributed Processing, IEEE International Symposium on, pp. 1–10.

25. Chen S, Qin J, Xie Y, Zhao J, Heng P-A (2009) A Fast and Flexible Sorting Algorithm with CUDA, Lec-
ture Notes on Computer Science (ICA3PP09), 5574: 281–290.

26. Available: http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html

27. Internet Brain Segmentation Repository (IBSR) [Online]. Available: http://www.cma.mgh.harvard.edu/
ibsr/

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 13 / 14

http://dx.doi.org/10.3978/j.issn.2223-4292.2012.08.02
http://www.ncbi.nlm.nih.gov/pubmed/23256080
http://dx.doi.org/10.1371/journal.pone.0050540
http://dx.doi.org/10.1371/journal.pone.0050540
http://www.ncbi.nlm.nih.gov/pubmed/23300527
http://dx.doi.org/10.1016/j.media.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23906631
http://dx.doi.org/10.1016/j.cmpb.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20004493
http://www.bu.edu/pasi/files/2011/07/Lecture31.pdf
https://www.nitrc.org/projects/niftyreg/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://www.ncbi.nlm.nih.gov/pubmed/11516708
http://www.ncbi.nlm.nih.gov/pubmed/12377157
http://www.fil.ion.ucl.ac.uk/spm/
http://www.ncbi.nlm.nih.gov/pubmed/17659998
http://dx.doi.org/10.1016/j.neuroimage.2010.09.025
http://dx.doi.org/10.1016/j.neuroimage.2010.09.025
http://www.ncbi.nlm.nih.gov/pubmed/20851191
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://www.cma.mgh.harvard.edu/ibsr/
http://www.cma.mgh.harvard.edu/ibsr/

28. Rohlfing T. Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy:
Widely Used but Unreliable. IEEE TRANSACTIONSONMEDICAL IMAGING, VOL. 31, NO. 2, FEB-
RUARY 2012.

Accelerating Neuroimage Registration with Parallel Computating

PLOS ONE | DOI:10.1371/journal.pone.0136718 September 9, 2015 14 / 14

