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Abstract 

Background: Critically ill 2019 coronavirus disease (COVID‑19) patients under invasive mechanical ventilation (IMV) 
are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID‑19 
has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the 
progression to severity are poorly understood.

Methods: The virome of tracheal aspirates (TA) from 25 COVID‑19 patients under IMV was assessed through unbi‑
ased RNA sequencing (RNA‑seq), and correlation analyses were conducted using available clinical data. Unbiased 
sequences from nasopharyngeal swabs (NS) from mild cases and TA from non‑COVID patients were included in our 
study for further comparisons.

Results: We found higher levels and differential expression of human endogenous retrovirus K (HERV‑K) genes in TA 
from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non‑
COVID patients. In critically ill patients, higher HERV‑K levels were associated with early mortality (within 14 days of 
diagnosis) in the intensive care unit. Increased HERV‑K expression in deceased patients was associated with IL‑17‑re‑
lated inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, 
increased HERV‑K expression was detected in human primary monocytes from healthy donors after experimental 
SARS‑CoV‑2 infection in vitro.

Conclusion: Our data implicate the levels of HERV‑K transcripts in the physiopathology of COVID‑19 in the respira‑
tory tract of patients under invasive mechanical ventilation.
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Introduction
Severe acute respiratory coronavirus 2 (SARS-CoV-2), 
the etiological agent of 2019 coronavirus disease 
(COVID-19), continuously circulates and has caused 
over 200,000 deaths per month since its original emer-
gence into the human population [1]. Based on official 
laboratory-confirmed reports, the case fatality ratio of 
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COVID-19 ranges from 1.5 to 10% in developed and 
developing countries, respectively, before vaccination 
[1]. In contrast to other highly pathogenic coronavi-
ruses from the twenty-first century, such as SARS-CoV 
and Middle East respiratory coronavirus (MERS-CoV), 
SARS-CoV-2 shedding occurs from the pre-symptomatic 
period to a few weeks after symptom onset [2]. Longer 
viral replication favors tissue damage, as shown by the 
positive correlation between high lactate dehydrogenase 
(LDH) activity, a marker of cell death, and COVID-19 
progression [3]. While type II pneumocytes are targeted 
and destroyed by the infection and the respiratory paren-
chyma is harmed, innate and adaptive immunological 
responses are not always able to prevent further progres-
sion to poor clinical outcomes and may even worsen the 
tissue lesions [4, 5].

During the inflammatory response to human patho-
genic coronaviruses, circulating neutrophils and mono-
cytes migrate and infiltrate the lungs [6, 7] and other 
organs, contributing to potentiating and perpetuating 
inflammation and eventually exacerbating tissue dam-
age [8–10]. In fact, severe COVID-19 has been associated 
with increased and uncontrolled release of pro-inflam-
matory mediators (cytokine storm) so that the resolu-
tive mechanisms are overcome by marked upregulation 
of IL-6, TNF-alpha, and IL-1-beta [4]. It was reported 
that MERS-CoV- and SARS-CoV-infected macrophages 
produce high levels of pro-inflammatory cytokines and 
chemokines [11, 12], and, more recently, that lung mono-
cytes from patients with severe pneumonia caused by 
SARS-CoV-2 are potent producers of TNF-alpha and 
IL-6 [13]. In addition, immune cells that orchestrate the 
innate and adaptive response, such as monocytes and 
neutrophils, undergo pyroptosis and NETosis during 
COVID-19 [14–16]. Consistently, leukopenia and uncon-
trolled coagulopathy, marked by platelet activation and 
high D-dimer levels, correlate with COVID-19 severity 
[17–20]. Several markers of activation are high in mono-
cytes from COVID-19 patients [21, 22], parallel to the 
diminished expression of HLA-DR, a marker of immune 
suppression, thus implying that they are involved in 
the uncontrolled inflammation characteristic of severe 
COVID-19 [23–25]. Additionally, monocyte chemoat-
traction seems to play a key role in critical COVID-19, as 
therapeutic disruption of the chemotactic loop seems to 
promote clinical benefit [26].

Altogether, SARS-CoV-2-triggered inflammation and 
hypercoagulability have rapidly been defined as the main 
features of the natural history of disease progression 
from mild to severe COVID-19 clinical presentations 
[17, 18, 27].

To date, the factors described above have been associ-
ated with disease progression from mild to severe, but 

they are limited in explaining the mortality of critically 
ill COVID-19 patients. Therefore, further investigation 
is necessary to search for overlooked factors associated 
with high COVID-19 mortality rates. Although COVID-
19 patients who stay in the ICU for weeks are more likely 
to develop nosocomial infections, mortality is high even 
for patients who are negative for bacterial infections [28, 
29]. Despite the best clinical practice to routinely surveil 
bacterial infections in the ICU, unculturable and unbi-
ased diagnosed viruses are neglected in daily practice. 
Thus, the systematic analysis of the virome from critically 
ill COVID-19 patients is necessary, especially in samples 
from the lower respiratory tract, where the diverse milieu 
of microorganisms has not been completely cataloged 
and is associated with disease physiopathology. Evidence 
emerging from the virome points to the induction of 
endogenous retroelements in SARS-CoV-2 infection and 
their implication in the severity of COVID-19, as Alu 
retrotransposons, LINE-1 elements, HERV-K, -H, -W, 
and -FRD were identified either by experimental in vitro 
infection or from ex vivo samples from patients [30–36]. 
Thus, we analyzed a cohort of critically ill COVID-19 
patients under IMV with sustained SARS-CoV-2 loads, 
inflammation, and coagulopathy to determine whether 
their lower respiratory tract virome, beyond coronavi-
rus, could improve the rationalization of patients’ pro-
gression. In our study, we identified active expression 
of HERV-K in the lower respiratory tract and plasma of 
severe COVID-19 patients. HERV-K levels were higher 
in patients who died soon after the onset of illness. 
Increased HERV-K expression in deceased patients was 
associated with severity markers of COVID-19 physi-
opathology. By experimental infection in human primary 
monocytes, SARS-CoV-2 induced HERV-K expression, 
which was diminished by antivirals against COVID-19 
and anti-inflammatory drugs. Our data implicate HERV-
K in the physiopathology of critically ill COVID-19 
patients.

Methods
RNA extraction and RT‑qPCR
RNA from TA and plasma was extracted using QIAamp 
Viral RNA (Qiagen, Germany). Quantitative RT-PCR 
was performed using GoTaq Probe qPCR and RT-qPCR 
Systems (Promega, USA) in a StepOne Real-Time PCR 
System (Thermo Fisher Scientific, CA, USA). The prim-
ers, probes, and cycling conditions used to detect SARS-
CoV-2 RNA have been described elsewhere [37], with a 
standard curve for the SARS-CoV-2 N gene (Microbio-
logics, MN, USA).

For HERV-K analysis, extraction and amplification 
were performed as described elsewhere [38]. Of note, the 
RNA concentration was determined (NanoDrop 2000, 



Page 3 of 15Temerozo et al. Microbiome           (2022) 10:65  

ThermoFisher Scientific, CA, USA) and adjusted to 10 μg 
before cDNA synthesis [0.5 μl of oligo (dT)20, 0.5 μl of 
random hexamer primers, 10 mM dNTPs, First-Strand 
Buffer, 0.1 M DTT, and 200 U SuperScript III First-Strand 
Synthesis System (Invitrogen, ThermoFisher Scientific, 
CA, USA)]. A total of 100 ng of cDNA (NanoDrop 2000, 
Thermo Fisher Scientific) was used to run 50-cycle real-
time PCR [PowerUp SYBR Green Master Mix (Applied 
Biosystems, Thermo Fisher Scientific) in a StepOne Real-
Time PCR System (Thermo Fisher Scientific, CA, USA)].

Enrichment‑dependent SARS‑CoV‑2 sequencing
Total viral RNA from TA was extracted and quantified 
with the QIAamp Viral RNA (Qiagen, Germany) and 
the Qubit RNA BR Assay Kit (Thermo Fisher Scientific, 
CA, USA), respectively. cDNA libraries were constructed 
with the ATOPLex SARS-CoV-2 full-length genome 
panel v1.0 (kindly donated by MGI Tech Co., Shenzhen, 
China), an amplicon-based strategy to improve sequenc-
ing readout. Dual-indexed, single-stranded library pools 
were converted to DNA nanoballs by rolling circle ampli-
fication and submitted to pair-end sequencing (100 nt) 
on the MGISEQ-2000 platform (recently named DNB-
SEQ-G400, MGI Tech Co. Ltd., Shenzhen, China).

Genomic sequences were quality scored, filtered, 
trimmed, and assembled into contigs using Genome 
Detective (https:// www. genom edete ctive. com/) [39]. 
Consensus fasta sequences were aligned with ClustalW 
in Unipro UGENE [40] (version 38), and phylogenies 
were constructed with Nextclade [41] to assign the 
emerging clades (Supplementary Table 2).

Unbiased RNA‑seq
For an unbiased RNA-seq, metatranscriptomics 
approach, total viral RNA samples were applied to the 
MGIEasy RNA Library Prep Set (MGI Tech Co. Ltd., 
Shenzhen, China). In brief, RNA was initially fragmented 
by size (250 bp), reverse-transcribed to DNA, and added 
to a second strand. Subsequent steps included end repair, 
adaptor ligation, PCR amplification (to augment the 
overall library yield), denaturation, and circularization of 
single-stranded libraries. Pooled libraries were then con-
verted to DNA nanoballs by rolling circle amplification 
and pair-end sequenced (150 nt) on the MGISEQ-2000 
platform (MGI Tech Co. Ltd., Shenzhen, China).

Fastq file processing and virome composition were 
determined [39], and de novo assembled contigs were 
compared with reference virus databases (NCBI RefSeq) 
to obtain similarity indices and assign the species ID. 
Consensus fasta sequences were generated with the built-
in default algorithm (i.e., most frequent base for each 
alignment position) in Unipro UGENE [40] (version 38) 
using BAM files.

HERV-K sequences from polymerase, gag, and env 
were compared with representative genomes deposited 
in GenBank, and three evolutionary analyses were con-
ducted in MEGA X [42] with a total of 1000 bootstraps 
(Supplementary Fig.  3). The models for evolutionary 
analyses were selected upon model-fitting simulation. 
Models with Bayesian information criterion (BIC) scores 
were considered to describe the substitution pattern the 
best. For each model, the corrected Akaike information 
criterion (AICc) value, maximum likelihood value (InL), 
and number of parameters (including branch lengths) 
were obtained. The evolutionary history of HERV-K Gag, 
Pol, and Env was inferred using the maximum likelihood 
method and the Tamura-Nei model, the general time-
reversible model, and the Hasegawa-Kishino-Yano model 
all using a discrete gamma distribution.

Proteomic sample preparation
Tracheal aspirated samples (14 samples, 50 μg each) 
were lysed in 8 M urea solubilized in 20 mM ammo-
nium bicarbonate pH 7.9 containing a complete mixture 
of protease and phosphatase inhibitors (Roche, Switzer-
land). After centrifugation at 14,000 RCF for 20 min, the 
supernatants were transferred to new tubes and heated 
at 32 °C for 30 min under 600-rpm agitation. Proteins 
were reduced with 5 mM dithiothreitol for 60 min at 32 
°C and alkylated in 14 mM iodoacetamide for 40 min at 
room temperature in the dark. Samples were then diluted 
to 1 M urea, and 1 μg of modified trypsin (Promega, WI, 
EUA) (1:50 w/w — trypsin:substrate ratio) was added. 
Each sample was then incubated for 18 h at 37 °C. Tryptic 
peptides were acidified with TFA (0.1% (v/v) final con-
centration), desalted with POROS R2 resin (Applied Bio-
systems, CA, EUA), and packaged in micropipette tips 
(Millipore, Bedford, USA). Desalted peptides were dried 
and suspended in 10 μl of 0.1% formic acid, and aliquots 
corresponding to 0.5 μg/μl were separated for mass spec-
trometry analysis.

Mass spectrometry
The tryptic digests were analyzed by reversed-phase 
nanochromatography coupled to high-resolution nano-
electrospray ionization mass spectrometry. Chroma-
tography was performed using a Dionex Ultimate 3000 
RSLCnano system coupled to the HF-X Orbitrap mass 
spectrometry (Thermo Fischer Scientific, CA, EUA). 
Samples (1 μg per run) were initially applied to a 2 cm 
guard column, followed by fractionation on a 25.5 cm 
PicoFritTM Self-Pack column (New Objective) packed 
with 1.9 μm silica, ReproSil-684 Pur 120 Å C18-AQ 
(Dr. Maisch, Germany). Samples were loaded in 0.1% 
(v/v) formic acid (FA) and 2% acetonitrile (ACN) onto 
the trap column at 2 μL/min, while chromatographic 
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separation occurred at 200 nL/min. Mobile phase 
A consisted of 0.1% (v/v) FA in water, while mobile 
phase B consisted of 0.1% (v/v) FA in ACN. Peptides 
were eluted with a linear gradient from 2 to 40% elu-
ent B over 32 min, followed by up to 80% B in 4 min. 
The lens voltage was set to 60 V. Full-scan MS mode 
was acquired with a resolution of 60,000 (FWHM at 
m/z 200 and AGC set to 3 ×  106). Up to 20 of the most 
abundant precursor ions from each scan (m/z 350–
1400) were sequentially subjected to fragmentation by 
HCD. Fragment ions were analyzed at a resolution of 
15,000 using an AGC set to 1 ×  105. Data were acquired 
using Xcalibur software (version 4.2.47).

Proteomic computational analysis
The raw data files were processed and quantified using 
PatternLab for Proteomics software [43] (version 4.0). 
Peptide sequence matching (PSM) was performed using 
the Comet algorithm against the protein-centric human 
database neXtProt [44] plus the SARS-CoV-2 reference 
proteome from UniProt [45] under ID UP000464024, 
both downloaded March 29, 2021. A target-decoy strat-
egy was employed. The search parameters were tryptic 
and semitryptic peptides, with masses between 500 and 
5000 Da, up to 2 lost cleavage sites; modifications: carba-
midomethylation (Cys), oxidation (Met), and initial tol-
erance of 40 ppm for precursor ions. PSMs were filtered 
using the Search Engine Processor (SEPro) module, and 
identifications were grouped by the number of enzymati-
cally cleaved ends, resulting in two distinct subgroups. 
For each result, the scores for each metric (XCorr, Del-
taCN, and ZScore) were used to generate a Bayesian 
discriminator, accepting up to a 1% false discovery rate 
(FDR), estimated by the number of decoy sequence IDs. 
The results were further filtered to accept only PSMs with 
a mass error less than 5 ppm and protein identifications 
supported by two or more independent identifications. 
Proteins identified by a single spectrum (1 hit wonder) 
with XCorr below 2 were excluded. The final list of iden-
tified peptides and mapped proteins for all samples was 
reported. The list of resulting peptides from shotgun pro-
teomics was used for alignment with the sequences of 
human endogenous retrovirus K113 (https:// www. ncbi. 
nlm. nih. gov/ nucco re/ NC_ 022518.1). The alignment was 
carried out with the NCBI/BLAST database through 
the Protein Blast — BlastP algorithm. Alignments with 
identity and coverage equal to or greater than 50% were 
considered. Detailed information about the proteins 
that aligned with the peptides can be obtained from the 
UniProtKB SwissProt database (https:// www. unipr ot. 
org/ unipr ot/? query= Human+ endog enous+ retro virus+ 
K113& sort= score).

Elisa
Blood samples were collected in ACD-containing 
syringes, and plasma was obtained by serial centrifu-
gation. Whole-blood samples were centrifuged at 150 
RCF/20 min/25 °C to obtain platelet-rich plasma (PRP), 
then 500 RCF/20 min/25 °C to obtain platelet-poor 
plasma (PPP), and finally 2500 RCF/20 min/25 °C to 
obtain platelet-free plasma, which was then aliquoted 
into 1 mL samples and conditioned at −80 °C. Com-
mercial ELISA (R&D Systems, MN, USA) and Mul-
tiplex (BioRad, CA, EUA) kits were used to measure 
cytokines, chemokines, and coagulation markers.

Flow cytometry
Whole blood samples were incubated for 10 min with 
FACS lysing buffer (BD Biosciences) and centrifuged 
at 400 RCF for 15 min, and the supernatant was dis-
carded. Cells were resuspended in HEPES-Tyrode (HT) 
buffer (10 mM HEPES, 137 mM NaCl, 2.8 mM KCl, 1 
mM  MgCl2.6H2O, 12 mM  NaHCO3, 0.4 mM  Na2HPO4, 
5.5 mM glucose, 0.35% BSA [pH 7.4]). Monocytes 
were labeled with fluorescein isothiocyanate (FITC)-
conjugated anti-CD16, phycoerythrin (PE)-conjugated 
anti-TF, and peridinin-chlorophyll (PerCP)-conjugated 
anti-CD14 (BD Pharmingen); FITC-conjugated anti-
CD38, PE-conjugated anti-CD11b, and PerCP-conju-
gated anti-CD14; or FITC-conjugated anti-HLA-DR, 
PerCP-conjugated, anti-CD14 and allophycocyanin 
(APC)-conjugated anti-CD83 (BD Pharmingen). Lym-
phocytes were labeled with FITC-conjugated anti-CD3, 
PE-conjugated anti-CD4, and APC-H7-conjugated 
anti-CD8 or with FITC-conjugated anti-CD11b, PE-
conjugated anti-CD25, PE-Cy5-conjugated anti-CD38, 
and APC-H7-conjugated anti-CD8. B cells were 
labeled with FITC-labeled anti-CD38, PE-conjugated 
anti-CD19, PerCP-conjugated anti-CD20, and APC-
H7-conjugated anti-CD27. NK cells were labeled with 
FITC-conjugated anti-CD107, PE-conjugated anti-
CD11b, PE-Cy5-conjugated anti-CD56, APC-conju-
gated anti-CD3, and APC-H7-conjugated anti-CD27. 
Neutrophils were labeled with FITC-conjugated anti-
myeloperoxidase (MPO) and PE-conjugated anti-
CD11b. Cells were incubated with antibodies for 30 min 
at room temperature and fixed with 4% paraformalde-
hyde. Cells labeled with each antibody separately were 
used for appropriate color compensation, and isotype-
matched IgG conjugated with the same fluorochromes 
was used as the negative control. Lymphocytes, mono-
cytes, and neutrophils were recognized by their char-
acteristic forward and side scatter and expression of 
specific surface markers, as shown in Supplementary 
Fig. 5. A flow cytometry (BD FACSCalibur) was used to 
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acquire 2000 to 5000 gated events. Acquired data were 
further analyzed using FlowJo software.

Cell, virus, and experimental infection
Human lung epithelial cells (Calu-3) and African green 
monkey kidney cells (Vero E6) were cultured in high glu-
cose DMEM complemented with 10% fetal bovine serum 
(FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin 
(P/S) at 37 °C in a humidified atmosphere with 5%  CO2. 
Human primary monocytes were obtained after 3 h of 
plastic adherence of peripheral blood mononuclear cells 
(PBMCs). PBMCs were isolated from healthy donors by 
Ficoll density gradient centrifugation. PBMCs (2 ×  106 
cells) were plated onto 48-well plates in RPMI-1640 with-
out serum for 2 to 4 h. Nonadherent cells were removed, 
and the remaining monocytes were maintained in 
DMEM with 5% human serum (HS) and P/S. The purity 
of human monocytes was above 95%, as determined by 
flow cytometric analysis (FACScan; Becton Dickinson) 
using anti-CD3 and anti-CD16 monoclonal antibodies.

SARS-CoV-2 (GenBank # MT710714) was expanded in 
Vero E6 cells at an MOI of 0.01. All procedures related to 
virus culture were handled in a biosafety level 3 (BSL3) 
multiuser facility according to WHO guidelines (https:// 
www. who. int/ publi catio ns/i/ item/ WHO- WPE- GIH- 
2021.1). Virus titers were determined as plaque form-
ing units (PFU)/mL. Virus stocks were kept in −80 °C 
ultralow freezers.

Infection was performed with SARS-CoV-2 at an MOI 
of 0.01 (monocytes) or 0.1 (Calu-3) in low (monocytes) 
or high (Calu-3) glucose DMEM without serum. After 
1 h, the cells were washed and incubated with com-
plete medium treatments. After 24 h (monocytes) or 
48 h (Calu-3), the culture supernatant was harvested for 
HERV-K quantification.

Statistics
The assays were performed blinded by one professional, 
codified, and then read by another professional. All 
experiments were carried out at least three independent 
times, including a minimum of two technical replicates 
in each assay. Prism GraphPad software 9.3.1 was prefer-
entially used to generate the datasets. One-way analysis 
of variance (ANOVA) was used to compare differences 
among 3 or more groups following a normal (paramet-
ric) distribution, and Tukey’s post hoc test was used to 
locate the differences between the groups; alternatively, 
Friedman’s test (for nonparametric data) was used with 
Dunn’s post hoc test. Spearman correlation was used 
for comparison of curves, as well as angular and linear 
comparisons between discharged and deceased patients. 
Logistic regression was used to analyze HERV-K levels as 

a function of survival and early mortality. All p values < 
0.05 were considered statistically significant.

Results
Human endogenous retrovirus K is transcriptionally active 
in the lower respiratory tract of critically ill COVID‑19 
patients
From March to December 2020, we prospectively 
included 25 critically ill COVID-19 patients requiring 
IMV with a median age of 57 years and presenting with 
the most common COVID-19 symptoms and comor-
bidities (Supplementary Table 1). Patients displayed high 
SARS-CoV-2 RNA levels (median of  106 copies/mL), 
laboratory markers of systemic inflammation and coagu-
lopathy (because of elevated plasma levels of C-reactive 
protein [CRP] and D-dimer, respectively), and a case 
fatality ratio of 60% (Supplementary Table 1). Due to the 
IMV, the tracheal aspirate (TA) was the sample source to 
perform SARS-CoV-2 RNA quantification and virome 
analysis. The TA of 70% of these patients had higher 
SARS-CoV-2 RNA levels than other samples from the 
lower respiratory tract [37] (Supplementary Fig.  1A). 
RNA content from TA was unbiased sequenced and 
rendered an average of 2 ×  107 genomic reads, of which 
up to 4% were viral-related (Supplementary Fig.  1B); 
from those reads, 30 ± 22% (mean ± SD) were linked to 
SARS-CoV-2 (Fig.  1A). For further comparisons, unbi-
ased sequences from nasopharyngeal swabs (NS) and 
TA from non-COVID patients (obtained from Sequence 
Read Archive (SRA)) were included in our study (Sup-
plementary Fig.  1B). After enriching new coronavirus 
sequences (Supplementary Table 2), we found that cases 
were phylogenetically related to the emerging clades 19A 
(16%), 20A (12%), and 20B (72%) (Supplementary Fig. 1 
C and D), reconfirming that the entire cohort was com-
posed of COVID-19 patients.

In addition to SARS-CoV-2, human endogenous ret-
rovirus K (HERV-K; also known as HML-2) sequences 
were detected in the TA from COVID-19 patients at 
a proportion of 45 ± 17% (mean ± SD) of the virome 
(Fig. 1A and Supplementary Table 3). In the TA of criti-
cally ill COVID-19 patients, the detection of other viral 
sequences with low coverage (approximately 25%) and 
limited depth (less than 10x) was considered of minor 
importance (Fig. 1A). In some non-COVID TAs, respira-
tory viruses (influenza and parainfluenza) were detected 
(Fig. 1A, among the blue bars).

HERV-K was fivefold more present in the virome of 
TA from COVID-19 patients under IMV than in NS 
(Fig.  1B and Supplementary Table  3). Although the 
comparison between lower (TA) and upper (NS) res-
piratory tract samples may be imprecise, HERV-K RNA 
levels were higher in the TA from COVID-19 patients 

https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1
https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1
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Fig. 1 Differential overexpression of HERV‑K transcripts in the lower respiratory tract of critically ill COVID‑19 patients is associated with early 
mortality. RNA sequencing of tracheal aspirates (TA) from severe cases (Supplementary Table 1) and nasopharyngeal swabs (NS) from mild  cases17 
was performed on the MGI‑2000 RNA‑seq platform, and high‑quality sequences (Q ≥ 30) were selected for downstream analysis. A Percentage of 
virus‑related reads in the mapped virome from the TA of severe COVID‑19 patients, from the NS from COVID‑19 mild cases, and from non‑COVID 
TA Sequence Read Archive (SRA) (# SRX4213540, SRX4213544, SRX4213548, SRX4213551, SRX4213553, SRX3934905, SRX3934906, SRX3934910, and 
SRX3934932). B The percentage of HERV‑K‑related reads in the mapped virome from the TA of discharged and deceased severe COVID‑19 patients 
compared to NS and non‑COVID TA (# SRX4213540, SRX4213544, SRX4213548, SRX4213551, SRX4213553, SRX3934905, SRX3934906, SRX3934910, 
and SRX3934932). C Logistic regression analysis between HERV‑K expression and odds of early (< 14 days) mortality in deceased COVID‑19 patients. 
Red dotted lines represent the 95% CI, while black dotted lines mark the intersection where data in x‑axis represent 0.5 (50%) probability. Insert 
receiver operating characteristic (ROC) curve for the prediction of early (< 14 days) mortality in deceased COVID‑19 patients based on HERV‑K 
expression. D HERV‑K expression in TA over time (days) from ICU admission to death. E Heatmap of absolute HERV‑K read counts for TA from severe 
COVID‑19 patients, NS from mild cases and for the non‑COVID TA with HERV‑K presence. **= p < 0.01
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than in non-COVID-19 patients (Fig.  1 A and B). The 
data from SRA indicate that HERV-K may be found in 
the lower respiratory tract of some patients with other 
illnesses (Fig.  1B). To verify the correlation between 
HERV-K levels and the outcome of severe COVID-19 
patients, we assessed the probability of survival in those 
patients. We found that HERV-K expression correlated 
with the probability of early death using logistic regres-
sion (Fig.  1C) and the Mann–Whitney test (Fig.  1D), 
reinforcing that HERV-K is associated with severe 
COVID-19 illness. Although there was a tendency to 
have higher HERV-K levels in deceased patients than in 
discharged patients, logistic regression was not statis-
tically significant (Supplementary Fig. 2A). Among this 
study population, no statistically significant association 
was found between HERV-K RNA levels and days from 
COVID-19 onset, age, sex, or SARS-CoV-2 RNA levels 
(Supplementary Fig. 2 B–E).

Because thousands of loci in the human genome are 
associated with HERV-K [46], we searched for cor-
relations between the HERV-K transcript consensus 
described here and active HERV-K loci in the human 
genome. Most often, sequences from HERV-K struc-
tural genes were expressed from different chromosomal 
regions, suggesting the activation of otherwise silent 
genes (Table S3 and Supplementary Fig.  3). Although 
the endogenous retrovirus consensus sequences 
detected in the critically ill COVID-19 patients from 
this study were evaluated for all known HERVs — to 
double-check their origins — they were phyloge-
netically related to HERV-K (Supplementary Fig.  3). 
Indeed, critically ill COVID-19 patients differentially 
expressed HERV-K-associated structural genes, gag-
pro-pol and env transcripts, in the lower respiratory 
tract compared to the upper respiratory tract of mild 
COVID-19 patients and the lower respiratory tract of 
non-COVID-19 patients (Fig. 1E).

As another layer of results for the detection of HERV-K 
in the TA, shotgun proteomics was performed in samples 
from all patients. To trace similarities with the HERV-K 
proteome, we compared the peptides from the TA human 
proteome and HERV-K proteins Gag, Pro, Pol, Env, and 
Rec (UniProt IDs # P62684, P63121, P63132, Q902F9 and 
P61574, respectively) through BlastP (NCBI/BLAST). 
While we did not identify HERV-K proteotypic peptide 
signatures, we accepted BlastP matches of peptides from 
20 to 47 amino acids with at least 10 amino acids and a 
minimum of 60% sequence identity and 80% coverage, 
assuming that the diversity of HERV-K peptides is not 
completely cataloged. With this approach, we identified 
a total of 29 nonredundant alignments of peptides in 
deceased patients and 14 peptides in discharged patients 
(Supplementary Fig. 4 and Supplementary files 1 and 2).

HERV‑K is also detected in the peripheral blood 
of COVID‑19 patients
We next sought to determine the presence of HERV-
K in the plasma of COVID-19 patients by quantifying 
its gag transcripts because of its specificity to HERV-
K [38]. The high levels of HERV-K in the virome of TA 
correlated with lower cycle threshold (Ct) values in the 
plasma from those patients (Fig. 2A). Indeed, HERV-K 
gag was more likely to be detected, with Ct values < 50, 
in the plasma of patients who died than patients who 
were discharged, mild COVID cases, or healthy donors 
(HD) (Fig.  2B), independent of the day of COVID-19 
onset (Fig. 2C).

HERV‑K is associated with immune and hematologic 
alterations during severe COVID‑19
We next examined a possible correlation between 
HERV-K levels in TA with immune modulation and/
or coagulopathy. For this purpose, Spearman correla-
tion analysis for levels of cytokines, coagulation fac-
tors, and immune cell counts was scored in deceased 
and discharged patients (Fig. 3). As a general tendency 
for the endogenous mediators, HERV-K reduced their 
levels in the TA (Fig.  3A) and favored inflammation 
in the peripheral plasma (Fig.  3B). To be conservative 
when assuming statistical significance, we additionally 
performed regression analysis for those markers that 
passed Spearman correlation, evaluating differences 
in angular and/or linear coefficients (Fig.  4). HERV-K 
levels in deceased patients were positively associated 
with the proinflammatory markers IL-1alpha and IL-17 
(Fig.  4A). Regarding the regulatory molecules IL-1Ra 
and IL-13, the results from deceased and discharged 
patients were dichotomic as a function of HERV-K 
levels (Fig.  4A), favoring regulatory signals in criti-
cally ill survivors. Moreover, HERV-K levels were nega-
tively associated with two survival/growth factors for 
immune cells, granulocyte colony-stimulating factor 
(G-CSF), and nerve growth factor (NGF) (Fig. 4A).

In light of HERV-K levels, clotting factors were altered 
(Fig. 3C). For example, factor X consumption was higher, 
independent of the disease outcome (Fig. 4B). An appar-
ent higher consumption of factor V and levels of fibrinol-
ysis (D-dimer) occur as a function of HERV-K levels in 
deceased patients (Fig. 4B).

To correlate with cell-mediated immunity, specific pop-
ulations were quantified by flow cytometry (Supplemen-
tary Fig.  5) and plotted as a function of HERV-K levels 
(Fig.  3 D–H). Monocyte activation positively correlated 
with HERV-K, whereas HERV-K negatively correlated 
with natural killer cells (Fig. 4C), suggesting a contribu-
tion to impair an adequate innate antiviral response.
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SARS‑CoV‑2 triggers HERV‑K expression in human primary 
monocytes in a viral‑ and immune‑dependent fashion
For further evidence of a causal relationship between 
SARS-CoV-2 and the expression of endogenous retro-
virus, we experimentally infected Calu-3 cells or human 
primary monocytes obtained from healthy donors. The 
choice of these cell models was to represent, at the cel-
lular level, two major cellular compartments affected by 
critically ill COVID-19. Calu-3 cells recapitulate the main 

replication site of SARS-CoV-2 on type II pneumocytes 
[47, 48]. Critically ill patients also present leukopenia 
in the peripheral blood [20, 49], and when circulating 
monocytes migrate to the infected lung [8, 50], their 
exposure to SARS-CoV-2 leads to an unbaled proinflam-
matory response culminating in necrotic cell death, such 
as pyroptosis, which will enhance the cytokine storm and 
immune cell dysfunction observed in COVID-19 patients 
[5, 8, 14, 16, 18, 51].

Fig. 2 Presence of HERV‑K transcripts in the plasma of severe COVID‑19 patients. A The fraction of the HERV‑K virome was compared to the results 
of real‑time RT‑qPCR to detect HERV‑K GAG (Ct values) in plasma from those patients. B Plasma samples from severe cases (Supplementary Table 1) 
and from healthy donors (HD) were evaluated for the presence of HERV‑K GAG by RT‑qPCR. Samples with Ct values below 50 were considered 
positive for HERV‑K. C HERV‑K levels in the plasma of patients presented as a function of days since COVID‑19 onset. A statistically significant (p < 0.05) 
difference between linear coefficients is represented by #. *= p < 0.05
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Fig. 3 Spearman correlation between HERV‑K and severity markers in COVID‑19 patients. Endogenous mediators in the TA (A), in the plasma from 
peripheral blood (B), T cells (C), monocytes (D), neutrophils (E), coagulation markers in the plasma (F), B cells (G), and natural killer (NK) cells (H) from 
peripheral blood were plotted as a function of HERV‑K expression. Spearman correlation R2 was plotted, and statistical significance with p‑values < 
0.05 is presented by the bars that cross the dotted lines. Gate strategy for immune cell profiling is presented in Supplementary Fig. 5
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Fig. 4 HERV‑K levels correlate with immune activation and coagulopathy in a patient outcome‑dependent manner. HERV‑K levels are presented 
as the function of A cellular survival/differentiation factors or interleukins, B clotting or fibrinolysis cascade markers, and C immune cells. These are 
the statistically significant analyses from Fig. 3 (panels in A and B derived from Fig. 3 A and C, respectively; panels in C derived from Fig. 3 D and H). 
Patients and regression lines are highlighted in green for discharged and in red for deceased patients. Regression lines in black indicate statistical 
significance when combining both discharged and deceased patients. Statistically significant (p < 0.05) differences between linear or angular 
coefficients are represented by # or *, respectively
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Fig. 5 Engagement of HERV‑K expression by SARS‑CoV‑2 infection. A Human primary monocytes or Calu‑3 cells were infected with an MOI of 
0.1. B Human primary monocytes or Calu‑3 cells were infected with an MOI of 0.1 and treated with antivirals (10 μM each) or anti‑inflammatory 
drugs (10 μM dexamethasone and prednisolone, 25 ng/mL etanercept). A and B At 24‑h postinfection, cells were lysed, and total RNA was used to 
quantify HERV‑K GAG and RPL19 (as a reference gene). Data are presented as relative expression following the 2^‑ddCt procedure. Human primary 
monocytes (n = 5, 2 technical replicates), Calu‑3 cells (n = 3, 2 technical replicates); *= p < 0.05; **= p < 0.01
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We found that upon SARS-CoV-2 infection, HERV-
K was upregulated in monocytes but not in Calu-3 cells 
(Fig.  5A). Next, we evaluated whether specific treat-
ments could prevent SARS-CoV-2-dependent HERV-
K expression in primary monocytes. Despite limited 
activity against SARS-CoV-2 [52], some HIV-1 reverse 
transcriptase inhibitors described to inhibit retrotrans-
posons and HERVs [53, 54], such as lamivudine (3TC), 
zidovudine (AZT), and tenofovir disoproxil fumarate 
(TDF), prevented HERV-K expression (Fig. 5B). Atazana-
vir (ATV), an HIV protease inhibitor with some activity 
against SARS-CoV-2 [55], diminishes HERV-K expres-
sion (Fig.  5B). More notably, the anti-coronavirus drug 
remdesivir (RDV) impaired SARS-CoV-2-dependent 
HERV-K expression (Fig. 5B). Similarly, the broad steroi-
dal anti-inflammatory drugs dexamethasone and pred-
nisolone promoted a reduction in HERV-K expression, 
and the anti-TNF biopharmaceutical etanercept, despite 
showing some level of HERV-K expression inhibition, did 
not achieve statistical significance (Fig. 5B). These results 
confirm, at the cellular level, that SARS-CoV-2 replica-
tion and immunomodulatory properties favor HERV-K 
expression.

Discussion
The SARS-CoV-2 emerging clades circulating in Brazil 
during 2020 (https:// nexts train. org/ ncov/ global? dmax= 
2020- 12- 16& dmin= 2020- 01- 16&f_ count ry= Brazil) were 
found to activate HERV-K in the lower respiratory tract 
of critically ill COVID-19 patients under IMV. HERV-
K levels were higher in patients who died soon after the 
onset of illness. Endogenous retrovirus gene expres-
sion was associated with broad chromosomal activation 
and differential upregulation compared to non-COVID 
patients. In addition to the respiratory tract, HERV-
K levels were also higher in the plasma of COVID-19 
patients who died than in patients who were discharged 
and healthy donors. Increased HERV-K expression in 
deceased patients was associated with upregulation of 
proinflammatory markers, monocyte activation, and 
increased consumption of clotting factors. Through 
experimental infection in human primary monocytes, 
SARS-CoV-2 induced HERV-K expression, which was 
diminished by antivirals against COVID-19 and anti-
inflammatory drugs. Our data implicate HERV-K in the 
physiopathology of critically ill COVID-19 patients.

Among endogenous retroviruses, HERV-K has been 
incorporated into the genome of the human lineage 
during divergence from chimpanzees [56]. Thus, it is 
noteworthy to find a human-specific marker associated 
with critically ill COVID-19 patients, as nonhuman pri-
mates are less likely to die from SARS-CoV-2 infection 
[57], raising the attention to a possible role of HERV-K 

in the dichotomy of SARS-CoV-2 severity between 
humans and nonhuman primates. Indeed, HERV-K 
detection in the respiratory tract has been associated 
with lung adenocarcinoma [58], as well as other types 
of cancer, neurological disorders, multiple sclerosis, 
and arthritis [59].

We found profound immunomodulation in associa-
tion with HERV-K, similar to other diseases [59] and to 
negative clinical outcomes [60]. Likewise, HERVs have 
been associated with the modulation of G-CSF [61] and 
NGF [62] levels. As a function of HERV-K levels, regu-
latory/anti-inflammatory signals were also decreased 
in the plasma of deceased patients, such as IL-1Ra and 
IL-13, which antagonize IL-1-dependent stimuli and 
favor an allergenic-like/TH2 response, respectively [63, 
64]. Interestingly, the reduction of IL-13 production 
is also reported by a HERV-H-LTR-derived protein, 
together with the inhibition of CD4 and CD8 T-cell 
responses [65]. Deceased patients respond to higher 
HERV-K levels increasing IL-17, a further proinflam-
matory mediator that may upregulate IL-6, CRP, and 
airway remodeling [65] and is upregulated by HERVs in 
autoimmune diseases [66].

Along with the differential expression of HERV-K 
genes, immunomodulation, coagulopathy, and disease 
severity may suggest that Gag and protease could lead 
to immune dysregulation [67, 68]. HERV-K reverse 
transcriptase may jeopardize the cell cycle of lympho-
cytes [69]. Protease has been associated with progressive 
obliterative vascular remodeling in the respiratory tract 
[68]. HERV-K Env may trigger cell–cell fusion, lead-
ing to epithelial to mesenchymal transition, including in 
the respiratory tract [58, 70]. In addition to the predic-
tive HERV-K effects on cellular and molecular biology 
described above, HERV-K reverse transcriptase could 
favor the integration of SARS-CoV-2 genetic elements 
into the host cell genome [32].

In addition to the identification of HERV-K in the 
lower respiratory tract, we also found this endogenous 
retrovirus in plasma and associated it with disease 
fatality. This detection and HERV-associated immu-
nomodulation are in line with HERV-W Env expression 
in T cells from critically ill COVID-19 patients [33] and 
with the direct induction of HERV-W Env protein upon 
in  vitro SARS-CoV-2 infection of PBMCs [34]. Addi-
tionally, other endogenous retroelements have been 
implicated in SARS-CoV-2 infection and COVID-19 
severity, as Alu retrotransposons, LINE-1 elements, 
HERV-H, and -FRD were identified either in in vitro or 
in patient sample analyses [30–32, 35, 36]. The detec-
tion of HERVs in the peripheral blood of critically ill 
COVID-19 patients could be a contributing factor for 
extrapulmonary manifestations of this new disease. 

https://nextstrain.org/ncov/global?dmax=2020-12-16&dmin=2020-01-16&f_country=Brazil
https://nextstrain.org/ncov/global?dmax=2020-12-16&dmin=2020-01-16&f_country=Brazil
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HERV-K is associated with monocyte activation and is 
upregulated by experimental SARS-CoV-2 infection.

Our group and others have consistently demon-
strated that SARS-CoV-2 replication in monocytes is 
nonpermissive [71–74], meaning monocytes may be 
infected and harbor virus genome synthesis, but do not 
productively produce infectious SARS-CoV-2 particles. 
Upon SARS-CoV-2 exposure, our group and others 
showed that monocytes undergo pyroptosis and release 
of proinflammatory factors [14, 75], which could be a 
positive feedback to upregulate HERV-K. By succumb-
ing to lytic cell death, SARS-CoV-2-infected monocytes 
contribute to the exacerbation of inflammation associ-
ated with the cytokine storm and do not execute their 
function as antigen-presenting cells to orchestrate the 
immune response [5, 8, 14, 16, 18, 27, 51]. Importantly, 
remdesivir, which limits SARS-CoV-2 RNA synthe-
sis in monocytes [74], could prevent the coronavirus-
dependent enhancement of HERV-K levels, meaning 
that early events associated with SARS-CoV-2 infec-
tion could trigger HERV-K. At a different magnitude 
ATV, which is endowed with limited anti-SARS-CoV-2 
major protease inhibition [55], another early event in 
the coronavirus life cycle could reduce HERV-K levels. 
The HIV reverse transcriptase inhibitor AZT reduced 
HERV-K expression, suggesting that SARS-CoV-2-trig-
gered HERV-K enhancement could suffer positive feed-
back from the newly expressed endogenous retrovirus.

Conclusions
Our data imply that HERV-K may be upregulated due 
to SARS-CoV-2 and COVID-19 inflammation. The 
association of HERV-K with hematological changes 
reinforces its contributions to the physiopathology of 
COVID-19 in critically ill patients and early mortality.
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