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SUMMARY

The ARF tumor suppressor is a central component of
the cellular defense against oncogene activation in
mammals. p14ARF activates p53 by binding and
inhibiting HDM2, resulting, inter alia, in increased
transcription and expression of the cyclin-dependent
kinase inhibitor p21 and consequent cell-cycle
arrest. We analyzed the effect of p14ARF induction
on nucleolar protein dynamics using SILAC mass
spectrometry and have identified the human For-
min-2 (FMN2) protein as a component of the p14ARF
tumor suppressor pathway. We show that FMN2
is increased upon p14ARF induction at both the
mRNA and the protein level via a NF-kB-dependent
mechanism that is independent of p53. FMN2
enhances expression of the cell-cycle inhibitor p21
by preventing its degradation. FMN2 is also induced
by activation of other oncogenes, hypoxia, and
DNA damage. These results identify FMN2 as a
crucial component in the regulation of p21 and con-
sequent oncogene/stress-induced cell-cycle arrest
in human cells.

INTRODUCTION

The ARF tumor suppressor initiates the cellular response to

aberrant oncogene activation through binding to and inhibiting

the activity of Hdm2/Mdm2, the E3 ubiquitin ligase for p53

(Sherr, 2001; Vousden, 2002). As such, upon ARF induction,

p53 can escape from degradation and activate transcription of

its target genes. These include proapoptotic genes such as

puma and noxa (Zilfou and Lowe, 2009) and cell-cycle inhibitors

such as p21 (Zilfou and Lowe, 2009).

A high percentage of human leukemia and melanoma patients

have ARF mutations (Curtin et al., 2005; Goldstein et al., 2007;

Soufir et al., 2004). Furthermore, the ARF locus is found hyper-

methylated (and hence silenced) in a great number of human

cancers (Badal et al., 2008; D’alessandro et al., 2002). Genetic

studies have shown that ARF deletion promotes tumor develop-

ment with high frequency (Sherr, 2001). Moreover, p53 action as

a tumor suppressor is severely impaired in the absence of ARF
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(Christophorou et al., 2006; Efeyan et al., 2006). However,

genetic and biochemical studies on p53 and ARF pathways

showed there are also ARF tumor suppressor pathways that

are p53 independent (Chen et al., 2009; Rocha et al., 2003,

2005; Wadhwa et al., 2002; Weber et al., 2000).

ARF accumulates in nucleoli during oncogene activation and

either inhibits cell-cycle progression or promotes apoptosis

through both p53-dependent and p53-independent mecha-

nisms (Rocha et al., 2003, 2005). One of the p53-independent

functions of ARF is the regulation of ribosome biogenesis in

the nucleolus (Sherr, 2001).

The nucleolus is a subnuclear organelle in which rRNAs are

transcribed, processed, and assembled with ribosomal proteins

into ribosome subunits (Boisvert et al., 2007; Granneman and

Baserga, 2004). However, recent studies also suggested that

the nucleolus is not only the site of ribosome subunit biogenesis

but also is associated with additional biological functions, e.g.,

cell-cycle regulation, stress responses, and human disease

(Boulon et al., 2010b; Boyd et al., 2011; Pederson, 2011; Peder-

son and Tsai, 2009). Interestingly, studies on the rates of protein

turnover in human nucleoli using pulse SILAC showed that

p14ARF was one of the nucleolar proteins with the fastest rate

of turnover (Lam et al., 2007).

The function of p14ARF in nucleoli is still not fully character-

ized. Furthermore, mechanistic aspects of ARF-mediated tumor

suppression independent of p53 are relatively unknown. To

address these questions, we performed an unbiased screen

for proteomic changes in the nucleolus following p14ARF induc-

tion. Here we report the characterization of a component in the

p14ARF tumor suppressor pathway, called FMN2. We find that

FMN2 is induced by p14ARF at the transcriptional level, inde-

pendent of p53, via a NF-kB-dependent mechanism. Impor-

tantly, FMN2 is required for stable protein expression of the

cell-cycle inhibitor p21. FMN2 is necessary and sufficient for

increasing p21 protein expression via a mechanism that involves

the inhibition of protein degradation.

RESULTS

Dynamic Change of Nucleolar Proteins during ARF
Induction
To identify ARF-mediated changes in nucleoli, we performed

a quantitative analysis of alterations to the nucleolar proteome

following induction of p14ARF expression. For this we used
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Figure 1. Determination of Nucleolar Protein Dynamics

(A) The proteomes in three cell populations are encoded by incorporation of

stable isotope derivatives of arginine (SILAC method). Cells are metabolically

labeled with Arg0, Arg6, and Arg10 for at least five cell doublings and are then

treated with IPTG for 0, 4, and 8 hr or 0, 16, and 24 hr to induce p14ARF,

respectively. Cells are mixed and nucleoli purified and analyzed by mass

spectrometry. The analysis is repeated three times with a common zero point.

(B) Spectra of peptides of p14ARF, indicating increasing amounts of p14ARF

recruited to the nucleolus after IPTG treatment.

(C) Dynamic profile of p14ARF. The y axis is in units of normalized log2 change

of p14ARF. Graph depicts mean and standard deviation from a minimum of

three independent experiments. See also Figure S1.
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two model human cell systems allowing inducible p14ARF

expression that have been extensively characterized by us,

and others (Llanos et al., 2001; Rocha et al., 2003, 2005).

NARF2 cells are derived from the osteosarcoma cell line

U2OS, which has the p14ARF gene promoter methylated and

hence silenced. NARF2 cells possess an exogenous, IPTG-

inducible p14ARF construct. In addition, we also used NARF2-

E6 cells, which are analagous to the NARF2 cells, but in addition

express theHPV protein E6. E6 continually targets p53 for degra-

dation and as such renders the NARF2-E6 cells nonfunctional for

p53 (Rocha et al., 2003, 2005).

Using these model human cell systems, we have analyzed

ARF-induced nucleolar protein dynamics using SILAC mass

spectrometry (Figure 1A) (Andersen et al., 2002, 2005; Boisvert

et al., 2011; Lam et al., 2007). To confirm that the SILAC culture

medium is compatible with these cell systems, we determined
M

the G1, S, G2, and M populations of NARF2 cells grown both

in normal culture medium and in SILAC medium (see Figures

S1A and S1B online). This showed that the SILAC medium has

little or no effect on NARF2 cell growth (Figures S1A and S1B).

We also determined the quality of nucleoli purified from NARF2

cells (Figure S1C), and confirmed independently using immuno-

fluorescence microscopy the nucleolar accumulation of p14ARF

protein following IPTG induction (Figure S1D).

As a further control, we verified byMS analysis the presence of

p14ARF peptides in nucleoli following induction with IPTG (Fig-

ure 1B). This revealed 86.8% sequence coverage of the

p14ARF protein (data not shown). By performing a time course

induction of p14ARF, we compared the dynamic change of

p14ARF expression in both NARF2 and NARF-E6 cells.

p14ARF protein levels increased in both cell lines after induction

with IPTG, as expected (Figure 1C). We also compared the mass

spectrometry data with signal intensity from fluorescence micro-

scope-based live-cell imaging for GFP-tagged p14ARF. This

revealed a similar increase in p14ARF expression levels as

judged by both MS and microscopy-based quantitation

methods (Figure S1E), further validating our analysis. Similar

results were also obtained for other nucleolar proteins, including

NPM1 and fibrillarin (FBL) (Figure S1F).

The mass spectrometry data identified changes in the relative

levels of thousands of nucleolar proteins following p14ARF

induction. The top 5% of proteins showing the largest relative

change in abundance in the nucleolus are shown (Figure 2A).

The majority of these proteins showed decreased levels in the

nucleolus following p14ARF induction. Interestingly, the protein

distribution pattern in NARF2 and NARF2-E6 was very similar,

indicating that most, if not all, of these changes are independent

of p53, at least in this model cell system (Figure 2B and

Figure S2).

Identification of an ARF-Induced Protein, FMN2
The MS analysis identified that in particular the Formin-2 (FMN2)

protein was highly induced by ARF in a p53-independent

manner. There is relatively little information on the function of

the FMN2 protein, particularly in human cells, but reported roles

include modulation of cytokinesis (Katoh and Katoh, 2004;

Leader et al., 2002). However, to the best of our knowledge, no

association of FMN2 with either p14ARF or p53 has previously

been reported. Due to the dynamics and level of FMN2 induction

observed by mass spectrometry, we decided to investigate the

significance of this finding for downstream effects of p14ARF

pathways.

Given the absence of previous studies on human FMN2

protein function, few reagents were available. We therefore

cloned full-length human FMN2 cDNA (Figure S3, see the Exper-

imental Procedures) and developed specific antibodies (Fig-

ure 2C and Figure S4). The anti-FMN2 antibodies detected

FMN2 protein both by immunofluorescence microscopy and

by protein blotting, with the signal specifically reduced following

siRNA-mediated knockdown of FMN2, but not after treatment of

cells with control siRNAs (Figures S4A–S4C). Protein blot anal-

ysis using these antibodies further showed that FMN2 levels

increased after induction of p14ARF in both p53-positive

and -negative cell lines, confirming the previous MS data
olecular Cell 49, 922–933, March 7, 2013 ª2013 Elsevier Inc. 923



Figure 2. Dynamic Profiles of Nucleolar

Proteins

(A) Hierarchial clustering of top 5% of 3,500

proteins using fold change data.

(B) Distribution pattern of proteins in each cell line.

(C) NARF2 and NARF-E6 cells were harvested

after 24 hr with or without IPTG induction and

immunoblotted with FMN2, ARF, and actin anti-

bodies.

(D) NARF-E6 cells were transfected with control or

p53 siRNA oligonucleotides prior to p14ARF

induction for 24 hr. Whole-cell lysates were

analyzed by western blot for the levels of the

indicated proteins. See also Figure S2.
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(Figure 2C, Figures S4A and S4B). To further rule out any p53

dependency, siRNA-mediated depletion of p53 in NARF-E6

was performed. The data show that p53 is not required for

p14ARF-mediated induction of the FMN2 protein (Figure 2D).

ARF Upregulates FMN2 at the Transcriptional Level
To determine the mechanism behind increased FMN2 protein

levels after induction of p14ARF, we next analyzed FMN2

mRNA levels by qPCR. This revealed that ARF induction

increases FMN2 transcript levels (Figure 3A). In addition,

northern blot analysis also demonstrated an increase in FMN2

transcript levels following ARF induction (Figure S5A). Further-

more, microarray analysis showed that FMN2 mRNA levels

were highly increased following ARF induction (Figure S5B). In

contrast, addition of IPTG to normal U2OS cells did not result

in any significant change in FMN2 levels (Figure S5C). These

data indicate that ARF regulates FMN2 expression either at the

transcriptional level, or at the level of RNA stability.
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To determine whether transcription

of the FMN2 gene is regulated by

ARF, we investigated if the activity of

the FMN2 promoter was responsive to

ARF induction. To do this, we cloned

a 2 kbp genomic region from upstream

of the FMN2 ORF, containing the pre-

dicted FMN2 promoter, into plasmid

mCherry-N1, which possesses a trun-

cated CMV promoter. This assay allows

direct visualization of FMN2 promoter

activity in expressing cells, at the

single-cell level, based on detection of

mCherry by fluorescence microscopy.

In addition, a smaller 1 kbp region of

this promoter was also cloned in the

same construct. When transfected into

either NARF2 or NARF2-E6 cells, addi-

tion of IPTG and hence ARF induction

increased mCherry expression in both

cell lines (Figures 3B–3D, Figures S5D

and S5E). The negative control plasmid,

which does not include any upstream

genomic FMN2 promoter region, did

not show mCherry expression either
with or without ARF induction (Figures 3C and 3D, Figures

S5D and S5E).

The previous results suggest that the FMN2 promoter has an

ARF responsive element in the �1 to �2,000 bp region. Further

analysis compared the ability of different sequences within this

region of the promoter to support ARF-dependent induction of

mCherry expression. For example, deletion of sequences from

�2,000 up to�1,400 bp did not prevent ARF-mediated induction

of mCherry. On the other hand, deletion up to �1,200 bp abol-

ished ARF responsiveness of this promoter (Figure 3C, Figures

S5D and S5E).

The promoter analysis revealed that a fragment correspon-

ding to the DNA sequence between �1,400 and �1,200 of the

FMN2 promoter was necessary and sufficient for ARF-mediated

induction of mCherry (Figure 3C, Figures S5D and S5E). Closer

inspection of the sequence within this 200 bp minimal fragment

revealed overlapping putative binding sites for the transcription

factors NF-kB and E2F1 (Figure S3, bold). Given the previous



Figure 3. FMN2 Is Transcriptionally Upregu-

lated by p14ARF Independently of p53

(A) Total RNA from NARF2 and NARF-E6 cells was

harvested 24 hr after addition of IPTG. Following

cDNA synthesis, qPCR was performed using

FMN2-specific primers. Actin was used as a

normalizing gene. Graph depicts mean and stan-

dard deviation from a minimum of three indepen-

dent experiments.

(B) NARF2 and NARF-E6 cells were transfected

with control or FMN2 promoter constructs as

indicated prior to IPTG induction. Twenty-four

hours later, cells were fixed and analyzed by

microscopy.

(C and D) Schematic diagram summarizing FMN2

promoter analysis in NARF2 and NARF-E6 cells.

See also Figure S3, Figure S4, and Figure S5.

Molecular Cell

Control of p21 Expression by FMN2
connection reported between ARF and NF-kB (Rocha et al.,

2003, 2005), we tested for the involvement of these binding sites

by mutating the two NF-kB sites in the FMN2 promoter

constructs and repeating the analysis. Interestingly, mutation

of the NF-kB sites resulted in constitutive expression of mCherry

from the FMN2 promoter (Figure 3C, Figures S5D and S5E).

We infer that NF-kB binding to the FMN2 promoter represses

transcription of the FMN2 gene. Taken together, these results

suggest that ARF may modulate NF-kB function to control

FMN2 promoter activity (Figure 3D).

ARF Upregulates FMN2 at the Transcriptional Level by
Inhibiting NF-kB and E2F1
The FMN2 promoter analysis revealed a possible role for NF-kB

and E2F1 in the regulation of FMN2 by ARF. To validate these

findings, we performed chromatin immunoprecipitation analyses

on the FMN2 promoter, using NF-kB/RelA antibodies. We also

used anti-AcH3 antibodies as a marker for active transcription.
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Under basal conditions we could detect

NF-kB/RelA binding to the FMN2 pro-

moter (Figure 4A). However, upon ARF

induction, the amount of NF-kB/RelA

present at the promoter was reduced

(Figure 4A). Furthermore, this reduction

in NF-kB/RelA binding was accompanied

by an increase in the levels of AcH3

present in this region of the promoter,

consistent with NF-kB/RelA acting as

a transcriptional repressor of this gene.

To determine if the results obtained with

the promoter occupancy assay were re-

flected in the levels of FMN2 protein and

mRNA, siRNA depletion of either NF-kB/

RelA or E2F1 was performed, either with

or without ARF induction in NARF2 cells.

As seen before, ARF induction resulted

in increased levels of both FMN2 protein

(Figure 4B) and mRNA (Figure 4C and

Figure S6). Interestingly, when either

NF-kB/RelA or E2F1 was depleted, con-
stitutive high levels of FMN2 protein and mRNA were observed

that were not further elevated upon ARF induction (Figures 4B

and 4C). Of note, ARF induction resulted in reduced E2F1

mRNA (Figure S6B) and protein levels (Figure 4B), indicating

that E2F1 is prevented from repressing FMN2 by ARF. The

ARF-mediated repression of E2F1 has been shown previously

to be p53 independent (Mason et al., 2002). This is consistent

with our current observations that ARF induction of FMN2

does not depend on p53 expression. We also performed double

siRNA knockdown of both E2F1 and NF-kB/RelA and analyzed

FMN2 mRNA levels (Figures S6C and S6D). Once again, deple-

tion of E2F1 and NF-kB/RelA resulted in higher levels of FMN2

mRNA, which was not further elevated by ARF induction

(Figure S6C).

To further establish the role of NF-kB at the FMN2 promoter,

we depleted cells of NF-kB/RelA using siRNA and performed

ChIP using both anti-RelA and anti-AcH3 antibodies. Once

again, in control cells we could detect binding of NF-kB/RelA
33, March 7, 2013 ª2013 Elsevier Inc. 925



Figure 4. FMN2 Expression Is Repressed by

NF-kB and E2F1

(A) NARF2 cells were induced or not with IPTG

prior to crosslinking and lysis. Chromatin immu-

noprecipitation was performed using anti-RelA

and anti-AcH3 antibodies, with rabbit IgG used

as a control. qPCR was used to measure relative

promoter occupancy levels compared to input

material. Graph depicts the mean and standard

deviation of a minimum of three independent

experiments.

(B) NARF2 cells were transfected with siRNA

oligonucleotides for NF-kB/RelA or E2F1 prior to

IPTG treatment for 24 hr. Whole-cell lysates were

analyzed by western blot for the levels of the

indicated proteins.

(C) Cells were treated as in (B), but total RNA was

extracted. After cDNA synthesis, qPCR analysis

was performed for the levels of FMN2. Graph

depicts mean and standard deviation from a

minimum of three independent experiments.

(D) U2OS cells were transfected with siRNA

oligonucleotides for NF-kB/RelA prior to cross-

linking and lysis. Chromatin immunoprecipitation

was performed using anti-RelA and anti-AcH3

antibodies, with rabbit IgG used as a control.

qPCR was used to measure relative promoter

occupancy levels compared to input material.

Graph depicts the mean and standard deviation

of a minimum of three independent experiments.

See also Figure S6.
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to the FMN2 promoter, and this was significantly reduced in

cells depleted of NF-kB/RelA (Figure 4D). Importantly, levels

of AcH3 present at the FMN2 promoter were increased when

NF-kB/RelA was depleted, supporting the previous mRNA and

protein expression analysis.

FMN2 Is Induced by Oncogenic Stress, DNA Damage,
and Hypoxia
Given that NF-kB is a transcription factor that responds to many

stresses in different cells types (Perkins, 2007), we next deter-

mined if the modulation of FMN2 by NF-kB was restricted to

ARF induction or was also observed with other stimuli and in

different cell types. First, we investigated if activation of the

SRC oncogene could lead to changes in FMN2 expression. For

this we used a previously described v-SRC-inducible cell system

in the breast epithelial MCF10A cells (Iliopoulos et al., 2010).

Following induction of v-SRC with tamoxifen, levels of both

FMN2 protein and mRNA (Figures 5A and 5B) increased. These

results demonstrate that FMN2 levels increase in different

cellular backgrounds in response to oncogenic stress, at least

under conditions leading to induction of p14ARF.

Next, we investigated if additional stresses would modulate

FMN2 expression, independently of ARF. We therefore ex-

tended our analysis to examine the effects of DNA damage

and hypoxic stress (Figures 5C and 5D), both conditions that

have been shown to modulate NF-kB function (Campbell

et al., 2004; Culver et al., 2010). In both these situations,

FMN2 expression increased. This is illustrated for UV-induced

DNA damage by analysis of FMN2 protein (Figure 5C) and

mRNA (Figure 5D) levels and for hypoxia by analysis of FMN2
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mRNA levels (Figure 5E). These data indicate that FMN2 can

respond to several different types of stimuli that all result in

the arrest of cell growth.

FMN2 Controls p21 Protein Levels
To investigate the potential functional significance of increased

levels of the FMN2 protein in the stress pathways analyzed, we

next suppressed FMN2 expression in cells using siRNA (Fig-

ure 6). FMN2 protein levels were decreased by the siRNA treat-

ment (Figure 6A). However, we did not observe any changes in

the corresponding levels of either p53 or Hdm2 after knockdown

of FMN2. Interestingly, however, the levels of the p21 protein

were markedly reduced when FMN2 was knocked down (Fig-

ure 6A), but not changed when cells were treated with control

siRNA (Figure 6A). This effect was prevented by expression of

a siRNA-resistant version of FMN2 (Figure S7A), demonstrating

that it is the specific change in levels of FMN2 following siRNA

treatment that is responsible for altering p21 expression. Levels

of p21 protein were also decreased when ARF was knocked

down by siRNA (Figure S7B). In contrast, we did not detect

any changes in the levels of other known p53 targets, including

puma and DR5, after FMN2 knockdown, indicating that FMN2

is not altering general p53 transcriptional activity (Figure 6A).

To examine the mechanism affecting p21 protein levels, we

analyzed if p53-mediated induction of p21 mRNA was also

altered specifically by FMN2 depletion. We performed qPCR

analysis following ARF induction in NARF2 cells, either in the

presence or absence of FMN2 knockdown with siRNA (Fig-

ure S7C). The results demonstrate that p21 mRNA was induced

to similar levels by ARF, regardless of whether FMN2 protein



Figure 5. FMN2 Expression Is Induced by

Oncogenes, DNA Damage, and Hypoxia

(A) Parental MCF10A and Src-inducible MCF10A

cells were treated with tamoxifen for 24 hr prior to

fixation and immunostaining with the indicated

antibodies.

(B) Src-inducible MCF10A cells were treated with

tamoxifen for 24 hr prior to total RNA (right) or

protein (left) extraction. Following cDNA synthesis,

qPCR was performed using FMN2-specific

primers. Actin was used as a normalizing gene.

Graph depicts the mean and standard deviation

from a minimum of three independent experi-

ments. Whole-cell lysates were analyzed using the

indicated antibodies.

(C) NARF-E6 and NARF2 cells were treated with

IPTG for 24 hr or UV for 4 hr as indicated prior to

lysis. Whole-cell lysates were analyzed by western

blot using the indicated antibodies.

(D) U2OS cells were treated with UV for 4 hr prior

to total RNA extraction. Following cDNA syn-

thesis, qPCR was performed using FMN2-specific

primers. Actin was used as a normalizing gene.

Graph depicts the mean and standard deviation

fromaminimumof three independentexperiments.

(E) U2OS cells were exposed to 1% O2 for 24 hr

prior to total RNA extraction. Following cDNA

synthesis, qPCR was performed and analyzed as

in (D). Graph depicts mean and standard deviation

from a minimum of three independent experi-

ments.
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levels were decreased (Figure S7C). As expected, levels of

Hdm2, puma, and DR5 mRNA were also unaltered (Figure S7C).

Given that DNA damage and hypoxia also induce p21 protein

expression, we next determined if FMN2 was also required for

full induction of p21 protein under these types of stress condi-

tions. The results demonstrate that FMN2 is required for p21

protein expression, not only following ARF induction but also

following hypoxia and etoposide-induced DNA damage (Fig-

ure 6B), indicating a more general role for FMN2 in the control

of p21 protein levels. FMN2 depletion by siRNA also resulted

in lower p21 protein levels in human foreskin fibroblasts

(HFFs) subjected to DNA damage by treatment with etoposide

(Figure S7D), demonstrating that this effect is seen in multiple

cell types.

The simplest hypothesis explaining these observations is that

an increase in FMN2 protein levels is able to stabilize the p21

protein. To test this hypothesis, we depleted FMN2 in NARF2

cells with siRNA, induced ARF expression with IPTG, and added

the proteasome inhibitor MG132. The results show that MG132

treatment partially rescues the levels of p21 protein expression
Molecular Cell 49, 922–9
after FMN2 depletion (Figure 6C), further

suggesting that FMN2 can alter the

degree of p21 degradation. Furthermore,

this was observed in both NARF2 and

NARF-E6 cells, demonstrating the inde-

pendence from p53 (Figure 6C).

It has been reported that p21 is

degraded by both ubiquitin-dependent
and -independent pathways (Abbas and Dutta, 2009). To deter-

minewhich of these pathways are altered by FMN2,we designed

siRNAs targeting the proteasome-associated protein PA28g

(Chen et al., 2007; Li et al., 2007) and p21 E3 ligase SKP2 (Fres-

cas and Pagano, 2008), respectively. Knockdown of PA28g by

siRNA partially stabilized p21 protein levels after ARF induction,

even when FMN2 was absent (Figure S7E). On the other hand,

double depletion of SKP2 and FMN2 also partially stabilized

p21 levels after ARF induction (Figure S7E, lanes 11 and 12).

Given the partial rescue observed with both PA28g and SKP2

knockdowns, we next performed a triple siRNA knockdown

experiment, where FMN2 was depleted at the same time as

both PA28g and SKP2. Under these conditions, p21 levels

were completely rescued following ARF induction. These results

strongly suggest that FMN2 functions to stabilize p21 protein

levels by preventing its degradation via both ubiquitin-depen-

dent and -independent pathways (Figure 6D).

To further test the model of FMN2 function, we examined

the effect of increased levels of FMN2 resulting from tran-

sient overexpression of exogenous protein. NARF2 cells were
33, March 7, 2013 ª2013 Elsevier Inc. 927



Figure 6. FMN2 Is Necessary and Sufficient for p21 Protein Expression
(A) NARF2 cells were transfected with siRNA oligonucleotides for FMN2 prior to IPTG treatment for 24 hr. Whole-cell lysates were analyzed by western blot using

the indicated antibodies.

(B) U2OS cells were transfected with siRNA oligonucleotides for FMN2 prior to exposure to 1%O2 or 10 mMetoposide for 24 hr. Whole-cell lysates were analyzed

by western blot using the indicated antibodies.

(C) NARF2 and NARF-E6 cells were treated as in (A), but 20 mM of MG132 was added, where indicated, for the last 3 hr of a 24 hr IPTG treatment. Whole-cell

lysates were analyzed as in (A).

(D) NARF2 cells were transfected with the indicated siRNAs prior to IPTG treatment for 24 hr. Whole-cell lysates were analyzed as in (A).

(E) NARF2 and NARF-E6 cells were transfected with 1 mg of empty vector or FMN2 construct. NARF2 cells were also treated or not with IPTG for 24 hr. Whole-cell

lysates were analyzed as in (A).

(F) NARF2 cells were treated with IPTG for 24 hr prior to lysis. Whole-cell lysates were prepared and immunoprecipitated with normal rabbit IgG or anti-FMN2 (upper

panel) or p21 (lowerpanel) antibodies.Precipitateswere resolvedbySDS-PAGEand thenanalyzedbywestern blotting using indicated antibodies. SeealsoFigureS7.
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Figure 7. FMN2 Depletion Results in

Apoptosis Induction

(A) NARF2 cells were transfected with FMN2

siRNAs prior to plating on 96-well plates and IPTG

treatment. Proliferation was measured using the

Alamar blue assay. Graph depicts the mean and

standard deviation of a minimum of three inde-

pendent experiments performed in triplicate.

(B) NARF2 cells were transfected with FMN2

siRNA oligonucleotides prior to IPTG treatment for

24 hr.Whole-cell lysates were analyzed bywestern

blot using the indicated antibodies.

(C) Flow cytometry analysis of NARF2 cells trans-

fected with the indicated siRNAs prior to IPTG

treatment for 24 hr. Graph depicts percentage of

total cells and represents the mean plus standard

deviation of a minimum of three independent

experiments.

(D) NARF2 cells were transfected with p21 siRNA

oligonucleotides prior to IPTG treatment for 24 hr.

Whole-cell lysates were analyzed by western blot

using the indicated antibodies.

(E) Schematic diagram depicting our experimental

findings. p14ARF, oncogenes, DNA damage, and

hypoxiamodulateNF-kBandE2F1 to induceFMN2

expression, which is required for p21 protein levels

and hence cell-cycle arrest. See also Figure S7.
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transfected either with an empty vector or with a FMN2-express-

ing construct, and p14ARF was either induced by the addition

of IPTG, or not (Figure 6E). Protein blot analysis demonstrated

that even in the absence of p14ARF, exogenous FMN2

protein expression led to increased levels of p21 protein

(Figure 6E). This was more pronounced when ARF was induced

(Figure 6E). Importantly, increasing FMN2 levels by transient

expression did not result in increased levels of p21 mRNA

(Figure S7F), further demonstrating the role of FMN2 in posttran-

scriptional control of p21. Interestingly, an increased basal

level of p21 protein is also observed when NF-kB is depleted

by siRNA (Figure 4B), a condition that leads to increased

FMN2 expression. Stabilization of p21 was also observed in

NARF-E6 cells, when exogenous FMN2 was transiently overex-

pressed (Figure 6E).
Molecular Cell 49, 922–9
To investigate the mechanism by which

FMN2 stabilizes p21, we determined if

FMN2 was in a complex with p21. To this

end, we immunoprecipitated FMN2 and

analyzed whether there was coimmuno-

precipitation of p21 by western blot. Our

analysis revealed that FMN2 and p21

associate in a common complex, both

with and without p14ARF induction (Fig-

ure 6F, upper panel). Immunoprecipitation

of p21 also revealed its association with

FMN2 in a common complex (Figure 6F,

lower panel). In addition, transient expres-

sion analysis of fragments of the full-

length FMN2 protein revealed that the N

terminus of FMN2 is required for p21
stabilization. Thus, exogenous expression of FMN2 exons 1–5

resulted in higher levels of p21 protein, while exogenous expres-

sion of FMN2 exons 6–18 did not (Figure S7G). Taken together,

these results indicate that FMN2may increase p21 protein levels

by forming a complex in cells that protects p21 fromdegradation.

FMN2 Depletion Induces Apoptosis
To determine the functional consequences of the loss of FMN2,

and hence reduced p21 levels, in the cellular responses to ARF

induction, we analyzed cellular proliferation and viability under

conditions in which FMN2 was depleted. ARF induction of p53

can result in either cell-cycle arrest or the induction of apoptosis

(Rocha et al., 2005). Most commonly, the initial cellular response

is cell-cycle arrest. In NARF2 cells, ARF induction results in

stalled proliferation (Figure 7A), with associated cell-cycle arrest
33, March 7, 2013 ª2013 Elsevier Inc. 929
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(Figure S1A) (Rocha et al., 2005). However, when FMN2 was

knocked down by siRNA treatment, cell proliferation was not

only stalled, but less viable cells remained compared with the

start of the experiment, indicative of cell death (Figure 7A).

Given that ARF induction in the absence of FMN2 still results in

the induction of proapoptotic genes, such as puma and DR5

(Figure S7B), we analyzed markers of apoptosis under condi-

tions of FMN2 depletion. The results indicate that after knock-

down of FMN2, cells undergo apoptosis, as judged by both

caspase-3 activation and PARP cleavage. Interestingly, this

response was also observed in the absence of ARF induction,

indicating that FMN2 is required for suppression of apoptosis

and hence survival of cancer cells (Figure 7B). To examine

whether there were defects in cell-cycle progression elicited by

FMN2 depletion in combination with p14ARF induction, we per-

formed FACS analysis. These data show that p14ARF induces

arrest of cells in both G1 and G2 (Figure S7H), as previously

observed (Rocha et al., 2005). FMN2 depletion following

p14ARF induction reduces the percentage of cells in G1 but not

G2, with a concomitant modest reduction in the number of cells

in S phase (Figure S7H). Importantly, depletion of FMN2 with

siRNA increases the percentage of cells in sub-G1, indicating

an increase in apoptosis (Figure 7C). To determine if this in-

creased apoptosis is due to p21 destabilization, we investigated

the effects of p21 depletion following ARF induction. Our analysis

revealed that p21 knockdown with siRNA resulted in increased

levels of apoptotic markers, including PARP cleavage and cas-

pase activation, consistent with higher numbers of apoptotic

cells (Figure 7D). Taken together, these results demonstrate

that depletion of FMN2 results in lower p21protein levels, thereby

shifting the cellular response from cell-cycle arrest to apoptosis.

DISCUSSION

FMN2 Is Induced Following ARF Induction, Oncogenic
Stress, DNA Damage, and Hypoxia
In this study we have identified FMN2 as a key human protein

involved in stress-induced cell-cycle arrest. We have shown

that FMN2 is critical for p21 protein stabilization but not required

for p21 mRNA production. FMN2 levels are upregulated by

several different stress stimuli via a common transcriptional

mechanism involving NF-kB.

ARF is an important tumor suppressor, acting during onco-

gene activation (Dominguez-Brauer et al., 2010; Ozenne et al.,

2010; Rocha et al., 2005). ARF is a nuclear protein that accumu-

lates in the nucleolus, with a smaller pool also present in the

nucleoplasm. This localization is dynamic, and ARF can shuttle

between the nucleolus and other nuclear locations. It is best

known for its role in binding to and inhibiting Hdm2, the p53 E3

ubiquitin ligase, resulting in stabilization of p53. However, the

detailed function of ARF is still not fully characterized. Here we

performed a study on nucleolar protein dynamics following

a time course of ARF induction in human cells, using quantitative

mass spectrometry. We found that ARF induction resulted in the

majority of nucleolar proteins decreasing in abundance (Fig-

ure 2B). One of the main exceptions was a protein called

FMN2, which significantly increased its levels in purified nucleoli

following ARF activation.
930 Molecular Cell 49, 922–933, March 7, 2013 ª2013 Elsevier Inc.
FMN2 belongs to a family of ubiquitous, conserved multido-

main proteins called formins (Faix and Grosse, 2006). Formins

are defined by the presence of a formin homology (FH) domain,

which confers an actin-nucleating activity to these proteins.

FMN2 is expressed in the brain, in the spinal cord, and in oocytes

in the mouse. The mouse FMN2 gene has been knocked out and

the progeny are viable, but it has been reported that Formin-2-

deficient oocytes (fmn2�/�) do not extrude a first polar body

and that they harbor chromosomes that remain most of the

time centrally located, suggesting that the first meiotic spindle

does not migrate to the cortex in these oocytes (Leader et al.,

2002). Interestingly, human FMN2 has relatively low homology

with mouse FMN2, with the exception of the FH domain. In

particular, the FMN2 N-terminal region has low sequence

homology between human and mouse. Of note, despite ARF-

mediated stabilization of p53 being conserved in mice, the struc-

ture of human p14ARF also differs substantially from the larger

mouse ortholog, p19ARF (Ozenne et al., 2010; Wadhwa et al.,

2002). Correspondingly, this may suggest that the FMN2 ortho-

logs in human and mouse have evolved with different partner

proteins and/or functions in the ARF activation pathway.

Interestingly, our analysis showed that FMN2 is induced not

only by ARF, but also by other stresses, including separate forms

of DNA damage and hypoxia. The common features in all of

these responses appear to be the involvement of NF-kB in the

mechanism of transcriptional activation of FMN2 and the down-

stream effect that they all cause activation of p21 and hence

result in an arrest of cell proliferation. The involvement of the

FMN2 protein in these responses is an important observation,

as is our finding that activation of p21 depends upon actively pre-

venting its rapid degradation and does not result solely from

increasing its transcription and translation.

Consistent with our observations in this study, a previous

large-scale proteomic analysis of protein targets for phosphory-

lation by ATR/ATM identified FMN2 as one of multiple targets

(Matsuoka et al., 2007). More recently, FMN2 was also reported

as a potential oncogene in leukemia (Charfi et al., 2011). Investi-

gation of publicly available data sets in Oncomine (https://www.

oncomine.org/resource/login.html) has revealed differential

FMN2 RNA expression in human tumors, depending on cancer

type. For example, FMN2 RNA is reported to be overexpressed

in certain breast cancers and melanomas but underexpressed in

certain renal cancers (oncomine). However, the mechanism

behind these observations has not been investigated.

Our data demonstrate that under normal growth conditions

the transcription factors NF-kB and E2F1 both contribute to re-

pressing FMN2 expression (Figure 4). Specifically, we have

demonstrated that NF-kB binds to the FMN2 promoter and is

required for transcriptional repression. The NF-kB family of tran-

scription factors, and in particular RelA, has been shown to be

activated by stresses such as expression of oncogenes, multiple

forms of DNA damage, and hypoxia (Culver et al., 2010; Perkins,

2012). Furthermore, NF-kB, when directly binding to its target

promoters, can act as both an activator and a repressor of tran-

scription, depending on posttranslational modifications and

association with either coactivators or corepressor proteins

(Campbell and Perkins, 2004). Interestingly, NF-kB/RelA and

E2F1 have been shown previously to cooperate in the activation

https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
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of other target promoters, such as EGR1 (Zheng et al., 2009),

among others (Lim et al., 2007). Our data now show that

NF-kB/RelA and E2F1, which have overlapping binding sites

on the FMN2 promoter, can also act to repress transcription,

identifying a shared target by these transcription factors. E2F1

and NF-kB proteins are often deregulated in cancer and could

account for the lack of FMN2 expression observed in certain

cancer types. Further research is necessary to determine if

additional control mechanisms are involved in the regulation of

FMN2.

FMN2 Regulates p21 Protein Levels during Oncogene
Activation, DNA Damage, and Hypoxia
Our results demonstrate that FMN2 plays an important role in

p21 stabilization and reveal that activation of p21 requires

a mechanism to actively prevent its rapid degradation. We

suggest that this helps to ensure the efficient removal of p21

and prevent its accumulation, except when cells are acutely

responding to stress. FMN2 is thus identified as an integral

component of the p14ARF-p53 pathway that has a central role

in regulating the response to oncogene activation, DNA damage,

and hypoxia in human cells. We propose that all stress stimuli

that induce cell-cycle arrest via p21 induction may also rely on

FMN2 to prevent p21 degradation and hence allow p21 to accu-

mulate to a level where it can promote cell-cycle arrest.

p21 is an important cell-cycle inhibitor, which binds to and

prevents the action of cyclin-dependent kinases (Abbas and

Dutta, 2009). In addition, it also binds to PCNA and thereby

impinges on DNA replication (Li et al., 1994). The p21 protein is

a major transcriptional target for the tumor suppressor p53

(Zilfou and Lowe, 2009). Apart from transcriptional control, p21

protein levels are also influenced through both ubiquitin-depen-

dent and -independent degradation pathways (Abbas and Dutta,

2009). Our analysis revealed that FMN2 prevents both degrada-

tion pathways from acting on p21 (Figure 6). Indeed, the reduc-

tion of p21 levels observed following FMN2 depletion by siRNA

could be partially rescued with codepletion of either Skp2 or

PA28g (Figure 6). Importantly, a complete rescue of p21 levels

was observed when FMN2 was depleted at the same time as

the two different degradation pathwaysmentioned above. These

data indicate that FMN2 is required to protect p21 from the

action of pathways that depend on both Skp2 and PA28g. In

addition, we observed that exogenous expression of FMN2

could stabilize the p21 protein, without changing the levels of

p21 mRNA. Our analysis revealed that p21 and FMN2 form

a complex in cells (Figure 6F). We also found that the N terminus

of human FMN2, which is poorly conserved between the human

and mouse orthologs, is important for p21 stabilization (Fig-

ure S7G). We directly identified peptides from the N terminus

of FMN2 in our mass spectrometry analysis. We note that the

conserved, actin-binding formin repeats are located in the C

terminus of the FMN2 protein. These data indicate an important

function for the FMN2 protein that may be independent of the

actin binding domain. Indeed, it remains possible that the

FMN2 gene could give rise to separate isoforms with distinct

functions.

Our data suggest a new extension to the model for ARF tumor

suppressor function; thus, while the current model highlights that
M

upon oncogene activation p14ARF-mediated p53 stabilization

upregulates p21 mRNA levels, we now show that ARF also tran-

scriptionally upregulates expression of FMN2, independently of

p53. In the extended model we present this role of FMN2 as

critical to stabilize the p21 protein and allow it to accumulate

by preventing its constitutive, rapid degradation (Figure 7E).

We propose this revisedmodel involving FMN2 applies generally

to the other forms of stress that rely on p21 activation to promote

cell-cycle arrest.

Although we focus here on the nucleolar function of ARF, we

noticed that FMN2 is also expressed throughout the cell, not

only in nucleoli, as observed in a range of different cell types (Fig-

ure 5). In this study we have concentrated on characterizing the

role of FMN2 in the ARF pathway. In the future, however, it will be

interesting to extend this proteomic analysis of ARF to evaluate

more broadly downstream effects of ARF induction on protein

levels and interactions throughout the cell. Amajor goal for future

studies will now be to investigate in more detail the structure and

function of the different domains of FMN2 and how these are

regulated in conditions of malignancy.

EXPERIMENTAL PROCEDURES

Isolation of Stable Isotope-Labeled Nucleolar Proteins

Cells were grown for at least five cell divisions in either light (Arg0, Lys0),

medium (Arg6, Lys4), or heavy (Arg10, Lys8) labeled media before ARF induc-

tion (Boisvert et al., 2011). For induction of exogenous p14ARF, IPTG was

added at a final concentration of 1 mM to all cells and incubated for 4, 8, 16,

and 24 hr, respectively. The experiment was repeated with to give a total

of five time points with untreated Arg0, Lys0 cells as a common zero time

point. Nucleoli were isolated from NARF2 and NARF2-E6 as previously

described (http://www.lamondlab.com/f5nucleolarprotocol.htm). Isolated

nucleolar proteins were separated on NuPAGE 4%–12% Bis-Tris gel and

excised into 12 slices, and each gel slice was reduced in 10mMDTT, alkylated

in 50 mM iodoacetamide, and subjected to in-gel digestion with trypsin

(Andersen et al., 2005). The resulting tryptic pepctides were extracted by

1% formic acid.

Mass Spectrometry and Data Analysis

Liquid chromatography-tandem mass spectrometry was performed using an

Ultimate U3000 nanoflow system (Dionex Corp) and a linear ion trap-orbitrap

hybrid mass spectrometer (LTQ-Orbitrap XL, Thermo Fisher Scientific Inc.)

via a nanoelectrospray ion source (Proxeon Biosystems) as described previ-

ously (Boulon et al., 2010a). Data were acquired usin Xcalibur spftware, and

quantification was performed using MS-Quant (http://msquant.sourceforge.

net/) and Mascot search engine (Matrix Science) for peptide identification

against the International Protein Index (IPI) human protein database. The initial

mass tolerance was set to 7 ppm, and MS/MS mass tolerance was 0.5 kDa.

Enzyme was set to trypsin/p with three missed cleavages. Carbamidomethy-

lation of cysteine was searched as fixed modification, whereas N-acetyl-

protein and oxidation of methionine were searched as variable modification.

A minimum of two peptides was quantified for each protein.

Cells and Transfections

NARF2 and NARF2-E6 cell lines were provided by Dr. Gordon Peters (Cancer

Research UK London Research Institute) and have been described previously

(Llanos et al., 2001; Rocha et al., 2003; Stott et al., 1998). NARF2 cells, a deriv-

ative of the human osteosarcomaU-2OS cells containing an isopropyl b-D-thi-

ogalactopyranoside (IPTG)-inducible p14ARF gene, have been described

previously (Stott et al., 1998). The NARF2-E6 cells are a derivative of NARF2

cells but contain, in addition, constitutively expressed human papillomavirus

(HPV) E6 protein. MCF-10A and MCF-10ASrc-ER were cultured as previously

described (Iliopoulos et al., 2010; Schulze et al., 2001). U2OS and HFFs
olecular Cell 49, 922–933, March 7, 2013 ª2013 Elsevier Inc. 931
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were maintained at 5% CO2 in Dulbecco’s modified Eagle’s medium (Lonza)

supplemented with 10% fetal bovine serum (FBS) (Invitrogen), 1% penicillin-

streptomycin (Lonza), and 1% L-glutamine (Lonza). All plasmid transfections

were performed using effectin (Invitrogen) or GeneJuice (MERCK).

RNA Isolation and qPCR

Total RNA was extracted using PeqGold total RNA extraction kit (Peqlab) and

converted to cDNA using Quantitect Reverse transcription kit (QIAGEN). For

quantitative PCR, Brilliant II Sybr green kit (Stratagene/Agilent), including

specific MX3005P 96-well semiskirted plates, were used to analyze samples

on the Mx3005P QPCR platform (Stratagene/Agilent). Actin was used as

a normalizing gene in all experiments. FMN2 expression was analyzed using

a one-step Brilliant II Sybr green QRT-PCR mix (Agilent) or using Brilliant II

Sybr green kit (Stratagene/Agilent). PCR primers sequences can be found in

the Supplemental Information.

Cell Treatments

Cells were incubated in 1%O2 level in an In Vivo 300 hypoxia workstation (Rus-

kin, UK) for 24 hr. Cells were lysed for protein extracts and RNA extraction in

the workstation to avoid reoxygenation. For DNA damage treatments, cells

were treated with 10 mM etoposide (Enzo LifeSciences) for 24 hr or exposed

to 40 J/m2 and harvested 4 hr later. MG132was purchased fromMerck Chem-

icals and used at the final concentration of 50 mM.

Microscopy

All cell images were recorded using the DeltaVision Spectris fluorescence

microscope (Applied Precision). Cells were imaged using a 603 (NA 1.4)

Plan Apochromat objective. Twelve optical sections separated by 0.5 mm

were recorded for each field and each exposure (SoftWoRx image processing

software, Applied Precision).

siRNA

siRNA duplex oligonucleotides were synthesized by MWG and transfected

using Interferin (Polyplus) as per the manufacturer’s instructions. In brief, cells

were plated the day before transfection at the concentration of 2 3 105 cells

per well in 6-well plates. The following day, cells were transfected with the final

concentration of 5 nM of siRNA oligonucleotides in fresh media, final volume of

2.2 mL. Cells were incubated for additional 48 hr prior to harvesting. IPTG was

added for 24 hr unless otherwise stated. siRNA sequences can be found in the

Supplemental Information.

Chromatin Immunoprecipitation

Proteins were crosslinkedwith formaldehyde for 10min. Glycine (0.125M) was

added and cells washed with phosphate-buffered saline. Cells were lysed with

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCL [pH 8.1], 1 mM PMSF,

1 mg/ml leupeptin, 1 mg/ml aprotonin), followed by sonication and centrifuga-

tion. The supernatant was precleared with sheared salmon sperm DNA and

protein G Sepharose beads (Sigma). The supernatant was incubated with

specific antibodies overnight, and then with protein G Sepharose beads for

1 hr. After an extensive wash step, the complexes were eluted with buffer

(100 mM NaHCO3, 1% SDS) and incubated with Proteinase K. DNA was puri-

fied using NBS polymerase chain reaction purification kit (NBS). PCR was per-

formed for the FMN2 promoter.

Antibodies and additional experimental procedures can be found in the

Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental

Procedures, and Supplemental References and can be found with this article

at http://dx.doi.org/10.1016/j.molcel.2012.12.023.
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