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A dual-robot system is a robotic device composed of two robot arms. To eliminate the
joint-angle drift and prevent the occurrence of high joint velocity, a velocity-level bi-criteria
optimization scheme, which includes two criteria (i.e., the minimum velocity norm and
the repetitive motion), is proposed and investigated for coordinated path tracking of dual
robot manipulators. Specifically, to realize the coordinated path tracking of dual robot
manipulators, two subschemes are first presented for the left and right robotmanipulators.
After that, such two subschemes are reformulated as two general quadratic programs
(QPs), which can be formulated as one unified QP. A recurrent neural network (RNN) is
thus presented to solve effectively the unified QP problem. At last, computer simulation
results based on a dual three-link planar manipulator further validate the feasibility and
the efficacy of the velocity-level optimization scheme for coordinated path tracking using
the recurrent neural network.

Keywords: dual robot manipulators, bi-criteria optimization scheme, recurrent neural network, quadratic program,
repetitive motion

1. INTRODUCTION

Robot manipulators were widely investigated and applied to many fields (Jin et al., 2017; Zhang
and Zhang, 2012; Xiao and Zhang, 2013, 2014a; Jin and Zhang, 2015; Zhang et al., 2015; Yamada
et al., 2016), such as human–robot interaction, path tracking, industrial manufacturing, military,
repetitive motion, and so on. Many researches have been focused on this topic, and various kinds
of robot manipulators have been developed and investigated (Li et al., 2012, 2014, 2017; Xiao
and Zhang, 2013; Jin and Zhang, 2015; Zhang et al., 2015). As far as we know, there are some
manipulation tasks (including large, heavy, awkwardly sized payloads) that cannot be fulfilled
by only a single robot manipulator. In contrast, dual robot manipulators can not only complete
some common tasks but also can finish some complex and dangerous things that the single robot
manipulator is usually hard to finish (Zhang and Li, 2017; Li et al., 2012, 2014; Jin and Zhang, 2015).
In addition, dual robot manipulators have been successfully applied to various applications (Jin and
Li, 2016; Zhang et al., 2013, 2015; Xiao and Zhang, 2014b; Jin and Zhang, 2015; Jin et al., 2016a), e.g.,
load transport, cooperative assembly, dextrous grasping, coordinate welding. Therefore, using dual
robot manipulators to collectively conduct complicated tasks is becoming increasingly popular.
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It is well known that inverse kinematics of robot manipulators
(including dual manipulators) is a much more difficult problem
than forward kinematics, but it is a fundamental issue in the field
of robotics (also including dual robot manipulators). Generally
speaking, there are two types of good methods for addressing the
inverse kinematic problem. One is based on the pseudoinverse
method that includes a homogeneous solution and a specific
minimum-norm solution (Klein andKee, 1989; Klein andAhmed,
1995). However, the traditional pseudoinverse method needs to
compute the inverse/pseudoinverse of matrices, which usually
costs a lot of time. In addition, this method would lead to the
joint angle drift when the end-effector completes a repetitive
motion (Klein and Ahmed, 1995). The second method is based
on optimization techniques, which treat performance criteria as
objective functions (Jin and Li, 2016; Zhang et al., 2004; Guo and
Zhang, 2012; Xiao and Zhang, 2013, 2014a, 2016). Among the
existing schemes, single performance criterion is widely used to
control themotion ofmanipulators at different joint levels, such as
repetitive motion (Xiao and Zhang, 2013, 2014a), manipulability
(Jin and Li, 2016), obstacle avoidance (Xiao and Zhang, 2016),
minimum velocity norm (Guo and Zhang, 2012), and minimum
torque norm (Zhang et al., 2004).

It is worth pointing out that single criterion optimization
schemes cannot satisfy multiple requirements in practical appli-
cations, so dual-criteria optimization schemes are needed (Hou
et al., 2010). Besides, considering the importance of the repetitive
motion control for dual robot manipulators, it also requires an
effective criterion for solving the joint-angle drift problem of dual
robot manipulators in practical applications (Xiao and Zhang,
2013, 2014a; Zhang et al., 2013). To satisfy the above requirements,
in this article, a novel bi-criteria optimization scheme is presented
and investigated for coordinated path tracking of dual robot
manipulators at the joint velocity level, of which the bi-criteria
consist of the minimum velocity motion (MVN) and the repeti-
tive motion (RM). Note that the proposed optimization scheme
consists of two subschemes (corresponding to the left and right
manipulators). Besides, such two subschemes can be rewritten as
two general quadratic programs (QPs), which is further integrated
into one QP formulation.

There are a lot of methods to solve the above QP problems,
such as numerical algorithms, recurrent neural networks (RNN),
and so on. Although the numerical algorithms can iterate good
solutions, they are not suitable for real-time implementations due
to their series characteristic and computational complexity. As
an efficient computation tool, the neural network approach has
several potential advantages in real-time applications (Li et al.,
2013a,b; Li and Li, 2014; Xiao and Zhang, 2014c; Xiao, 2015,
2016a,b; Xiao and Lu, 2015; Jin et al., 2016b, 2017; Xiao and
Liao, 2016), such as parallel processing, hardware implementation
ability, and distributed storage. For example, a gradient-based
neural network (GNN) has been widely used to solve various
challenging mathematical problems (Zhang et al., 2009; Xiao and
Zhang, 2011; Yi et al., 2011; Li et al., 2013c; Xiao, 2016c). Con-
sidering the advantages of this method, GNN is developed and
applied for solving the proposed bi-criteria optimization scheme
and the unified QP problem. Finally, on the basis of a dual
three-link planar manipulator, we conduct circular path tracking

simulations using such a GNNmodel and the proposed bi-criteria
optimization scheme. The computer simulation results further
verify the feasibility and effectiveness of the proposed scheme for
coordinated path tracking of dual robot manipulators using the
recurrent neural network.

2. PRELIMINARIES

The forward kinematic equations of the robot manipulators at the
position level and the velocity level can be expressed, respectively,
as follows (Jin et al., 2017; Zhang and Zhang, 2012; Xiao and
Zhang, 2013, 2014a; Jin and Zhang, 2015; Zhang et al., 2015):

r(t) = f(θ(t)), (1)

ṙ(t) = J(θ)θ̇(t), (2)

where θ(t)∈Rn and θ̇(t) ∈ Rn denote the joint position vector
and the joint velocity vector, respectively; r(t)∈Rm and ṙ(t) ∈ Rm

denote the end-effector position vector and the end-effector veloc-
ity vector, respectively; Jacobian matrix J(θ) = ∂f(θ(t))/∂θ ∈
Rm×n; and f (·) denotes a smooth non-linear function.

For example, for a three-link planar robot manipulator, we
can readily get the forward-kinematic equation (the independent
variable t is omitted for presentation convenience):

r =
[
rX
rY

]
=

[
l1c1 + l2c2 + l3c3
l1s1 + l2s2 + l3s3

]
= f(θ),

where θ = [θ1, θ2, θ3]T ∈R3, r∈R2, l1 denotes the length of the
first link, l2 denotes the length of the second link, and l3 denotes
the length of the third link. In addition, the variables depicted in
the above are defined as

c1 = cos(θ1), s1 = sin(θ1),

c2 = cos(θ1 + θ2), s2 = sin(θ1 + θ2),

c3 = cos(θ1 + θ2 + θ3), s3 = sin(θ1 + θ2 + θ3).

The Jacobian matrix of f (·) can be solved in this situation by
differentiating (1):

J =
[
−l1s1 − l2s2 − l3s3 −l2s2 − l3s3 −l3s3
l1c1 + l2c2 + l3c3 l2c2 + l3c3 l3c3

]
. (3)

Note that, in this article, we are concerned with the dual robot
arms. Without loss of generality, one is called the left manipulator
and the other is called the right manipulator for convenience.
Therefore, the variables of the left and right robot manipulators of
dual arms are correspondingly marked by subscripts l and r. For
example, variables θl and θr denote the joint position vectors of
the left and right robot manipulators of dual arms, respectively. In
Section 5, we set l1 = l2 = l3 = 1m.

3. SCHEME FORMULATION

For simplicity, the bi-criteria scheme of one robot manipulator
is firstly proposed. To integrate the optimization criteria of the
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minimum velocity norm (MVN) and the repetitive motion (RM),
a bi-criteria optimization objective at the velocity level is designed
as

minimize ∥θ̇l/r∥22/2 + ∥θ̇l/r + ql/r∥22/2, (4)

where ql/r = ϵ(θl/r − θl/r(0)) with ϵ > 0. Besides, perfor-
mance index ∥θ̇l/r∥22 can achieve the minimum velocity motion
of robot manipulators, and performance index ∥θ̇l/r + ql/r∥22/2
can complete the repetitive motion task at the joint velocity level.

For the left robot manipulator, considering the forward kine-
matics equation and the above bi-criteria optimization objective,
the bi-criteria optimization scheme can be formulated as below:

minimize ∥θ̇l∥22/2 + ∥θ̇l + ql∥22/2, (5)

subject to Jl(θ)θ̇l = ṙl, (6)

where θ̇l, ql, J l(θ), and ṙl are defined the same as before, but
belong to the variables of the left robot manipulator. Equation (5)
uses the bi-criteria optimization objective (equation (4)); and
equation (6) is the forward kinematics equation (2) of the left
robot manipulator of dual arms.

For the right robot manipulator, the bi-criteria optimization
scheme can be formulated as below in the same way:

minimize ∥θ̇r∥22/2 + ∥θ̇r + qr∥22/2, (7)

subject to Jr(θ)θ̇r = ṙr, (8)

where θ̇r, qr, Jr(θ), and ṙr are defined the same as before, but belong
to the variables of the right robot manipulator.

4. QP REFORMULATION AND
UNIFICATION

In this section, to obtain two standard QP formulations, the pro-
posed subschemes are rewritten as two QPs, which can be unified
into one QP problem.

(1) Conversion of MVN criterion: according to definition of two
norms, minimizing ∥θ̇l∥22/2 in the first term of equation (5)
for the left robot manipulator is equivalent to

minimize θ̇Tl Iθ̇l
2

, (9)

where I ∈Rn×n denotes an identity matrix.
Similarly, MVN criterion ∥θ̇r∥22/2 in the first term of
equation (7) for the right robot manipulator is equivalent to

minimize θ̇Tr Iθ̇r
2

. (10)

(2) Conversion of RM criterion: the RM criterion ∥θ̇l + ql∥22/2
in the second term of equation (5) for the left robot manipu-
lator is rewritten equivalently as

minimize (θ̇l + ql)T(θ̇l + ql)
2

, (11)

which is further equivalent to the following form:

minimize θ̇Tl Iθ̇l + 2qTl θ̇l + qTl ql
2

, (12)

where qTl ql can be deemed as a constant with respect to
optimization variable θ̇ and can be ignored during minimiza-
tion. Thus, the RM criterion ∥θ̇l + ql∥22/2 of the left robot
manipulator is finally equivalent to the following form:

minimize θ̇Tl Iθ̇l + 2qTl θ̇l
2

. (13)

Similarly, the RM criterion ∥θ̇r + qr∥22/2 of the right robot
manipulator can be equivalent to the following form:

minimize θ̇Tr Iθ̇r + 2qTr θ̇r
2

. (14)

A B

FIGURE 1 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Motion trajectories of dual manipulator and (B) desired circular path and actual trajectory.
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Thus, through the above conversion, the bi-criteria optimiza-
tion subscheme for the left robot manipulator can be formulated
as the following standard QP:

minimize xTl Qlxl/2 + qTl xl, (15)
subject to Alxl = bl, (16)

where xl = θ̇l ∈ Rn, Q1 = 2I ∈Rn×n, ql = ϵ(θl − θl(0)) ∈ Rn,
Al = J l(θ)∈Rm×n, and bl = ṙl.

Similarly, the bi-criteria optimization subscheme of the right
robot manipulator is presented as

minimize xTr Qrxr/2 + qTr xr, (17)
subject to Arxr = br, (18)

where xr = θ̇r ∈ Rn, Qr = 2I ∈Rn×n, qr = ϵ(θr − θr(0)) ∈ Rn,
Ar = Jr(θ)∈Rm×n, and br = ṙr.

Finally, the presented two QPs for the left and right robot
manipulators of two arms are unified into a new QP formulation,
i.e.,

minimize zTWz/2 + ωTz, (19)
subject to Cz = d, (20)

where coefficient matrices (or vectors) are defined as below:

z =
[
xl
xr

]
∈ R2n, W =

[
Ql 0
0 Qr

]
∈ R2n×2n,

ω =
[
ql
qr

]
∈ R2n, C =

[
Jl(θ) 0
0 Jr(θ)

]
∈ R2m×2n,

d =
[
bl
br

]
=

[
ṙl
ṙr

]
∈ R2m.

5. RECURRENT NEURAL NETWORK
SOLVER

Note that there are many methods to solve such a standard
QP problem. The most common approach is to use a Lagrange
multiplier and to minimize a cost function (Li et al., 2013c; Xiao,

A B

C D

FIGURE 2 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Joint angle θl profile of left manipulator, (B) joint angle θr profile of right manipulator, (C) joint velocity θ̇l profile of left
manipulator, and (D) joint velocity θ̇r profile of right manipulator.
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2016a). Thus, for dynamic quadratic optimization (equations (19)
and (20)), its related Lagrangian is presented as follows:

H(z, λ) = zTWz/2 + ωTz + λT(Cz − d),

where λ∈R2m denotes the multiplier variable.
It is well known that solving the quadratic optimization (equa-

tions (19) and (20)) could be achieved by zeroing the following
equations: {∂H(z,λ)

∂x = Wz + ω + CTλ = 0,
∂H(z,λ)
∂λ(t) = Cz − d = 0.

Let

G =
[
W CT

C 0

]
∈ R(2n+2m)×(2n+2m), y =

[
z
λ

]
∈ R2n+2m,

u =
[
−ω
d

]
∈ R2n+2m.

The above linear equations can be further equivalent to the
following:

Gy = u. (21)

Note that there were a lot of methods to solve the above linear
equation system (equation (21)). In this part, a gradient-based
neural network (GNN) is presented and investigated for solv-
ing the proposed bi-criteria optimization scheme and the finally
equivalent equation (21). By following the literature (Zhang et al.,
2009; Xiao and Zhang, 2011; Yi et al., 2011; Li et al., 2013c; Xiao,
2016c), the design procedure of GNN is listed as below.

First, an non-negative scalar-based energy function Ω is
defined as follows:

Ω = ∥Gy − u∥22/2. (22)

Second, the negative gradient ofΩ can be solved as−∂Ω/∂y =
GT(Gy − u).

A B

C D

FIGURE 3 | Simulation results when the dual three-link manipulator tracks the given circular path synthesized by the bi-criteria optimization scheme (equations (19)
and (20)) and GNN model (equation (23)). (A) Position error εl profile of left manipulator, (B) position error εr profile of right manipulator, (C) velocity error ε̇l profile of
left manipulator, and (D) velocity error ε̇r profile of right manipulator.
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Finally, according to gradient neural network design formula
ẏ = −γ∂Ω/∂y, the GNN model for dynamic inverse kinematics
problem can be described as follows:

ẏ = −γGT (Gy − u) , (23)

where y∈R2n+2m denotes the neural state of GNN model (equa-
tion (23)).

6. SIMULATIVE VERIFICATIONS

In this part, the unified bi-criteria optimization scheme (equations
(19) and (20)) is applied to a dual three-link planar manipulator
and solved by the presented GNN model (equation (23)). In
computer simulations, the end-effectors of the dual manipulators
are expected to simultaneously track a circle. Without loss of
generality, design parameters ϵ= 10 and γ = 107; the task exe-
cution time is 8 s, and the radius of the desired circle is 0.25m.
Besides, the joints of the left and right manipulators are expected
to begin with the initial states θl(0)= [3π/4, −2π/5, −π/4]T rad
and θr(0)= [π/3, 2π/5, π/4]T rad, respectively. The computer
simulations are illustrated in Figures 1–3, which is solved by
the proposed bi-criteria optimization scheme and the presented
recurrent neural network.

Specifically, Figure 1 shows the whole motion trajectories of
the dual three-link planar manipulators when the end-effectors
track the given circular path. As seen from Figure 1A, the circular
path-tracking task is performed successfully by the dual three-link
planar manipulators. In addition, from Figure 1B, we can see that
the final state and the initial state of the dual three-link planar
manipulators coincide with each other.

Figure 2 shows the joint-variable (including joint angle and
joint velocity) profiles during the task execution of the dual
three-link planar manipulators. From this figure, we can conclude
that the proposed bi-criteria optimization scheme [synthesized
by GNN model (equation (23))] can not only solve the joint-
angle drift problem but also prevent the occurrence of high joint
velocity in this path-tracking task. Specifically, after the end-
effectors completing the circular-path tracking task, the final joint
states of the left and right manipulators return to their initial
states, which can be seen in Figures 2A,B. In addition, from
Figures 2C,D, we can observe that the situation of the high joint
velocity does not happen, and the final velocity of each joint
for the dual three-link manipulators is equal to zero. It is worth
pointing out that, if the final joint velocities is not equal to zero, the
manipulator’ joints will not stop immediately at the end of the task
duration; and thus, the non-repetitive problem would happen.
These results demonstrate and verify the effectiveness of such
a bi-criteria optimization scheme synthesized by GNN model
(equation (23)).

For further verifying the accuracy of the proposed bi-criteria
optimization scheme and GNN model (equation (23)), Figure 3
shows the corresponding position error ε(t):= r(t)− f (θ(t)) and
the velocity error ε̇(t) of the left robot manipulator and the
right robot manipulator, where εX and εY denote, respectively,

the X-axis and Y-axis components of ε(t). As observed from
Figures 3A,B, the corresponding X-axis and Y-axis components
of position errors for the left robot manipulator and the right
robot manipulator are less than 2× 10−5 m. Besides, from
Figures 3C,D, we can obtain that the X-axis and Y-axis com-
ponents of velocity errors for the left robot manipulator and
the right robot manipulator are less than 6× 10−6 m. These
demonstrate that the given circular path tracking task is ful-
filled well via the proposed velocity-level bi-criteria optimization
scheme.

In summary, the end-effector tasks are performed very well
by synthesizing the proposed velocity-level bi-criteria optimiza-
tion scheme. The detailed results verifies the effectiveness and
applicability of the proposed bi-criteria optimization scheme for
coordinated path tracking of dual redundant robot manipulators
using the recurrent neural network.

7. CONCLUSION

In this article, a novel velocity-level bi-criteria optimization
scheme (i.e., integrating minimum velocity norm and repeti-
tive motion) has been proposed and investigated for complex
motion planning of dual robot manipulators. Such a bi-criteria
optimization scheme can not only prevent the occurrence of
high joint-velocity but also remedy the joint angle drifts of dual
redundant robot manipulators well. In addition, the proposed
scheme guarantees the joint velocity equals zero at the end of path
tracking motion. To do so, two subschemes have been presented
for the left and right robot manipulators, which are reformulated
as two general quadratic programs (QPs). Then, such two general
QP problems have been further unified into one standard QP
formulation. Simulative results based on the dual three-link robot
manipulators have substantiated the efficacy and applicability
of the proposed velocity-level bi-criteria optimization scheme.
The future work may lie in the applications of the bi-criteria
optimization scheme to real robot manipulators.

AUTHOR CONTRIBUTIONS

LX: experiment preparation, data acquisition and processing, and
publication writing; YZ: experiment preparation, data processing,
and publication drafting; BL: experiment technology support and
publication review; ZZ and LD: experiment preparation and pub-
lication review; LJ: experiment preparation, data acquisition, and
publication review.

FUNDING

This work was supported by the National Natural Science Foun-
dation of China under grant 61503152, the Natural Science Foun-
dation of Hunan Province, China under grants 2016JJ2101 and
2017JJ3258, the National Natural Science Foundation of China
under grants 61563017, 61363073, 61662025, and 61561022, and
the Research Foundation of Jishou University, China under grants
2017JSUJD031, 2015SYJG034, JGY201643, and JG201615.

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 476

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Xiao et al. Optimization Scheme for Dual Robots

REFERENCES
Guo, D., and Zhang, Y. (2012). A new inequality-based obstacle-avoidance MVN

scheme and its application to redundant robot manipulators. IEEE Trans. Syst.
Man. Cybern. C 42, 1326–1340. doi:10.1109/TSMCC.2012.2183868

Hou, Z., Cheng, L., and Tan, M. (2010). Multicriteria optimization for coordination
of redundant robots using a dual neural network. IEEE Trans. Syst. Man. Cybern.
B 40, 1075–1087. doi:10.1109/TSMCB.2009.2034073

Jin, L., and Li, S. (2016). Distributed task allocation ofmultiple robots: a control per-
spective. IEEE Trans. Syst. Man. Cybern. Syst. doi:10.1109/TSMC.2016.2627579

Jin, L., Li, S., Xiao, L., Lu, R., and Liao, B. (2017). Cooperative motion generation in
a distributed network of redundant robot manipulators with noises. IEEE Trans.
Syst. Man. Cybern. Syst. doi:10.1109/TSMC.2017.2693400

Jin, L., and Zhang, Y. (2015). G2-type SRMPC scheme for synchronous manipu-
lation of two redundant robot arms. IEEE Trans. Cybern. 45, 153–164. doi:10.
1109/TCYB.2014.2321390

Jin, L., Zhang, Y., Li, S., and Zhang, Y. (2016a). Modified ZNN for time-varying
quadratic programming with inherent tolerance to noises and its application
to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind.
Electron. 63, 6978–6988. doi:10.1109/TIE.2016.2590379

Jin, L., Zhang, Y., and Li, S. (2016b). Integration-enhanced Zhang neural network
for real-time-varyingmatrix inversion in the presence of various kinds of noises.
IEEE Trans. Neural Netw. Learn. Syst. 27, 2615–2627. doi:10.1109/TNNLS.2015.
2497715

Jin, L., Zhang, Y., Li, S., and Zhang, Y. (2017). Noise-tolerant ZNN models for
solving time-varying zero-finding problems: a control-theoretic approach. IEEE
Trans. Autom. Control 62, 992–997. doi:10.1109/TAC.2016.2566880

Klein, C. A., and Ahmed, S. (1995). Repeatable pseudoinverse control for pla-
nar kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. 25,
1657–1662. doi:10.1109/TSMC.1995.7102305

Klein, C. A., and Kee, K. B. (1989). The nature of drift in pseudoinverse control of
kinematically redundant manipulators. IEEE Trans. Robot. Autom. 5, 231–234.
doi:10.1109/70.88043

Li, S., Chen, S., and Liu, B. (2013a). Accelerating a recurrent neural network to
finite-time convergence for solving time-varying Sylvester equation by using
a sign-bi-power activation function. Neural Process. Lett. 37, 189–205. doi:10.
1007/s11063-012-9241-1

Li, S., Cui, H., Li, Y., Liu, B., and Lou, Y. (2013b). Decentralized control of col-
laborative redundant manipulators with partial command coverage via locally
connected recurrent neural networks. Neural Comput. Appl. 23, 1051–1060.
doi:10.1007/s00521-012-1030-2

Li, S., Li, Y., and Wang, Z. (2013c). A class of finite-time dual neural networks for
solving quadratic programming problems and its k-winners-take-all application.
Neural Netw. 39, 27–39. doi:10.1016/j.neunet.2012.12.009

Li, S., Chen, S., Liu, B., Li, Y., and Liang, Y. (2012). Decentralized kinematic control
of a class of collaborative redundantmanipulators via recurrent neural networks.
Neurocomputing 91, 1–10. doi:10.1016/j.neucom.2012.05.014

Li, S., He, J., Li, Y., and Rafique,M. U. (2017). Distributed recurrent neural networks
for cooperative control of manipulators: a game-theoretic perspective. IEEE
Trans. Neural Netw. Learn. Syst. 28, 415–426. doi:10.1109/TNNLS.2016.2516565

Li, S., Kong, R., and Guo, Y. (2014). Cooperative distributed source seeking by
multiple robots: algorithms and experiments. IEEE/ASME Trans. Mechatron. 19,
1810–1820. doi:10.1109/TMECH.2013.2295036

Li, S., and Li, Y. (2014). Nonlinearly activated neural network for solving time-
varying complex Sylvester equation. IEEE Trans. on Cybern. 44, 1397–1407.
doi:10.1109/TCYB.2013.2285166

Xiao, L. (2015). A finite-time convergent neural dynamics for online solution of
time-varying linear complex matrix equation. Neurocomputing 167, 254–259.
doi:10.1016/j.neucom.2015.04.070

Xiao, L. (2016a). A nonlinearly-activated neurodynamic model and its finite-
time solution to equality-constrained quadratic optimizationwith nonstationary
coefficients. Appl. Soft Comput. 40, 252–259. doi:10.1016/j.asoc.2015.11.023

Xiao, L. (2016b). A nonlinearly activated neural dynamics and its finite-time
solution to time-varying nonlinear equation. Neurocomputing 173, 1983–1988.
doi:10.1016/j.neucom.2015.08.031

Xiao, L. (2016c). A new design formula exploited for accelerating Zhang neural
network and its application to time-varying matrix inversion. Theor. Comput.
Sci. 647, 50–58. doi:10.1016/j.tcs.2016.07.024

Xiao, L., and Liao, B. (2016). A convergence-accelerated Zhang neural network and
its solution application to Lyapunov equation. Neurocomputing 193, 213–218.
doi:10.1016/j.neucom.2016.02.021

Xiao, L., and Lu, R. (2015). Finite-time solution to nonlinear equation using
recurrent neural dynamics with a specially-constructed activation function.
Neurocomputing 151, 246–251. doi:10.1016/j.neucom.2014.09.047

Xiao, L., and Zhang, Y. (2011). Zhang neural network versus gradient neural
network for solving time-varying linear inequalities. IEEE Trans. Neural Netw.
22, 1676–1684. doi:10.1109/TNN.2011.2163318

Xiao, L., and Zhang, Y. (2013). Acceleration-level repetitive motion planning and
its experimental verification on a six-link planar robot manipulator. IEEE Trans.
Control Syst. Technol. 21, 906–914. doi:10.1109/TCST.2012.2190142

Xiao, L., and Zhang, Y. (2014a). A new performance index for the repetitive motion
of mobile manipulators. IEEE Trans. Cybern. 44, 280–292. doi:10.1109/TCYB.
2013.2253461

Xiao, L., and Zhang, Y. (2014b). Solving time-varying inverse kinematics problem
of wheeled mobile manipulators using Zhang neural network with exponential
convergence. Nonlin. Dyn. 76, 1543–1559. doi:10.1007/s11071-013-1227-7

Xiao, L., and Zhang, Y. (2014c). From different Zhang functions to various ZNN
models accelerated to finite-time convergence for time-varying linear matrix
equation. Inform. Process. Lett. 39, 309–326. doi:10.1007/s11063-013-9306-9

Xiao, L., and Zhang, Y. (2016). Dynamic design, numerical solution and effective
verification of acceleration-level obstacle-avoidance scheme for robot manipu-
lators. Int. J. Syst. Sci. 47, 932–945. doi:10.1080/00207721.2014.909971

Yamada, T., Murata, S., Arie, H., andOgata, T. (2016). Dynamical integration of lan-
guage and behavior in a recurrent neural network for human-robot interaction.
Front. Neurorobot. 10:1–17. doi:10.3389/fnbot.2016.00005

Yi, C., Chen, Y., and Lu, Z. (2011). Improved gradient-based neural networks for
online solution of Lyapunovmatrix equation. Inform. Process. Lett. 111, 780–786.
doi:10.1016/j.ipl.2011.05.010

Zhang, Y., Chen, K., and Tan, H. (2009). Performance analysis of gradient neural
network exploited for online time-varyingmatrix inversion. IEEE Trans. Autom.
Contr. 54, 1940–1945. doi:10.1109/TAC.2009.2023779

Zhang, Y., Ge, S. S., and Lee, T. H. (2004). A unified quadratic-programming
based dynamical system approach to joint torque optimization of physically
constrained redundant manipulators. IEEE Trans. Syst. Man. Cybern. B 34,
2126–2132. doi:10.1109/TSMCB.2004.830347

Zhang, Y., and Li, S. (2017). Predictive suboptimal consensus of multiagent systems
with nonlinear dynamics. IEEE Trans. Syst. Man. Cybern. Syst. doi:10.1109/
TSMC.2017.2668440

Zhang, Y., Wang, Y., Guo, D., Yu, X., and Xiao, L. (2013). Simultaneous repetitive
motion planning of two redundant robot arms for acceleration-level cooperative
manipulation. Physics Lett. A 377, 1979–1983. doi:10.1016/j.physleta.2013.06.
023

Zhang, Z., Li, Z., Zhang, Y., Luo, Y., and Li, Y. (2015). Neural-dynamic-
method based dual-arm CMG scheme with time-varying constraints applied
to humanoid robots. IEEE Trans. Neural Netw. Learn. Syst. 26, 3251–3262.
doi:10.1109/TNNLS.2015.2469147

Zhang, Z., and Zhang, Y. (2012). Acceleration-level cyclic-motion generation of
constrained redundant robots tracking different paths. IEEE Trans. Syst. Man.
Cybern. B Cybern. 42, 1257–1269. doi:10.1109/TSMCB.2012.2189003

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Xiao, Zhang, Liao, Zhang, Ding and Jin. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 477

https://doi.org/10.1109/TSMCC.2012.2183868
https://doi.org/10.1109/TSMCB.2009.2034073
https://doi.org/10.1109/TSMC.2016.2627579
https://doi.org/10.1109/TSMC.2017.2693400
https://doi.org/10.1109/TCYB.2014.2321390
https://doi.org/10.1109/TCYB.2014.2321390
https://doi.org/10.1109/TIE.2016.2590379
https://doi.org/10.1109/TNNLS.2015.2497715
https://doi.org/10.1109/TNNLS.2015.2497715
https://doi.org/10.1109/TAC.2016.2566880
https://doi.org/10.1109/TSMC.1995.7102305
https://doi.org/10.1109/70.88043
https://doi.org/10.1007/s11063-012-9241-1
https://doi.org/10.1007/s11063-012-9241-1
https://doi.org/10.1007/s00521-012-1030-2
https://doi.org/10.1016/j.neunet.2012.12.009
https://doi.org/10.1016/j.neucom.2012.05.014
https://doi.org/10.1109/TNNLS.2016.2516565
https://doi.org/10.1109/TMECH.2013.2295036
https://doi.org/10.1109/TCYB.2013.2285166
https://doi.org/10.1016/j.neucom.2015.04.070
https://doi.org/10.1016/j.asoc.2015.11.023
https://doi.org/10.1016/j.neucom.2015.08.031
https://doi.org/10.1016/j.tcs.2016.07.024
https://doi.org/10.1016/j.neucom.2016.02.021
https://doi.org/10.1016/j.neucom.2014.09.047
https://doi.org/10.1109/TNN.2011.2163318
https://doi.org/10.1109/TCST.2012.2190142
https://doi.org/10.1109/TCYB.2013.2253461
https://doi.org/10.1109/TCYB.2013.2253461
https://doi.org/10.1007/s11071-013-1227-7
https://doi.org/10.1007/s11063-013-9306-9
https://doi.org/10.1080/00207721.2014.909971
https://doi.org/10.3389/fnbot.2016.00005
https://doi.org/10.1016/j.ipl.2011.05.010
https://doi.org/10.1109/TAC.2009.2023779
https://doi.org/10.1109/TSMCB.2004.830347
https://doi.org/10.1109/TSMC.2017.2668440
https://doi.org/10.1109/TSMC.2017.2668440
https://doi.org/10.1016/j.physleta.2013.06.023
https://doi.org/10.1016/j.physleta.2013.06.023
https://doi.org/10.1109/TNNLS.2015.2469147
https://doi.org/10.1109/TSMCB.2012.2189003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	A Velocity-Level Bi-Criteria Optimization Scheme for Coordinated Path Tracking of Dual Robot Manipulators Using Recurrent Neural Network
	1. Introduction
	2. Preliminaries
	3. Scheme Formulation
	4. QP Reformulation and Unification
	5. Recurrent Neural Network Solver
	6. Simulative Verifications
	7. Conclusion
	Author Contributions
	Funding
	References


