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Process calculi may reveal the 
equivalence lying at the heart of 
RNA and proteins
Stefano Maestri & Emanuela Merelli

The successful use of process calculi to specify behavioural models allows us to compare RNA and 
protein folding processes from a new perspective. We model the folding processes as behaviours 
resulting from the interactions that nucleotides and amino acids (the elementary units that compose 
RNAs and proteins respectively) perform on their linear sequences. This approach is intended to provide 
new knowledge about the studied systems without strictly relying on empirical data. By applying 
Milner’s CCS process algebra to highlight the distinguishing features of the two folding processes, we 
discovered an abstraction level at which they show behavioural equivalences. We believe that this result 
could be interpreted as a clue in favour of the highly-debated RNA World theory, according to which, 
in the early stages of cell evolution, RNA molecules played most of the functional and structural roles 
carried out today by proteins.

RNAs (ribonucleic acids) and proteins are two classes of molecules that have drawn the interest of different sci-
entific disciplines due to the fundamental roles they play in many biological processes. The study of their folding 
processes represents an important issue to discover the qualitative information underlying the relation between 
their structures and functions.

They perform a similar pathway from their linear sequence to a three-dimensional conformation, which in 
turn allows them to carry out almost the same functions (i.e. catalytic and structural roles). Investigating the 
reasons of existence of such similar molecules leads to the formulation of the RNA World hypothesis: RNA might 
be a “fossil” of an RNA world, existed on Earth before modern cells appeared, in which RNA fulfilled the roles of 
both DNA and proteins. This theory is still highly debated1,2; indeed, beyond their similarities, proteins and RNAs 
show profound structural differences, which affect the way they perform their functions.

This article is intended to provide a formal description of the folding process of proteins compared to the one 
of RNAs; our purpose is to identify, by highlighting their key properties, clues of the validity of the RNA World 
hypothesis. We focus our study on the interactions carried out by the elementary units that compose RNAs and 
proteins (on their respective linear sequences), describing the whole folding process as the resulting behaviour 
of such interactions.

The definition of the models we propose in this paper is based on the idea that all the components involved in 
a system, and the communication media themselves, can be formally modelled as processes. This approach has 
been applied to study biological systems by modelling entire molecules3,4, and can be extended to analyse their 
substructures or even their elementary units, since it allows describing every kind of interaction they perform; it 
is also possible to identify similarities among different classes of molecules and in the functions they carry out.

The specification language that better suits our modelling of RNA and protein folding is the process algebra 
called CCS (Calculus of Communicating Systems), proposed by Milner in 19895; thanks to this language it has 
been possible to define the congruence of the folding processes in terms of behavioural equivalence and also to 
perform the model checking with the aid of automated tools.

Results
Before introducing our models of RNA and protein folding, we propose few fundamentals on process algebras 
necessary to understand our approach; more details about its application to reactive systems can be found in the 
book of Aceto et al.6 and in the following Section Methods.

Process algebras are prototype specification languages that consist of a collection of operations for building a 
new process description from existing ones. In this context, processes can be viewed as systems that exhibit a 
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behaviour and interact via synchronised communication. In Milner’s CCS process algebra, a process is thought as 
a black box with a name and a set of communication channels. An output or input action on the channel a is 
indicated using the labels a or a respectively.

In our models we use the following process constructors. Let P, Q be processes:

action prefixing: if a is an action, a.P is a process that begins by performing the action a and behaves like P 
thereafter;

choice operator: P + Q is a process that may behave like P or Q;
parallel composition: P|Q describes a system in which P and Q run in parallel, proceeding independently or 

communicating via complementary channels;
restriction: if L is a set of channel names, then P\L is a process in which the scope of the channel names in L is 

restricted to P; this means that those channel names can only be used for communication within P.

The whole folding process has been modelled as the result of sub-processes that proceed along a path made by 
discrete states; this aspect has been highlighted by describing all the modelled processes via Labelled Transition 
Systems (LTSs)7; they consist of a set of processes, a set of actions and a transition relation → such that, if a pro-
cess P can perform an action a and become a process P′, we write ′⟶P P

a 6.
We want to point out that some aspects contributing to the folding process that can be considered relevant 

from a biological point of view, like the role of helping molecules (e.g. the modulation performed by Mg2+ on the 
RNA folding or the action of molecular chaperones in protein folding8,9), have not been taken into account in our 
model. This choice has been driven by the idea of describing the folding process as a behaviour strictly resulting 
from the peculiar properties of the interactions carried out by nucleotides and amino acids (in their respective 
linear sequences) and of the informational content brought along by each of them.

If on the one hand such approach led us to define an abstraction of the actual folding mechanisms, on the 
other it allowed us to formally prove the existence of distinguishing features of these processes that might be the 
basis of the very existence of both RNAs and proteins in cells. We wanted to prove that the inner potentiality of 
each elementary unit to interact with the others (in the same sequence) is the main property that determines the 
different complexity eventually reachable by the two classes of molecules.

To demonstrate such statement, we started by defining the models of the two folding processes as a sequence 
of folding steps, each contributing with a new weak interaction between two units of the linear sequence of the 
molecule. In order for a folding step to take place, the weak interaction must cause a reduction in the free energy 
of the system.

Because the folding process relies mainly in the formation of weak, noncovalent interactions in both RNAs 
and proteins, the stabilising function performed by covalent bonds (like the disulphide bridges between Cys res-
idues) can be considered negligible for the purpose of our modelisation.

Even if the weak interactions taken into account are the same for RNAs and proteins, the rules that allow two 
nucleotides to interact are different from the rules that determine the interplay of two amino acids; we modelled 
such rules starting from the biochemical properties of the weak interactions. Hence, we needed to define two 
different models, one for each class of molecules.

The differences highlighted affect the whole folding process and led our models to show different traces, which 
means different sequences of transitions in their respective LTSs.

However, the expressiveness of the modelling approach based on process algebras allowed us to identify an 
abstraction level in which these two processes show a congruence relation called strong bisimilarity. This means 
that they afford the same traces and that all the states they reach in such traces are equivalent6.

At this specific level of abstraction, the two folding processes lead to the formation of structures with the same 
complexity and hence capable to express the same functions.

If the same abstraction level might represent the actual folding process of RNAs and proteins, there would 
be no reasons for the existence of both these two classes of molecules in cell, showing the same behaviour. 
Conversely, according to the RNA World hypothesis, the fact that such similar molecules can still be found in 
nature, allows us to hypothesise that, in the early stages of cell evolution, RNA might be the only type of molecule 
that performed structural and catalytic activities; as the complexity of cells increased, also emerged the necessity 
of molecules able to carry out more complex tasks. Towards the RNA World hypothesis, these molecules (pro-
teins) might be evolved on the same property that was characterising RNAs of being a linear sequence of elemen-
tary units able to fold up to a three-dimensional structure, driven by the free energy reduction. As we show with 
our models, the cells cope with this necessity by the formation of molecules whose elementary units (the amino 
acids) are able to perform more complex interactions than nucleotides. Our results concern the RNA World 
hypothesis due to the interpretation of the behavioral equivalence of RNA and protein folding under specific 
restrictions (as in Theorem 1).

In the models of the folding process that we have defined, the weak interactions are classified in three main 
categories:

•	 hydrogen bonds;
•	 electrostatic interactions (ionic and van der Waals);
•	 hydrophobic interactions.

The hydrogen bond can be defined as an electrostatic interaction, but, due to its distinctive properties and the 
fundamental role it carries out in the folding process, it has been represented separately. Moreover, the model of 
each weak interaction has to be contextualised in the folding step it belongs to.
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Folding step.  A folding step represents an iteration that allows the non-deterministic choice between one of 
the possible sub-processes describing the behaviour of the weak-interactions.

A Folding Step process ( s) ensures that each sub-process complies with the specific restrictions on its input 
(according to the descriptions given below in this document) and that the interaction has a negative free-energy 
change, ΔG, which measures the amount of disorder created in a system when an interaction takes place. It can 
assume the value negative (ndg), positive (pdg) or zero (zdg). An interaction is energetically favorable if it cre-
ates disorder by decreasing the free energy of the system, namely if it has a negative ΔG; this condition is essential 
for an interaction to be carried out.

In order to meet the last requirement, both the RNA Folding Step ( rna
s ) and Protein Folding Step ( p

s ) pro-
cesses are placed in parallel composition with the process ∆G s, which represents the ΔG variation during 
folding. In this way the whole folding processes, rna  and p respectively, can be defined as following:

∆

∆

= |

= |

G

G

( )\{ , , };

( )\{ , , };
rna

def
rna
s
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def

p
s
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where

   pdg ndg zdg∆ ∆ ∆ ∆= . + . + . .G G G Gdef
s s s s

Both rna
s  and  p

s  are structured in sub-processes that can be clustered in three main groups (see Fig. 1):

group 1 determines the type of the elementary units involved in the ongoing folding step, the interaction that 
is going to establish between them and if its ΔG is negative;

group 2 describes the formation of one or more hydrogen bonds between two units (unpaired or already 
paired);

group 3 models the behaviour of ionic, van der Waals and hydrophobic interactions.

In this first phase of our modelisation, which aims to remain as faithful as possible to the biological folding 
process, the group 2 of sub-processes carries out the important task of limiting the maximum number of elemen-
tary units that can be linked by hydrogen bonds as well as the number of hydrogen bonds that can be generated 
between two units.

The hydrogen bond formation (in both Watson-Crick and Wobble base pair) has been modelled generalising 
this process as an interaction between a purine (adenine or guanine - labelled dr, since they are double-ring 
bases) and a pyrimidine (uracil and cytosine - single-ring bases and hence labelled sr) or between a two paired 
bases and a third base (also in this case, a generic purine or pyrimidine). The base pairing is symmetric, thus: 
srdr = drsr.

Regarding the number of hydrogen bonds allowed in a base pair, in our models they must be at least two and at 
most three; the number of hydrogen bonds that link an unpaired base to a group of two already paired bases must 
be from one to three. It has been decided to limit the minimum number of hydrogen bonds in a base pair (to the 
number of two) because base pairs with a single hydrogen bond can be classified as a variant of the primary types 
and because the whole number of hydrogen bonds found in a base triplet is at least three10.

In contrast with the base pairing of nucleotides, only a single hydrogen bond is allowed between two amino 
acids; however, there is no limitation in the length of a sequence of amino acids linked to one another via hydro-
gen bonds.

A complete description of the conventions adopted and the choices made to derive the two models from the 
biological folding processes can be found in the Supplementary Information, whose Section 1 explains the sym-
bols used in the models and their transliteration while Section 2 the models construction).

Bisimilarity equivalence.  The verification that two processes of the proposed models are bisimilar (i.e. if 
they show the same behaviour) is based on bisimulation games, namely game characterizations of the bisimilarity. 
Informally, we can define a bisimulation game as a sequence of rounds in which the LTSs of two processes are 
compared. The game explores the LTSs by pairs of states (called configurations).

Starting from an initial configuration, two players, an attacker and a defender, try to perform in turn a transi-
tion basing on one of the two LTSs; the game is begun by the attacker, who decides which transition of the initial 
configuration to perform (and hence which of the two LTSs to explore). The choice made in each turn determines 
the configuration explored in the next one by the other player. A finite play of the game is lost by the player 
who cannot make a move from the current configuration. If the play is infinite (as in the case in which a cycle is 
detected) the game is considered won by the defender (because the attacker is unable to distinguish the behaviour 
of the two processes).

Two states are strongly bisimilar if and only if the defender has a universal winning strategy (i.e., he can always 
win the game, regardless of how the attacker selects his moves) in the strong bisimulation game that starts from 
the configuration made by such states.

If we try to prove the behavioural equivalence of the  rna
s  and  p

s  processes we can observe, from the LTSs in 
Fig. 2, that the bisimulation game ends after only one move, independently of the choice made by the attacker, 
with the defeat of the defender.

As an example, if the attacker chooses the transition ⟶RNAFS NI2
ub

 on the RNAFS LTS, the defender has no 
available transition on the PFS LTS to respond.
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This first verification proves that a model strictly faithful to the biological folding leads us to define processes 
whose behaviours are not equivalent.

We might therefore wonder if there is an abstraction level at which the two folding processes would show a 
behavioural equivalence. As it will be proved in this article, this level of abstraction can actually be defined. Its 
construction, however, requires a generalisation of the weak-interaction processes and the imposition of some 
limitations to the expressiveness of the protein folding process.

Higher abstraction level model.  The first of the two aforementioned modifications can be achieved by:

•	 redefining nucleotides and the amino acids as general elementary units, which can be paired or unpaired;
•	 abstracting from the specificity of each pairing process by no longer taking into account the number of hydro-

gen bonds formed between two (or three) paired units;
•	 generalising the hydrophobic interactions to their key feature of burying the hydrophobic molecules while 

exposing the hydrophilic ones (no longer considering the stacking process typical of the hydrophobic inter-
actions of nucleotides).

Figure 1.  In this figure a comparative representation of the two folding step models (RNA on the left side and 
protein on the right) is proposed. Each model can be ideally divided into three groups of sub-processes; they 
have the function of determining the type of interacting elementary units and the interaction that is going to 
bind them (group 1), modelling the formation of hydrogen bonds (group 2) and of ionic and van der Waals 
interactions (group 3). For detailed information on the construction of the models and on the meaning of the 
symbols used, see Section 1 and 2 of the Supplementary Information.
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These adjustments to the model do not affect the main property of each weak interaction, therefore the model 
is still faithful to the biological process. However, they are not sufficient to obtain a behavioural equivalence 
between the folding processes of RNAs and proteins.

What we still need to do is limiting the folding capability of the proteins by reducing the number of amino 
acids that can interact through hydrogen bonds to the number of three (the maximum number of nucleotides 
that can pair in RNAs).

Let  →P P:  be the function that maps each folding process to its respective abstraction level, as above 
defined. The application of  to the models described in the previous section results in a new representation of 
the folding processes of RNAs and proteins, indicated by the symbols rna and p  respectively (see Section 2 of the 
Supplementary Information for a complete description).

The definition of these new models can be considered an important result since it is possible to prove that, at 
this level of abstraction, the RNA folding process and the protein folding process show the same behaviour.

Theorem 1. If F H F= ( )rna rna  and = ( )p pF H F  then rna  and p are strongly bisimilar ( ∼rna p).

Proof. The proof is provided via a bisimulation game (see Table 1). A winning strategy of the defender starts from 
the pair of states ( ,rna

s
p
s ) of the relative LTSs, transliterated (RNAFS, PFS) as in Fig. 3.

As proved by Milner5, given two processes P and Q, such that P ~ Q, the following two rules are true:

| ∼ |P R Q R and | ∼ |R P R Q, for each process R
∼P L Q L\ \ , for each set of labels L,

The rna and p  folding processes, likewise rna and p, are defined as

F F �

F F �
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= |Δ
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( ) {ndg, pdg, zdg};
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Figure 2.  Labelled Transition Systems of (a) the rna
s  process, transliterated RNAFS, and of (b) the p

s  process, 
transliterated PFS, generated with the CAAL web-based tool (Concurrency Workbench, Alborg Edition). The 
symbols are described in Section 1 of the Supplementary Information.
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where

Δ = . Δ + . Δ + . Δ .G G G Gpdg ndg zdgdef
s s s s   

Then they are also strongly bisimilar.
In this way we have formally demonstrated the existence of an abstraction level at which the folding processes 

of RNAs and proteins show the same behaviour and hence can generate three-dimensional structures of the same 
complexity.

Such proof can also be obtained with the aid of an automated tool; in Fig. 4 we show the results of the bisimu-
lation game performed with CAAL on the processes rna  and p , transliterated RNAFOLDING and PFOLDING 
respectively.

Round Current configuration Attacker Defender

Round 1 (RNAFS, PFS) ⟶RNAFS NI2
uu

⟶PFS AAI2
uu

Round 2 (NI2, AAI2) ⟶NI2 BPDG
uu

⟶AAI2 AAPDG
uu

Round 3 (BPDG, AAPDG) ⟶BPDG BP
ndg

⟶AAPDG AAP
ndg

Round 4 (BP, AAP) ⟶BP SRDR
hb

⟶AAP CN
hb

Round 5 (SRDR, CN) ⟶SRDR RNAFS
pu

⟶CN PFS
uu

Round 6 (RNAFS, PFS) A cycle has been detected Defender wins

Table 1.  Winning strategy of the defender in the strong bisimulation game that compares the pair of processes 
( ,rna

s
p
s ), transliterated (RNAFS, PFS). The results of this play proves that RNAFS ~ PFS, i.e. that the two 

processes are strongly bisimilar.

Figure 3.  Labelled Transition Systems of (a) the redefined rna
s  process, transliterated RNAFS, and of (b) the 

redefined p
s  process, transliterated PFS, generated with the CAAL web-based tool (Concurrency Workbench, 

Alborg Edition). The symbols are described in Section 1 of the Supplementary Information.
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Discussion
Starting from the models of RNA and protein folding, we have demonstrated how it is possible to formally define 
an abstraction level at which such processes show a behavioural equivalence. Its existence allows us to hypothesise 
some of the reasons that led the evolution of life to the formation of the proteins and to take them on, in biological 
processes, along with RNAs.

We have formally proved how it is possible to reach the behavioural equivalence between the RNA folding and 
the protein folding by reducing the complexity of the structures expressible, hence the functions they can per-
form, in the latter process. This demonstration can be interpreted as a clue that, at a point in the early evolution 
of life on Earth, proteins emerged to answer the necessity of molecules that could carry out more effectively the 
functions performed by RNA molecules and could also deal with more complex tasks. We are well aware that this 
demonstration leaves numerous questions open regarding the RNA World theory, such as the function that RNA 
would play in storing genetic information; it is not in any case the objective of our work to provide a definitive 
proof of the aforementioned theory. However, we are equally convinced that our work sets a solid foundation for 
further developments in this direction.

Indeed, thanks to these results, we can observe how it is possible to infer the complexity of a biological struc-
ture, and therefore of its function, starting from the properties of its elementary components. In the case of RNAs 
and proteins, the distinguishing features of their respective folding processes have been identified and modelled 
only on the basis of the known properties of the interactions that bind nucleotides (in RNAs) and amino acids 
(in proteins).

CCS, due to its expressiveness, turned out to be perfectly suitable to define models based on the application 
of the aforementioned approach. The use of process algebras to describe molecular interactions can highlight the 
relation between the complexity of the functions carried out by a biological entity and the type of interactions 
tying the elementary units that compose its structure.

This idea could be extended to the definition of predictive models of many other classes of biological mole-
cules and processes, by taking into account all the fundamental dynamics characterising a biological system. We 
are currently involved in defining formal models of the whole gene expression process in order to study the gene 
mutations which cause protein misfolding11,12 and the gene assembly process13.

Our approach should not be intended as a simulation-based tool, but a theoretical way to acquire new knowl-
edge about the studied systems. However, we have not aimed to define a new theory, but a new methodology to 
understand biological behaviours by analysing the complexity of the interactions characterising living systems. 
Moreover, our work can be placed in the context of the topological analysis of the folding process14–16.

Although the results proposed in the present article are based on the construction of algebraic models through 
process calculi, they actually provide us with factual knowledge. We believe that mathematics is not about human 
activity or phenomena, it is about the extraction and formalization of ideas and their manifold consequences17.

Methods
This section presents an essential description of the concepts at the basis of the models proposed in this article. 
The description is mainly based on the book of Aceto et al.6.

Labelled Transition Systems.  A labelled transition system (LTS) is a triple | ∈⟶ aProc Act Act( , , { })
a

, 
where:

•	 Proc is a set of states (or processes);
•	 Act is a set of actions (or labels);
•	 ⊆ ×⟶ Proc Proc

a
 is a transition relation, for every a ∈ Act.

CCS syntax
     A Set of channel names
  = | ∈A a a A{ } Set of complementary names
   ∪=   A A Set of labels
  Act { } Set of actions, where is an unobservable action∪ τ τ=       
       Set of process names (constants)

The set   of the CCS expression, is given by the following grammar:

∑α= | . | | | | |
∈

P Q K P P P Q P f P L, :: [ ] \
i I

i

Figure 4.  Bisimulation game performed with the CAAL web-based tool shows that, as the checkmark on the 
“Status” column indicates, the RNAFOLDING and the PFOLDING processes are strongly bisimilar (relation 
represented by the symbol ~).
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Where:

•	 K is a process name in ;
•	 α is an action in Act;
•	 I is a possibly infinite index set;
•	 →f Act Act:  is a relabelling function satisfying the following constraints:

•	 τ = τf ( )
•	 =f a f a( ) ( ) for each label a;

•	 L is a set of labels from .

The behaviour of each process constant K ∈ is given by a defining equation =K Pdef , where ∈P .

CCS Structural Operational Semantics
α ∈ Act and ∈a ,

 

α

α

.  

∑
∈

| |
   

| |
   

| |
   

∉

=  
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α

α

α

α

α

α

τ

α

α

α

α

α

α

′

∈
′

′

′

′

′

′ ′
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′

′

′

′

′

′
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⟶

⟶
⟶

⟶
⟶

⟶ ⟶
⟶

⟶
⟶

⟶

⟶

⟶
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P P

P P

P P
j I

P P
P Q P Q

Q Q
P Q P Q

P P Q Q
P Q P Q

P P
P L P L

L

P P

P f P f

P P
K P

K P

Action prefixing

where Summation

Parallel composition (rule 1)

Parallel composition (rule 2)

Parallel composition (rule 3)

where Restriction

[ ] [ ]
Relabelling

where Constant definition

j j

i I i j

a a

f ( )

def

Strong bisimulation.  A binary relation  over the set of states of an LTS is a bisimulation iff whenever 
s s1 2  and α is an action:

•	 if ′
α

⟶s s1 1 , then there is a transition ′
α

⟶s s2 2  such that ′ ′s s1 2 ;
•	 if 

α ′⟶s s2 2, then there is a transition ′
α

⟶s s1 1  such that ′ ′s s1 2 .

Two states s and s′ are bisimilar, written s ~ s′, iff there is a bisimulation that relates them. The relation ~ will be 
referred to as strong bisimulation equivalence or strong bisimilarity.

Data Availability
No datasets were generated or analysed during the current study.
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