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Abstract

Perhaps the most well-recognized stereogenic elements within chiral molecules are sp3-hybridized 

carbon atoms possessing four different substituents. However, axes of chirality may also exist 

about bonds with hindered barriers of rotation, leading to stereoisomers known as atropisomers.1 

Understanding the dynamics of these systems can be useful, for example, in the design of single-

atropisomer drugs2 or molecular switches and motors.3 For molecules that exhibit a single axis of 

chirality, rotation about that axis leads to racemization as the system reaches equilibrium. We 

report here a two-axis system in which an enantioselective reaction that produces four 

stereoisomers (two enantiomeric pairs) displays a more complex scenario. Following a catalytic 

asymmetric transformation, we observe a kinetically controlled product distribution that is 

substantially perturbed from the system’s equilibrium position. Notably, as the system undergoes 

isomerization, one of the diastereomeric pairs is observed to drift spontaneously to a higher 

enantiomeric ratio. In a compensatory manner, the other diastereomeric pair also converts to an 

altered enantiomeric ratio, reduced in magnitude from the initial ratio. These observations occur 

within a class of unsymmetrical amides that exhibits two asymmetric axes – one defined through a 

benzamide substructure, and the other implicit with differentially N,N-disubstituted amides. The 

stereodynamics of these substrates provide an opportunity to observe a curious interplay of 

kinetics and thermodynamics intrinsic to a system of stereoisomers that is constrained to a 

situation of partial equilibration.

The generation of enantiopure, chiral molecules remains an activity relevant to many 

scientific fields, from the study of biological systems to materials science. One critical 

challenge is that enantioenriched compounds are not fully equilibrated ensembles. 

Enantiopure compounds represent an ensemble of higher free energy due to the entropic 
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penalty associated with a one-state, homochiral composition relative to the corresponding 

two-state racemate.4 The thermodynamic benefit of a two-state system can counteract 

asymmetric synthetic efforts, which are commonly performed under kinetic control, in 

pursuit of single-enantiomer compounds. Examples of racemization familiar to students of 

chemistry include the isomerization of an enantioenriched α-chiral aldehyde (Figure 1a) and 

thermal equilibration of an axially chiral biaryl compound (Figure 1b).5

Atropisomerization, the phenomenon of equilibration of stereoisomers about a rotational 

axis, is an issue of contemporary interest in organic,6 materials,7,8 and medicinal chemistry.9 

As part of a program targeted at developing catalysts that produce unique atropisomers 

selectively, we recently discovered that catalyst 1 is effective for the selective synthesis of 

enantiomerically enriched benzamides, converting racemic compounds like 2 into the 

corresponding tribromides (3), with enantiomer ratios of up to 94:6 (yields up to 89%; 

Figure 2).10 By virtue of a low barrier to racemization of the substrate (2), a peptide-

catalyzed dynamic kinetic resolution11 allows for the preferential bromination of one 

enantiomer, leading to restricted bond rotation and stable atropisomers (3) at room 

temperature for extended periods.

A situation of greater stereochemical intrigue is established when one considers a compound 

such as 4. Benzamide 4 (Figure 3), with two different substituents on the amide N-atom, 

may exist as four different stereoisomers (enantiomeric pairs of both cis-4 and trans-4). 

Thus, we wondered if it might be possible to identify catalysts that select not only for 

individual enantiomers, but also for individual diastereomers – each of the four possible 

stereoisomers (5). While peptides such as 1 were envisioned to provide stereochemical 

control over the atropisomeric axis of 4, it was unclear at the onset of this study if control of 

the amide axis disposition (cis amide versus trans amide) could be accomplished with the 

same catalyst. If interconversion among all possible diastereomers of the two-axis starting 

material 4 were possible (with low barriers to isomerization within the starting materials),12 

one could envision four unique catalysts that might accomplish the task. Of course, a critical 

issue is the overall stability of the individual stereoisomeric products (variants of 5). Low 

barriers to rotation about either the benzamide axis (Ar-CO, red bond), the amide bond axis 

(C-N, blue bond),13 or both in a concerted manner,14,15 could conspire to erode kinetic 

selectivity.

Our studies provided an opportunity to observe a curious result. When rac-4 is exposed to 

dibromodimethylhydantoin (DBDMH) in the absence of a chiral catalyst, under conditions 

otherwise analogous to those of Scheme 1 (−40 °C), the expected racemic products are 

formed over the course of ~50 h (70% yield), as a mixture of four stereoisomers (5). After 

the reaction is quenched, the phenol is converted to the methyl ether for analytical purposes 

to generate 5-(Me). When the isomeric mixture is purified and analyzed by chiral HPLC (~ 

1 h after quench, at 25 °C), the first measurement reveals a ratio of 40:60 ratio trans-5-
(Me):cis-5-(Me) isomers, each in racemic form (Figure 4a). If the sample is allowed to stand 

at room temperature (dissolved in 10% iPrOH/hexanes) and is re-analyzed at a much later 

time point (50 h), the trans:cis ratio is observed to increase to 76:24 (Figure 4b). Notably, 

while the cis-amide of 4 is the minor component of the starting material over a wide 

temperature range, including at the reaction temperature of −40 °C, the cis-amide of 5 
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(assayed as 5-(Me)) appears to be generated in slight excess. Thus, it is apparent that there is 

some modest kinetic selectivity for the cis-isomer, which equilibrates at room temperature to 

the thermodynamically more stable trans-amide over time. It is notable that the amide of 5-
(Me) exhibits a barrier to C-N bond isomerization that is high relative to typical amides, but 

still too low to be effectively arrested at room temperature. The experimental and calculated 

barriers to C-N bond rotation are determined and discussed below.

When the reaction is performed in the same manner with chiral catalyst 1 (94% yield, within 

24 h), a more elaborate scenario is observed. When the product mixture is analyzed by chiral 

HPLC at the first time point (~ 2 h after quench, at 25 °C), a trans:cis ratio of 43:57 is 

observed (Figure 4c). In this measurement, the trans-amide enantiomer ratio (er) is 66:34, 

while the cis-amide er is recorded as 88:12. As the sample is allowed to stand in solution 

(10% iPrOH/hexanes) – long after the chiral catalyst has been removed from the system – 

the following changes occur spontaneously in the product distribution: At 10 h after quench 

(Figure 4d), the trans:cis ratio moves to 54:46, enhancing the population of the trans-isomer 

as expected. In parallel, the ers of both amide isomers change as the system moves toward 

the trans:cis amide equilibrium position, with the cis-amide enantiomer ratio decreasing to 

86:14, while the trans-amide er spontaneously increases to 72:28. These changes continue as 

the system continues to equilibrate. At 24 h (Figure 4e), the trans:cis ratio is 68:32; the cis-

amide er erodes to 84:16, while the trans-amide er increases to 77:23. At the 72 h mark, the 

product ratios have stabilized (Figure 4f), and the apparent equilibrium position of the amide 

diastereomers has been reached, with a trans:cis ratio of 76:24. At this stage, the cis-amide 

er is 79:21, equivalent to the trans-amide er, also 79:21. These observations are depicted 

graphically in Figure 4g. While data are shown in Figure 4 for reactions conducted at −40 

°C, the observations are qualitatively reproduced when the experiments are repeated at 

several different temperatures (see Supplementary Information, Section VIIa).

Our observations reflect a situation of spontaneous enantioenrichment for one of the product 

diastereomers (trans), with a compensatory decrease in er for the other diastereomer (cis). 

Interestingly, a 50:50 racemic mixture is not observed, with the system retaining 

enantioenrichment even after prolonged periods of time at room temperature, a consequence 

of the two-axis system failing to reach complete equilibrium within the time frame analyzed 

(vide infra).

Both the trans and the cis isomers of the products could be separated by silica gel 

chromatography – a rather unusual circumstance – and each produced the expected 

diastereomeric trans:cis ratio (76:24) upon standing in solution (10% iPrOH/hexanes). In 

these cases, the er of the samples remains virtually constant (cis, 87:13; trans, 74:26; See 

Sections VIc and VId and Figure S7 in the Supplementary Information for details).

Through separation of the enantioenriched cis- and trans-amide isomers, enantioenriched 

trans-material was obtained and provided crystallographic quality material to assign (S, 

trans)-5 as the major isomeric component after amide equilibration (Figure 4h; see also, 

Supplementary Information, Section IV). It is interesting to note that the stereoisomer 

obtained for assignment of the S-trans configuration was derived from isolation of the cis 

product, reflecting the crystallization of the major trans diastereomer, as cis-to-trans 
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equilibration occurs over the course of the crystallization experiment. Parenthetically, the 

absolute configuration of this S-trans sample, derived from the isolation of enriched cis 

sample, is the same absolute configuration observed when catalyst 1 operates on substrate 2, 

to deliver enantioenriched (S-3) with a 94:6 er (Figure 2).10 Accordingly, these data provide 

circumstantial support for the equilibration of the S-cis isomer to the S-trans isomer (and of 

R-cis to R-trans also) without interconversion of the axis of chirality. Further details of this 

scenario are now considered below.

As cis-to-trans amide isomerization occurs and the diastereomeric ratio reaches its 

equilibrium position, the final ers for both the trans-amide isomers and the cis-amide 

isomers emerge as equivalent. As is implicit in Figure 4g, the sum of the major enantiomer 

of each amide diastereomer (S-cis-5-Me + S-trans-5-Me), divided by the sum of the minor 

enantiomer for each diastereomeric amide (R-cis-5-Me + R-trans-5-Me) is near 79:21 (3.76 

± 0.41) at each time point in Figure 4 (Table S6 and Figure S5 of the Supplementary 

Information contain expanded data sets detailing this point). The convergence of the er for 

both the trans- and cis-amide diastereomers is consistent with a mechanistic model wherein 

amide isomerization occurs through independent C-N bond rotation at ambient temperature 

(Figure 3), while the enantiomer-defining axis of chirality (Ar-CO) is essentially fixed. The 

equilibration of the amide isomers, without interconversion of the Ar-CO bond axis, leads to 

fluctuation of the starting cis-amide er downward, and the trans-amide er upward, until 

amide isomerization achieves the equilibrium ratio, and the ers of the diastereomers are 

equivalent.

However, when the cis- or trans-amide diastereomers are separated by chromatography, and 

the isolated amide diastereomers are allowed to re-equilibrate, the er remains constant in 

each series. This situation is once again a manifestation of the Σ(S-cis + S-trans)/ Σ(R-cis + 

R-trans) remaining constant. In this case, there is no reservoir of the other amide 

diastereomer, of a different er, to distribute its population of either S- or R-configuration 

differentially to the two amide diastereomers at the C-N bond equilibrium position.

To explore the plausibility of these assertions, we complemented our experiments with a 

series of DFT calculations to ascertain the barriers associated with the critical modes of 

isomerization. The dynamics described above for amide isomerization correspond to 

experimentally derived free energies barriers17,18 of 24.8 kcal/mol (trans-to-cis) and 24.1 

kcal/mol (cis-to-trans) (Figure 5; see Supplementary Information, Section VIII). 

Computations19,20 provided free energy barriers of 24.4 kcal/mol (trans-to-cis) and 24.0 

kcal/mol (cis-to-trans) respectively (Supplementary Information, Section XIII), on par with 

both the experimentally determined values and literature values for somewhat related 

compounds.13 Additionally, during the entire computed C-N rotation process, the Ar-CO 

dihedral angle remains close to its value in the ground state, even as the amide axis rotates 

out of conjugation with the carbonyl and pyramidalizes (TS-5a, Figure 5b). Thus, 

independent C-N bond rotation appears to have a much lower barrier than any putative 

process involving a coupled rotation of the Ar-CO axis. This is consistent with the 

observation that erosion of the overall enantioenrichment of the system does not occur at 

room temperature.21,22
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Of interest to the present system are previous reports by Clayden, which showed that 

rotations about the Ar-CO bond axis of sterically hindered tertiary amides follow a 

mechanistic course involving concerted rotations of the Ar-CO axis and the amide C-N bond 

axis, in a gearing fashion, when sufficient energy is available to the system.21,23 Our 

calculations for the present system reassert these conclusions. However, the system we 

present here is distinct in that (a) the action of a chiral catalyst delivers diastereomeric 

amides of different er that allows for the observation of fluctuating enantiomeric ratios, and 

(b) distinct steric demands of the substrate that separate the energetic barriers of geared Ar-

CO/C-N isomerization from independent C-N bond rotation substantially. Computations 

employing a relaxed potential energy scan of the Ar-CO dihedral angle led to a simultaneous 

rotation about the amide C-N bond. The optimized transition states along this torsional 

energy profile were marked by non-coplanar N- and aryl-substituents and imaginary 

frequencies that showed coupled rotation about both axes. Compared to independent Ar-CO 

rotation, which suffers from an implausibly high computed barrier, this concerted Ar-CO/C-

N rotation represents the lowest energy pathway to inversion of the atropisomeric axis 

(TS-5b, Figure 6a). However, below these energetic thresholds, our results with compound 

5 are consistent with independent C-N rotation, as noted above.

While amide isomerization occurred at ambient temperatures, we could induce racemization 

only through heating the atropisomeric benzamides at elevated temperatures (toluene, > 60 

°C). We determined the free energy barrier to racemization experimentally,24 and found a 

value of 27.8 kcal/mol (at 70 °C) for the cis-5-(Me) isomer, and a value of 28.6 kcal/mol for 

the lower energy trans-5-(Me) isomer (Figure 6b; see Supplementary Information, Section 

IX). When the barriers were computed, values of 28.2 kcal/mol and 28.5 kcal/mol for cis-5-
(Me) and trans-5-(Me) were found respectively, in good accord with the experimentally 

determined values and literature precedent (see Supplementary Information, Section XIV).25 

Taken together, our results imply that the racemization pathway involves, for a given amide 

diastereomer (e.g., (S, trans)-5-(Me) to (R, trans)-5-(Me)): (a) a concerted motion of the 

Ar-CO/C-N axes to convert (S, trans)-5-(Me) to (R, cis)-5-(Me); (b) an independent motion 

of the C-N axis converting (R, cis)-5-(Me) to (R, trans)-5-(Me), as the original amide 

diastereomer is restored (Figure 6a). Based on the experiments and calculations above, it 

appears that the concerted two-axis rotation is operative at elevated temperature, and 

exhibits a high enough barrier such that it is prohibitively slow at room temperature.

In summary, we have observed a stereoisomeric system in which spontaneous enantiomeric 

enrichment occurs in homogeneous solution, with a compensatory erosion of er in a coupled 

diastereomer. The observation is made possible by the formation of a nonequilibrium 

mixture of amide diastereomers, wherein each enantiomeric pair is produced under the 

kinetic influence of a chiral catalyst. Amide isomerization occurs with fluctuation of each 

diastereomer’s er as cis/trans amide equilibration occurs; yet, the chirality-defining element 

does not enantiomerize. Instead, the overall enantioenrichment of the system is retained as 

the populations of each isomer interconvert. Our understanding of the dynamic processes 

includes an assessment of the intrinsic barriers for the isomerizations, as a function of 

individual bond rotations, or those that may occur in a concerted manner. The 

interconversion of stereoisomers in the presence of a fixed element of chirality has been 
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exploited to great advantage in the development of asymmetric reactions.26,27 Yet, the 

present case of fluctuating enantiomeric ratios, without epimerization of a chiral element 

within reaction products that have been isolated away from their equilibrium positions, is 

distinct. These features may be of interest given the current literature on 

atropisomerization.28,29 Moreover, these observations may inform endeavors where 

spontaneous transfer of chirality occurs among the components of a system as a function of 

the interplay of kinetics and thermodynamics.30

Methods Summary

Dibromodimethylhydantoin (DBDMH, 85.8 mg, 0.30 mmol) was added to a 0.02 M solution 

of the aromatic amide 4 (66.9 mg, 0.20 mmol) and catalyst 110 (11.5 mg, 0.02 mmol) in 

CHCl3 (10 mL) at various temperatures (0 °C, −40 °C, or −55 °C). The reaction was allowed 

to stir overnight (15-22 h). The reaction was then quenched with a 1.5 M solution of butyl 

vinyl ether in methanol (MeOH, 0.5 mL). The time of quench was recorded for amide 

equilibration calculations and defined as time zero (see Supplementary Information Section 

VIII). For ease of chiral HPLC development, the phenol was subsequently protected as the 

methyl ether. The reaction was allowed to warm to room temperature and additional 

methanol was added (2.0 mL, ~5:1 by volume CH2Cl2:MeOH) followed by 2.0 M 

trimethylsilyldiazomethane in hexanes (0.4 mL). The methylation was quenched with silica 

gel upon completion (15-30 min), filtered, and concentrated under reduced pressure. Flash 

chromatrography of the crude residue with hexanes/EtOAc afforded products (as a cis/trans 

mixture or independently isolated isomers). This material (5-Me) was dissolved in a 10% 

isopropanol/hexanes mixture (0.1 M) and allowed to equilibrate, in solution, at room 

temperature over a prolonged time course to determine the experimental barriers to amide 

isomerization. Barriers to racemization of 5-Me were determined experimentally by heating 

in toluene at 70 °C (0.6 M). Isomeric ratios were determined by chiral HPLC utilizing a 

Chiralcel OD-H column, with a flow rate of 0.75 mL/min, in 95:5 hexanes:ethanol: 

RT(T, trans) = 14.0 min, RT(S, trans) = 15.3 min, RT(S, Cis) = 20.6 min, RT(R, cis) = 23.9 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to the National Institute of General Medical Sciences of the NIH (GM-068649) for support. We 
also wish to thank Louise Guard for X-ray crystallography. A.J.M. was supported by the National Science 
Foundation Graduate Research Fellowship Program. All computational work was supported by the facilities and 
staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National 
Science Foundation under grant #CNS 08-21132 that partially funded acquisition of the facilities.

References

1. Oki M. Topics in Stereochemistry. 1983; 1

2. Clayden J, Moran WJ, Edwards PJ, LaPlante SR. The challenge of atropisomerism in drug 
discovery. Angew. Chem. Int. Edn. 2009; 48:6398–6401.

3. Feringa BL. The art of building small: from molecular switches to molecular motors. J. Org. Chem. 
2007; 72:6635–6652. [PubMed: 17629332] 

Barrett et al. Page 6

Nature. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Eliel, EL.; Wilen, S. Stereochemistry of organic compounds. Wiley Interscience; New York: 1994. 
p. 425

5. Reist M, Testa B, Carrupt P-A, Jung M, Schurig V. Racemization, diastereomerization, and 
epimerization: their meaning and pharmacological significance. Chirality. 1995; 7:396–400.

6. Reichert S, Breit B. Development of an axial chirality switch. Org. Lett. 2007; 9:899–902. 
[PubMed: 17284047] 

7. Wang J, B.L. Feringa. Dynamic control of chiral space in a catalytic asymmetric reaction using a 
molecular motor. Science. 2011; 331:1429. [PubMed: 21310964] 

8. Kelly TR, De Silva H, Silva RA. Unidirectional rotary motion in a molecular system. Nature. 1999; 
401:150–152. [PubMed: 10490021] 

9. LaPlante SR, et al. Assessing atropisomer axial chirality in drug discovery and development. J. 
Med. Chem. 2011; 20:7005–7022. [PubMed: 21848318] 

10. Barrett KT, Miller SJ. Enantioselective synthesis of atropisomeric benzamides through peptide-
catalyzed bromination. J. Am. Chem. Soc. 2013; 135:2963–2966. [PubMed: 23410090] 

11. Keith JM, Larrow JF, Jacobsen EN. Practical considerations in kinetic resolution reactions. Adv. 
Synth. & Catal. 2001; 343:5–26.

12. Cox C, Lectka T. Synthetic catalysis of amide isomerization. Acc. Chem. Res. 2000; 33:849–858. 
[PubMed: 11123884] 

13. Mannschreck A, Mattheus A, Rissmann G. Comparision of kinetic results obtained by NMR line 
shape and equilibration methods. J. Mol. Spec. 1967; 23:15–31.

14. Ahmed A, Bragg RA, Clayden J, Lai L-W, McCarthy C, Pink JH, Westlund N, Yasin SA. Barriers 
to rotation about the chiral axis of tertiary aromatic amides. Tetrahedron. 1998; 54:13277–13294.

15. Iwamura H, Mislow K. Stereochemical consequences of dynamic gearing. Acc. Chem. Res. 1988; 
21:175–182.

16. Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Atroposelective 
synthesis chiral biaryl compounds. Angew. Chem. Int. Ed. 2005; 44:5384–5427.

17. Erol S, Dogan I. Determination of barriers to rotation of axially chiral 5-methyl-2-(o-aryl)imino-3-
(o-aryl)thiazolidine-4-ones. Chirality. 2012; 24:493–498. [PubMed: 22553079] 

18. Chupp JP, Olin JF. Chemical and physical properties of some rotational isomers of α-
haloacetanilides, a novel unreactive halogen system. J. Org. Chem. 1967; 32:2297–3303.

19. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, 
thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two 
new functionals and systematic testing of four M06-class functionals and 12 other functionals. 
Theor. Chem. Acc. 2008; 120:215–41.

20. Campomanes P, Menendez, Sordo TL. A theoretical analysis of enantiomerization in aromatic 
amides. J. Phys. Chem. 2002; 106:2623–2628.

21. Bragg RA, Clayden J, Morris GA, Pink JH. Stereodynamics of bond rotation in tertiary aromatic 
amides. Chem Eur. J. 2002; 8:1279–1289. [PubMed: 11921211] 

22. Pirkle WH, Welch CJ, Zych AJ. Chromatographic investigation of the slowly interconverting 
atropisomers of hindered naphthamides. J. Chromatography. 1993; 648:101–109.

23. Clayden J, Pink JH. Concerted rotation in a tertiary aromatic amide: toward a simple molecular 
gear. Angew. Chem. Int. Ed. 1998; 37:1937–1939.

24. Eliel, EL.; Wilen, S. Stereochemistry of organic compounds. Wiley Interscience; New York: 1994. 

25. Cuyegkeng MA, Mannschreck A. Chromatographic separation of enantiomers and barriers to 
enantiomerization of axially chiral aromatic carboxamides. Chem Ber. 1987; 120:803–809.

26. Lee WK, Park YS, Beak P. Dynamic thermodynamic resolution: advantage by separation of 
equilibration and resolution. Acc. Chem. Res. 2009; 42:224–234. [PubMed: 19152329] 

27. Hirsch R, Hoffmann RW. A test on the configurational stability of chiral organolithium 
compounds based on kinetic resolution; scope and limitations. Chem. Ber. 1992; 125:975–982.

28. LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. Revealing atropisomer axial chirality in 
drug discovery. ChemMedChem. 2011; 3:505–513. [PubMed: 21360821] 

Barrett et al. Page 7

Nature. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. LaPlante R, et al. Enantiomeric atropisomers inhibit HCV polymerase and/or HIV matrix: 
characterizing hindered bond rotations and target selectivity. J. Med. Chem. ASAP. 2013 Doi:
10.1021/jm401202a. 

30. Klussman M, et al. Thermodynamic control of asymmetric amplification in amino acid catalysis. 
Nature. 2006; 441:621–623. [PubMed: 16738656] 

Barrett et al. Page 8

Nature. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Stereochemical interconversion of chiral organic compounds. a, Racemization of an 

enantioenriched α-subtituted aldehyde. b, Atropisomerization of an axially chiral biaryl 

compound.
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Figure 2. 
Catalytic enantioselective bromination of N,N-diisopropyl benzamides.
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Figure 3. 
Proposed catalytic enantioselective bromination of a two-axis, differentially substituted 

benzamide. [The use of the R- and S-stereochemical descriptors are in accord with 

convention, and are defined interchangeably with the also-used M- and P-stereochemical 

convention. R = M; S = P.]16
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Figure 4. 
Experimental data describing the stereochemical behavior of the isomeric benzamide 

products. a-f: Chiral HPLC traces of 5-(Me) analyzed at r.t. (a-b, reactions run at −40 °C in 

the absence of catalyst; c-f, in the presence of catalyst and subsequently monitored over time 

after reaction work-up.) Peak assignments in order of elution: peak 1: R, trans; peak 2: S, 

trans, peak 3: S, cis; peak 4: R, cis. g, Graphical representation of changes in isomeric 

components. h, Crystallographic structure of (S, trans)-derivative used for the absolute 

stereochemistry assignments.16
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Figure 5. 
Energetic considerations and analysis of the stereoisomerizations. a, Energy diagram 

representing the initial experimental isomeric populations, equilibrium populations (inset 1), 

and experimentally derived amide rotational barriers (inset 2) of 5-(Me) at 25 °C (10% 

iPrOH/Hexanes). b, Computed ground states and transition state geometries for amide 

isomerization of (S)-5-(Me). Computations were performed with a torsional potential energy 

scan of the C-N dihedral angle, followed by geometry optimization of all stationary points 

(transition states and minima) using B3LYP/6-31+G(d,p). Harmonic vibrational frequencies 

were calculated at the same level of theory in order to determine free energies (ΔG), and 

single point energies were computed using M06-2X/6-311++G(2d,3p).
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Figure 6. 
Energetic considerations and analysis of racemization dynamics. a, Computed geometries 

and modes of isomerization of 5-(Me) with a concerted C-N/Ar-CO rotation and 

independent C-N rotation leading to racemization at high temperatures. b, Experimentally 

and theoretically calculated barriers to racemization of atropisomeric benzamides.
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